Physics at the LHC

- Where do we stand? Prospects for HL-LHC -

Karl Jakobs University of Freiburg / Germany

XXV IFT Christmas Workshop, Madrid, 12th December 2019

Physics at the LHC

- Where do we stand? Prospects for HL-LHC -

• Data Taking at the LHC

- Physics highlights
 - Standard Model processes and parameters
 - Higgs boson physics
 - Search for Supersymmetry
 - Dark Matter
- Plans for the High Luminosity LHC (HL-LHC)

Karl Jakobs University of Freiburg / Germany

XXV IFT Christmas Workshop, Madrid, 12th December 2019

Physics at the LHC

- Where do we stand? Prospects for HL-LHC -

A few preliminary remarks on this talk:

- Focus on latest results and full Run-2 data analyses
- ATLAS heavy mostly due to convenience (apologies for this!): in most cases there are equivalent results from CMS

Karl Jakobs University of Freiburg / Germany

XXV IFT Christmas Workshop, Madrid, 12th December 2019

Data taking at the LHC in Run 2

- Excellent performance of the accelerator and the ATLAS and CMS experiments High data-taking efficiency and high data quality
- Integrated luminosity in Run 2 measured with a precision of ±1.7% [ATLAS-CONF-2019-021]
- Timely analyses → Many results based on the complete Run-2 dataset

Data taking at the LHC in Run 2 (cont.)

 $Z \rightarrow \mu\mu$ candidate with 65 additional reconstructed vertices!

Summary of recent results from the LHC

Di-jet event with the highest di-jet invariant mass of m_{ij} = 8.02 TeV recorded during 2016

Double differential jet production cross sections, as a function of p_T and rapidity y (full 2015 data set, $\sqrt{s} = 13$ TeV)

- Also at the highest energies explored so far, the data are well described by NLO perturbative QCD calculations (NLOJet++)
- Latest comparisons to NNLO predictions (NNLOJet) [J. Currie, N. Glover, T. Pieres, Phys. Rev. Lett. 118 (2017)]
 → improved agreement, however, scale dependent

Search for new phenomena in di-jet events

• Results based on Run-2 data (2015 – 2018): 139.0 fb⁻¹ at \sqrt{s} = 13 TeV

• 95% CL exclusion limits: Excited quarks Add. gauge bosons: Quantum Black Holes: Phys. Rev. D96 (2017) 052004, 36 fb⁻¹ Contact Interactions: $m_{W'} > 6.7 \text{ TeV} \quad (6.4 \text{ TeV exp.})^* \\ m_{W'} > 4.0 \text{ TeV} \quad (4.2 \text{ TeV exp.}) \\ m_{BH} > 9.4 \text{ TeV} \quad (9.4 \text{ TeV exp.}) \\ \Lambda > 13.1 \text{ TeV} \quad (\eta_{LL} = +1) \\ \Lambda > 21.8 \text{ TeV} \quad (\eta_{LL} = -1) \end{cases}$

*pre-LHC limit on excited quarks from the Tevatron: 0.87 TeV

Search for new phenomena in **b-jet events**

• Results based on Run-2 data (2015 – 2018): 139.0 fb⁻¹ at \sqrt{s} = 13 TeV

Interpretation in terms of excited b* quarks and dark matter mediators:

1 <i>b</i>	<i>b</i> *	3.2 TeV	3.1 TeV
2 <i>b</i>	DM mediator $Z' g_q = 0.20$	2.8 TeV	2.8 TeV
	DM mediator Z' , $g_q = 0.25$	2.9 TeV	3.0 TeV
	SSM Z',	2.7 TeV	2.7 TeV
	graviton, $k/\overline{M}_{\rm PL} = 0.2$	2.8 TeV	2.9 TeV

observed

expected

Standard Model Production Cross Section Measurements

Status: November 2019

Huge progress also on the theoretical side: (N)NLO QCD / el.weak corrections LHC for theorists: "Long and Hard Calculations"

Precise measurement of **Z** boson production at \sqrt{s} = 13 TeV Exploring differential measurements

 High-precision study of Z boson production at 13 TeV compared to state-of-the-art predictions

Also comparisons with resummed & FO predictions. None provides fully satisfying agreement yet. Understanding of $p_T(V)$ spectrum and W–Z correlation important for W mass measurement

High-statistics probes of diboson production

Exploring differential measurements

New high-precision measurements of differential W^+W^- (left) and Z_γ (right) diboson cross sections, probing the EW gauge structure of the SM and test of QCD

Top-antitop production measurements

Huge tt statistics at LHC allows to measure multidimensional differential cross sections

Analysis based on 36 fb⁻¹ with high-precision

Associated production of tt with bosons

ttZ cleanest channel, allows differential cross-section measurements

• Very interesting measurement from CMS using 78 fb⁻¹ in 3 and 4-lepton channels

Very clean signal regions;

Total cross section measured:

 $\sigma(\text{ttZ}) = 0.95 \pm 0.05_{\text{stat}} \pm 0.06_{\text{syst}} \text{ pb}$ SM(NLO): 0.84 ± 0.10 pb

Vector boson scattering

Observation of Vector Boson Scattering in ZZjj

$H \rightarrow ZZ^* \rightarrow 4\ell$ signals

Impressive progress illustrated by comparison of $H \rightarrow ZZ^* \rightarrow 4\ell$ signals

Differential H $\rightarrow \gamma\gamma$ cross-section measurements

- Data are well described by theoretical calculations (within uncertainties)
- Such measurements will become important ingredients for future measurements of Higgs boson parameters (Effective Field Theories)

Statistical combination for cross-section measurements (total and differential)

Combined inclusive pp \rightarrow H + X cross section:

 $\sigma(pp \to H) = 56.7^{+6.4}_{-6.2}(\gamma\gamma), 54.4^{+5.6}_{-5.4}(4\ell), 55.4^{+4.3}_{-4.2}(\text{comb}) \text{ pb} \qquad \text{(Precision of 7.7\%)}$

SM: 55.6 ± 2.5 pb (NLO–NNNLO QCD, NLO EW)

$\mathsf{H} \to \mathsf{W}\mathsf{W}^* \to \ell_\mathsf{V} \, \ell_\mathsf{V} \, \text{signal}$

- Large branching fraction, however, also severe backgrounds (no mass peak, due to neutrinos)
- \rightarrow Rely on lepton/jet kinematics (\rightarrow transverse mass M_T, di-lepton invariant mass m_{ll}, θ_{ll})

- Very significant excesses visible in the "transverse mass" and $m_{\ell\ell}$ distributions ATLAS: gluon fusion 6.3 σ observed (5.2 σ expected)
- CMS: First differential measurements with full Run-2 data

Couplings to quarks and leptons ?

- Search for $H \rightarrow \tau \tau$ and $H \rightarrow$ bb decays;
- Challenging signatures due to jets (bb decays) or significant fraction of hadronic tau decays
- Vector boson fusion mode essential for $H \rightarrow \tau \tau$ decays

 Associated production WH, ZH modes have to be used for H → bb decays

• Exploitation of multivariate analyses

IFT Madrid, K. Jakobs, 12th December 2019

Couplings to Fermions: $H \rightarrow \tau \tau$

- Search for $H \rightarrow \tau\tau$ with $\tau\tau$ decaying in $e\mu$, $\mu\tau_h$, $e\tau_h$ and $\tau_h\tau_h$
- Largest background from $Z \rightarrow \tau \tau$ and hadronic multi-jet events
- Search in categories aiming at ggH and VBF production

Observation of H $\rightarrow \tau \tau$

Significance:

CMS:

ATLAS:

35.9 fb⁻¹ (13 TeV)

5.9σ

6.4σ

(combination of Run-1 and Run-2 data)

Observation of H \rightarrow bb decays

- H→bb mode dominates Higgs decays (BR~58%)
- Most sensitive channel exploits VH, H→bb (V=W/Z)

Combination with ATLAS Run-1 results \rightarrow 5.4 σ observed (5.5 σ expected)

W/Z

 W/Z^*

Search for ttH Production

- Direct access to top-Yukawa coupling
- Rich decay topologies; final states with leptons, jets, b-jets, photons

Observation of ttH production

- **Combination of all channels** leads to observation of ttH production in both experiments (2018)
- Measured production and decay rates consistent with SM expectation

CMS observation of ttH production: (combination of Run-1 and Run-2 data)

μ = 1.26

Significance: 5.2 (obs.), 4.2 (exp.)

Including the 2018 data for $H \rightarrow \gamma \gamma$

Higgs signal appears in ttH production with decays into $\gamma\gamma$

• Observed significance: 4.9σ (4.2σ exp.)

• Signal strength consistent with SM expectation: $\mu_{t\bar{t}H} = 1.38 + 0.33 + 0.031 + 0.000 + 0.00000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000$

The next frontier: the 2nd generation $H \rightarrow \mu\mu$

- Challenging, due to small couplings in the SM and large backgrounds
- Perform fit using event categorization and BDTs for discrimination
- Expected sensitivity: 1.5σ, observed 0.8σ

The next frontier: the 2nd generation $H \rightarrow cc$

Search for VH(\rightarrow cc), new result from CMS, significantly improved over previous ATLAS limit

BR: 2.9% \rightarrow 20 times smaller than bb, so need to worry about H \rightarrow bb background

Challenging due to low cross section and need for c-tagging

- Categorisation according to charged-lepton multiplicity of V decays (0,1, 2I)
- Use and combination of of resolved (2c) and merged (1 large-R cc) jets
- Use of ML and jet substructure for tagging and classification

Properties of the Higgs Boson

• Mass

 \rightarrow Couplings to bosons and fermions

• Higgs-boson self coupling (?) \rightarrow HL-LHC

Higgs boson mass

The two high-resolution channels $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ are best suited (reconstructed mass peak, good mass resolution)

Combined results:				
	PRL 114 (2015) 191803			
ATLAS + CMS: (Run 1)				
m _H = 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV				
Precision of 0.2%				

Updated Run-2 results:

Uncertainties:

- Statistical uncertainty still dominant
- Major systematic uncertainties: Lepton and photon energy scales and resolutions
- Theoretical uncertainties small (correlated),
 γγ interference effects neglected

Updated Combination of Higgs boson results

- incl. 2015 - 2017 data for some important channels-

Global signal strength: $\mu = 1.11 + 0.09 - 0.08$

Run-1 result (ATLAS+CMS): μ = 1.11 ± 0.11

First full combination based on template cross sections (reduced theory uncertainty)

Combined significance for **vector-boson** fusion production process of 6.5σ (exp., 5.3σ)

Updated Combination of Higgs boson results

arXiv: 1909.02845

First full combination based on template cross sections (reduced theory uncertainty)
Updated Combination of Higgs boson results

First full combination based on template cross sections (reduced theory uncertainty)

Di-Higgs boson production

HH ggF cross section predicted to 34 fb at 13 TeV, >1000 times smaller than single Higgs production

Sophisticated analyses needed, room for innovation Best channels: bb $\gamma\gamma$ (BR = 0.26%), bb $\tau\tau$ (7.3%), bb bb (34%) \rightarrow combination

ATLAS combination using 36 fb⁻¹ analyses:

LO diagrams contributing with negative interference to SM HH production

Box diagram dominates inclusive production

Sensitivity to H self-coupling rises at low $m_{\rm HH}$

Constraints the Higgs boson width

Both CMS and ATLAS have constrained the Higgs boson off-shell coupling and through this obtained upper limits on the Higgs boson total width $\Gamma_{\rm H}$.

The method uses the independence of off-shell cross section on Γ_H and relies on identical on-shell and off-shell Higgs couplings. One can then determine Γ_H from measurements of $\mu_{off-shell}$ and $\mu_{on-shell}$

Search for Physics beyond the Standard Model

© Hitoshi Murayama, IPMU Tokyo & Berkeley

SUSY: Strong production of squarks and gluinos

• Sensitive searches for squarks and gluinos in R-parity conserving scenarios with neutralino as LSP (no leptons)

\rightarrow high mass reach

- Many different scenarios investigated with cut-based analyses and boosted decision trees
- Effective Mass variable used for some searches:
 M_{eff} = p_T sum of jets (p_T > 50 GeV) and missing p_T

Use simplified scenarios: here squark or gluino decays to quarks and neutralino

Significant improvement over previous limits; Gluino mass limit around 2.35 TeV, $m(\chi^0) = 0$

SUSY: Strong production of squarks and gluinos - neutralino mass dependence -

- Significant extension of mass limits with Run-2 data
- Neutralino mass has strong impact on exclusion contours

Results on dedicated searches for stop quarks pCMS: full Run-2 search for direct stop production \boldsymbol{p} 137 fb⁻¹ (13 TeV) CMS Preliminary $\sqrt{s} = 13 \text{ TeV}, 36.1-139 \text{ fb}^{-1}$ July 2019 500 = 13 TeV, 3 500 = 13 TeV, 3 ATLAS Pre $600 = \tilde{t}, \tilde{t}, \text{ production}$ Limits at 95% for t120 95] ۳² 1000 ۳ 10 Observed limits pp $\rightarrow \tilde{t} \ \tilde{\tilde{t}}, \tilde{t} \rightarrow t \ \tilde{\chi}^0$ Approx. NNLO+NNLL exclusion - - Expected limits ATLAS Preliminary \blacksquare Observed ± 1 σ_{theory} 139.0 fb⁻¹ Expected $\pm 1 \sigma_{\text{experiment}}$ −− 1L, $\tilde{t}_i \rightarrow Wb\tilde{\chi}_i^0$ Limits at 95% CI [ATLAS-CONF-2019-17] 36.1 fb⁻¹ 800 210 200 220 $0L, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow Wb \tilde{\chi}_2^0$ [1709.04183] 400 [1711.11520] 600

Results on dedicated searches for stop quarks

SUSY: Electroweak production

If squarks and gluinos are very heavy, then electroweak production of SUSY particles could dominate \rightarrow much lower cross sections, challenging phase space to explore

Search for stau pair production

First time sensitivity achieved by ATLAS

Electroweak SUSY sensitivity beyond LEP limits

Interesting limits for electroweak SUSY production with compressed mass states (left): First direct Higgsino constraints from ATLAS (combination of several analyses)

(right): Exclusion of slepton masses up to 190 GeV

Search for Long-Lived Particles

Long-lived particles can occur in case of weak couplings, small phase space (mass degeneracy), high virtuality (scale suppression)

Search for a long-lived particle with displaced vertex and muon

Clean signature of large track multiplicity and vertex mass

Searches for Dark Matter particles

- Mono-jet
- Mono-photon
- Mono-W or mono-Z
- Mono Higgs (H \rightarrow bb)
- Mono-top

Data are in good agreement with the expectations from Standard Model processes

(applies to all mono-X searches)

IFT Madrid, K. Jakobs, 12th December 2019

Example: mono-jet search, E_T^{miss} spectrum

Interpretation on searches for Dark Matter:

- g_I: coupling to all lepton-flavours
- g_x: coupling to DM

ATLAS released a combination of $E_{T,}^{\text{miss}}$ -based DM searches involving $E_{T,}^{\text{miss}}$ + X, X = jet, γ , W, Z, H, b(b), t(t) using large number of models and resonance searches

Interpretation on searches for Dark Matter:

Interpretation is highly model dependent

High-mass resonance searches to probe new TeV scale symmetries or forces

Highest-mass central dijet event of 8.0 TeV selected in resonance search

High-mass resonance searches to probe new TeV scale symmetries or forces

High-mass resonance searches to probe new TeV scale symmetries or forces

Searches for di-lepton resonances

Phys. Lett. B 796 (2019) 68

Summary of Results on Searches for other BSM physics

act

Physics at the HL-LHC

LHC / HL-LHC Plan

IFT Madrid, K. Jakobs, 12th December 2019

14 TeV proton–proton centre-of-mass energy

14 TeV / 13 TeV inclusive pp cross-section ratio

Triplet: lower β* Expected integrated luminosity of LHC and HL-LHC

[©] P. Ferreira da Silva at Moriond EW, 2016

[©] P. Ferreira da Silva at Moriond EW, 2016

Phase-II Detector Upgrades

Designed to maintain current performance under high pileup (~35 \rightarrow 200, $L_{\text{peak}} \sim 7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$)

HL-LHC

- Higgs factory for precision Higgs coupling measurements and increased rare & new physics sensitivity
- Detector upgrades required for improved pileup and radiation robustness

ATLAS and CMS developed novel detection technologies at the forefront of speed, granularity and radiation hardness

- Silicon tracking detectors with > 1B channels
- Timing detector based on fast silicon LGAD technology (30 ps timing resolution per layer)
- High granularity topological trigger and high-performance DAQ architecture
- New compute technologies: use of high-performance computing, possibly GPUs, machine learning
- ATLAS: 6 TDRs approved (1 more to come), MoUs submitted to funding agencies

ATLAS Phase-II Upgrade

Higgs properties:

- mass (well known, expect to improve to ~33 MeV in $H\rightarrow 4\mu$), width (through interference measurements)
- spin (0+ established), CP (odd admixture possible) not discussed today

Rare Higgs decays:

- Observation of $H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$, HH production (constraint on Higgs self coupling)
- Search for very rare (eg, $H \rightarrow M\gamma$, $M=J/\psi$, ϕ , ρ), difficult ($H \rightarrow cc$) or anomalous decays (invisible or new particles, or flavour violating)

Higgs couplings:

- Study of Higgs production and anomalous couplings by differential cross-section measurements
- Global and partially global coupling fits: experiments moving from "kappa" interpretation to EFT

New physics in Higgs production or other scalar states

- Search for anomalous FCNC through top decays, Higgs production via SUSY cascades, etc.
- Search for additional scalar particles

Higgs Boson couplings

CERN Yellow Report on HL-LHC physics arXiv:1902.00134

Higgs Boson couplings

Sensitivity on Higgs Boson self coupling

Combined ATLAS + CMS fit yields: 68% C.L. limits $0.5 < \lambda_{HHH}$ (obs.) / λ_{HHH} (SM) < 1.5 95% C.L. limits $0.1 < \lambda_{HHH}$ (obs.) / λ_{HHH} (SM) < 2.3

CERN Yellow Report on HL-LHC physics arXiv:1902.00134

Sensitivity for strongly produced SUSY particles

Results based on current analysis techniques

- S/B @ 14 TeV > S/B @ 13 TeV
- Bigger dataset allows for stricter selection criteria
- Generally reduced systematic uncertainties

Sensitivity to el.weak SUSY production

Higgsino-like LSP (naturalness motivated)

• soft objects in the final state

mass with LSP

• Lightest chargino and second neutrino close in

Sensitivity to staus

Stau as **lightest slepton** (large $tan\beta$)

- signatures with at least one hadronically decaying tau
- Small cross section (<1 fb⁻¹ for m(stau) > 400 GeV @ 14 TeV)
 - Large size of sample @HL-LHC important
 - Sensitivity to right-handed tau limited by cross section

Conclusions

- With the operation of the LHC at the highest energies, particle physics has entered a new era; Superb performance of the LHC and the experiments
- The Standard Model is challenged at the high-energy frontier with ever increasing precision
- Higgs boson:
 - Within present uncertainties, its properties are in agreement with the predictions of the Standard Model
 - We moved from the discovery to the measurement phase;
 - The Higgs boson might be a portal to *New Physics* (precision required)
- So far no signals from New Physics, however, more complex scenarios have to be explored with more data
- Future direction: HL-LHC Exploration of the Higgs sector and continuation of direct searches

