Dark Energy: Cosmology with galaxy surveys

Ramon Miquel ICREA / IFAE Barcelona

XXV IFT Christmas Workshop, December 11th, 2019

<u>Outline</u>

- Introduction: dark energy and galaxy surveys
- Quick survey of current and future galaxy surveys
- Kinematical probes: BOSS, Planck. Tensions
- Dynamical probes: **DES**, KiDS, HSC, Planck. Tensions?
- Status of the PAU Survey at ORM
- Conclusions

Intro: dark energy and galaxy surveys

- What is causing the acceleration of the expansion of the universe?
 - Einstein's cosmological constant Λ ?
 - Some new dynamical field ("quintessence," Higgs-like)?
 - Modifications to General Relativity?
- Dark energy effects can be studied in two main cosmological observables:
 - The history of the expansion rate of the universe (kinematical): supernovae, weak lensing, baryon acoustic oscillations (BAO), cluster counting, etc.
 - The history of the rate of the growth of structure in the universe (**dynamical**): weak lensing, large-scale structure, cluster counting, redshift-space distortions...
- For all probes, large galaxy surveys are needed:
 - Spectroscopic: 3D (redshift), medium depth, low density, selection effects, BAO
 - Imaging: "2.5D" (photo-z), deeper, higher density, no selection effects, WL

"Dark Energy"

Spectroscopic redshift vs. photo-z

Spectroscopy: $\sigma(z)/(1+z) < 0.001$ Photo-z: $\sigma(z)/(1+z) \sim 0.05$

Survey of galaxy surveys

2004 2006 2008 2010 2012 2014/2018 2020 2022 2024 2026 2028 2030

Kinematical probes: BAO

State of the art: BOSS (+ Planck +SNe)

- BOSS finished data taking in 2014: ~9,400 deg²
- It measured the BAO scale in galaxies and Ly-α quasars

Neutrino mass

All next generation surveys have the sensitivity to reach a detection Ex: DESI (+ Planck) forecast a sensitivity ~ 0.02 eV

Ho: tension $\Delta w_{p} = -0.08, \Delta w_{o} = -0.8$ $\Delta W_{v} = \pm 0.4$

9

BAO internal tension?

BAO internal tension?

BAO Ly-*α* internal tension?

Planck internal tension?

Systematics in direct measurement?

- Recent analysis of parallaxes of a Gaia Cepheid-companion sample produces a very different period-luminosity relation.
- This then translates into $H_0 = (69 \pm 2) \text{ km/s/Mpc}$.

Does it help to float N_{eff}?

Schöneberg, Lesgourgues, Hooper, JCAP 1910 (2019) 029

H₀ from gravitational waves (I)

- Neutron star-neutron star mergers are "standard sirens": one can determine accurately the **distance** to the event from the GW signal.
- Since NS-NS mergers have optical counterparts, one can determine the host galaxy and its redshift
 Hubble diagram.
- From the one local event GW170817, one can already determine H₀.

Abbott et al (LIGO, Virgo, DES et al.), Nature 551 (2017) 85

H₀ from gravitational waves (II)

- Analyzing radio data, one can constrain the viewing angle, which is the leading systematic error, and reduce the overall error by half.
- It looks like 15-20 NS-NS mergers with reasonably favorable orientations might be enough to adjudicate the current H₀ discrepancy.
- A sample like this could already become available in late 2020.

Hotokezaka et al, Nature Astron. 3 (2019) 940

Dynamical probes: weak lensing

Weak gravitational lensing (I)

Weak gravitational lensing (II)

DARK ENERGY SURVEY

• Linearized lens equation: $\vec{\beta} - \vec{\beta_0} = A(\vec{\theta_0})(\vec{\theta} - \vec{\theta_0})$ source image

$$A = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix} = (1 - \kappa) \begin{pmatrix} 1 - g_1 & -g_2 \\ -g_2 & 1 + g_1 \end{pmatrix}$$
$$g_i = \gamma_i / (1 - \kappa)$$

 $\kappa = rac{1}{2} \left(\Psi_{,11} + \Psi_{,22}
ight) = rac{1}{2} \Delta \Psi \quad \Psi$: lens-power-weighted integral of gravitational potential

Convergence: change in size 2D Poisson equation: 2k gives us the matter density along the line of sight

$$\gamma = \gamma_1 + i\gamma_2 = |\gamma|e^{i2\phi} = \frac{1}{2}(\Psi_{,11} - \Psi_{,22}) + \Psi_{,12}$$

Shear: change in shape Spin-2 object

Same information as κ

- Since we don't know the original sizes of the galaxies, *k* can't be measured directly
- However, we can infer it from y (or g)

Weak gravitational lensing (III)

minor radius

major radius

DARK ENERGY SURVEY

• Let's measure the **ellipticity** of a galaxy:

$$\epsilon = \frac{a-b}{a+b}e^{i2\phi}$$

• The measured ellipticity relates to the real one:

$$\epsilon = rac{\epsilon^s + g}{1 + g^* \epsilon^s} \simeq \epsilon^s + \gamma$$

 γ : weak lensing effect: shear

• The expectation value of the measured ellipticity is:

- So the ellipticity is an unbiased estimator of the shear.
- However, it's a very noisy estimator: |ε^s| ~ 0.3, |γ| ~ 0.01.
 We need very many galaxies and exquisite control of systematic errors.

Dark Energy Survey (DES)

DARK ENERGY SURVEY

- Imaging galaxy survey on the 4-m Blanco telescope (Chile) to study Dark Energy.
- 350 scientists in 28 institutions in USA, Spain, UK, Brazil, Switzerland, Germany, Australia.
- Started in 2013, ended in Jan 2019: 577 nights in 6 seasons.
- Has mapped 1/8 of sky (5000 deg²) to z ~ 1.3 in 5 optical bands: ~300 million galaxies.
- Four main dark energy probes:
 - Galaxy cluster counting.
 - Galaxy distribution (including BAO).
 - Type-la supernovae.
 - Weak gravitational lensing.

Blanco 4-meter telescope Cerro Tololo, Chile

4.00

Lenses, UK

From Galaxy to CCD Image

Intrinsic galaxy (shape unknown)

effect exaggerated by \times 20

Gravitational lensing causes a **shear (g)**

Atmosphere and telescope cause a convolution

Detectors measure a pixelated image

Image also contains noise

From Galaxy to CCD Image

effect exaggerated by \times 20

Intrinsic galaxy Gra (shape unknown) cau

Gravitational lensing causes a **shear (g)**

Atmosphere and telescope cause a convolution

Detectors measure a pixelated image

Image also contains noise

From Star to CCD Image

PSF

Intrinsic star (point source)

Atmosphere and telescope cause a convolution

Detectors measure a pixelated image

Image also 34

an Tana an

A huge effort!

DARK ENERGY SURVEY

> Reduction of single-epoch images Astrometric solution Photometric calibration Co-addition into deep images Object detection Flux measurement Star / galaxy separation PSF extraction from stars **Shape measurement on galaxies**

Each bubble can represent months of development and millions of CPU hours.

Tools: Balrog

DARK ENERGY SURVEY

Embed simulated stars and galaxies into real images

Red: simulated object

Tools: Metacalibration

DARK ENERGY SURVEY

measure ellipticity: get sensitivity to shear

DES Year-1 sample DARK ENERGY SURVEY **60**° 50° 40° 30° 20° 10° 0° $350^{\circ} 340^{\circ} 330^{\circ}$ $+10^{\circ}$ 7.8 **0**° 7.2 -10° 6.6 $n_g [\operatorname{arcmin}^{-2}]$ -20° 35 million galaxies -30° with measured shapes -40° 4.2 -50° 3.6 3.0

A shear map tells us where the mass is

DARK ENERGY SURVEY

40

DES Year-1 mass map

Chang et al (DES Collaboration), MNRAS 475 (2018) 3165

DES Year-1 mass map

Blue: regions of low gravitational potential Red: regions of high gravitational potential

Arrows: deflection field (direction and strength of the gravitational force)

DES Collaboration, PRD 98 (2018) 043526

DES Collaboration, PRD 98 (2018) 043526

DES Collaboration, PRD 98 (2018) 043526

Modeling

DARK ENERGY

Correlations
between shapes
in redshift bins i, j

$$\hat{\xi}_{\pm}^{ij}(\theta) = \frac{1}{2\pi} \int d\ell \ell J_{0/4}(\theta \ell) P_{\kappa}^{ij}(\ell)$$

$$P_{\kappa}^{ij}(l) = \int_{0}^{\chi_{H}} d\chi \frac{q^{i}(\chi)q^{j}(\chi)}{\chi^{2}} P_{\delta}(\frac{l}{\chi}, \chi)$$
Hubble constant
(rate of expansion)

$$q^{i}(\chi) = \frac{3}{2\pi} \Omega_{m} \left(\frac{H_{0}}{c}\right)^{2} \frac{\chi}{a(\chi)} \int_{\chi}^{\chi_{H}} d\chi' n^{i}(\chi') \frac{\chi' - \chi}{\chi}$$
Mass density
of the Universe

$$P_{\delta}(k, z) = A \frac{T^{2}(k, z)}{a^{2}} \frac{D^{2}(z)}{D^{2}(0)} k^{n_{s}}$$
Dynamics
Amplitude of clustering: inhomogeneity
Correlations

$$\hat{\xi}_{\pm}^{ij}(\theta) = \frac{1}{2\pi} \int d\ell \ell J_{0/4}(\theta \ell) P_{\kappa}^{ij}(\ell)$$
Geometry
(distances: expansion)

$$\frac{Q^{i}(\chi)}{Q^{2}(0)} = \frac{1}{2\pi} \int d\chi \frac{Q^{i}(\chi)Q^{j}(\chi)}{Q^{2}(0)} e^{\chi_{0}} \int d\chi \frac{Q^{i}(\chi)Q^{j}(\chi)}{Q^{2}(0)} e^{\chi_{0}} \int d\chi \frac{Q^{i}(\chi)Q^{j}(\chi)}{Q^{2}(0)} e^{\chi_{0}} \int d\chi \frac{Q^{i}(\chi)Q^{j}(\chi)}{Q^{2}(0)} e^{\chi_{0}} \int d\chi \frac{Q^{i}(\chi)Q^{j}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{j}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{j}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)}{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int d\chi \frac{Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)Q^{i}(\chi)} \int$$

DES-Y1 cosmological results

DARK ENERGY SURVEY

- $S_8 = \sigma_8 (\Omega_m / 0.3)^{0.5}$ describes the inhomogeneity of the matter distribution now: σ_8 is the standard deviation of the matter-density distribution in spheres of radius 8 Mpc/h.
- Ω_m : fraction of matter in the total matter-energy of the universe now.
- First measurement in late universe with precision comparable to CMB.

DES Collaboration, PRD 98 (2018) 043526

Planck CMB temperature map

DES-Y1 cosmological results

DARK ENERGY SURVEY

- $S_8 = \sigma_8 (\Omega_m / 0.3)^{0.5}$ describes the inhomogeneity of the matter distribution now: σ_8 is the standard deviation of the matter-density distribution in spheres of radius 8 Mpc/h.
- Ω_m : fraction of matter in the total matter-energy of the universe now.
- First measurement in late universe with precision comparable to CMB.

DES Collaboration, PRD 98 (2018) 043526

<u>σ₈: tension?</u>

Hildebrandt et al, arXiv:1812.06076

<u>σ₈: tension?</u>

KiDS have re-analyzed the DES-Y1 data set, using their photo-z calibration method.

Joudaki et al, arXiv:1906.09262

Ho: tension $\Delta w_{p} = -0.08, \Delta w_{a} = -0.8$ $\Delta N_{eff} = +0.4$

55

H₀: tension $\Delta w_{p} = -0.08, \Delta w_{a} = -0.8$ $\Delta N_{eff} = +0.4$ $\Delta \Omega_{\rm K} = -0.01$ NEW $DM - \nu, \sigma = 10^{-33} m_{DM} GeV^{-1} cm^2$ PHYSICS Early DE,z=10⁴, Ω_{EDE} =0.07 4.4*σ* Early Late Here Planck18+ACDM Gaia DR2,HST π (R18a,b: SHOES) BAO+BBN ²H SN Ia NIR (DJL17,CSP B18) BAO+ACTPoI,SPT,WMAP HOLiCOW-4 lenses (Birrer18) r_s+ inverse ladder R16 (SHOES) DES(Ω_m)+BAO(gal)+BBN Reanalysis of R16 (C16,FK17,FM18) DES Collaboration, MNRAS 480 (2018) 3879

70

 $H_0 (km s^{-1} Mpc^{-1})$

72

74

76

68

66

64

Riess et al, ApJ 876 (2019) 85

56

DES Year-3 mass map

The PAU survey at the ORM

- PAUCam built by Spanish consortium (Consolider-2010 project) led by IFAE.
- 40 narrow-band filters provide very precise redshifts.
- >100-night survey at WHT, including partners from Bonn, Leiden, ETH Zurich, Durham, UCL:
 - Redshift-space distortions.
 - Weak-lensing magnification.
 - Intrinsic galaxy alignments.
 - Photo-z calibration for DES, KiDS, Euclid, LSST...
- Commissioning took place in 2015; science verification in spring 2016; survey started in fall 2016.
- First papers just published.

PAU observation periods

	nights	BAD	POOR	GOOD	TECHNI	LOST	GOOD
					CAL	TECH	DATA
2015B	10	4	3	3	2.2	1	2
2016A	13	5.7	1.5	5.8	0.8	0.0	5.8
2016B	20.5	10.6	2.2	7.7	0.9	0.8	6.9
2017A	27.5	7.8	3.4	16.3	4.1	2.4	13.9
2017B	28	13.2	4.5	10.3	1.0	0.7	9.6
2018A	24.5	6.1	2.9	15.5	0.1	0.0	15.5
2018B	37	10.6	3.9	22.5	4.1	4.0	18.5
2019A	36	10.9	2.0	23.1	0.0	0.0	23.1
All	196.5	68.9 (35%)	23.4 (12%)	104.2 (53%)	13.2	8.9(5%) PAU: 3.3 WHT: 5.6	95.3 (49%)

- We have been very successful with the ES and NL TACs, and OK with the UK.
- We have requests from external users: more nights to PAU Survey (3:1).
- Unfortunately, bad weather has reduced our efficiency of good observations to about 50%.

Fields of the PAU survey

Field coverage

9 deg²

12.4 deg²

Total: 44 deg² with 40 NB

PAU publications

- Five papers published so far:
 - L. Tortorelli et al., "The PAU Survey: A forward modeling approach for narrow-band imaging," JCAP 11 (2018) 035 (arXiv:1805.05340).
 - L. Cabayol et al., "The PAU Survey: Star-galaxy separation with multi narrow-band data," MNRAS 483 (2019) 529 (arXiv:1806.08545).
 - M. Eriksen et al., "The PAU Survey: Early demonstration of photometric redshift performance in the COSMOS field," MNRAS 484 (2019) 4200 (arXiv:1809.04375).
 - C. Padilla et al., "The Physics of the Accelerating Universe Camera," AJ 157 (2019) 246 (arXiv:1902.03623).
 - L. Cabayol et al., "The PAU Survey: Background light estimation with deep learning techniques," MNRAS in press (arXiv:1910:02075).
- Several other papers are in preparation: calibration, photometry, operations. First science papers expected for 2020.

Photo-z measurements

- First results obtained using a sample of galaxies matched to those in the COSMOS field with spectroscopic redshifts.
- Using a quality cut that keeps 50% of the galaxies in the sample, we match the expectations from simulations:

 $\sigma_{68}(z) \lesssim 0.0035 \times (1+z)$

- Already better than any previous narrow-band survey: COMBO-17, ALHAMBRA, COSMOS32.
- Results are being improved using machine-learning techniques.

M. Eriksen et al., MNRAS 484 (2019) 4200

Conclusions

- Dark Energy is a profound mystery that deserves the attention is receiving.
- Imaging/Spectroscopy, Ground/Space are complementary and synergistic:
 - Imaging: efficient; deep; 2.5D for many methods; allows weak lensing.
 - Spectroscopy: 3D info for BAO, RSD.
 - Space: exquisite, stable PSF for lensing; access to near-infrared.
 - Ground: larger telescopes allow fast, wide, deep surveys.
- BOSS, DES-Y1 results represent the first powerful test of ACDM in the local universe.
- Tensions start to appear in H₀ (kinematical) and, maybe, in σ_8 (dynamical).
- DES-Y3 (2020) and DES-Y6 (2022) will combine all probes (SNe, clusters) and provide unprecedented constraints on the cosmological parameters.
- In the next decade, DESI, Euclid, and LSST will increase the precision on the dark energy parameters by an order of magnitude.