ANAIS-112 status and preliminary 3 years results Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza Universidad Zaragoza María Martínez, ARAID & CAPA aboratorio Subterráneo de Canfra

On behalf of ANAIS team Multidark Online Meeting, January 26, 2021

OUTLINE

- Intro: DM annual modulation and DAMA/LIBRA positive signal
- ANAIS-112 status
 - Experimental set-up
 - Detector performance
- Results on annual modulation: 3 years update
- ANAIS-112 sensitivity
- Future plans and summary

DM Annual modulation

M. Martinez. F. ARAID & U. Zaragoza

DM Annual modulation

Due to the Earth revolution around the Sun, the relative speed Earth-halo is cosine-like with 1 year periodicity and small amplitude ($\sim 7\%$), and that implies **a modulation in the expected rate**:

$$\frac{dR}{dE}(E,t) \approx S_0(E) + S_m(E)\cos\omega(t-t_0)$$

Where $S_m(E) = \frac{1}{2} \left(\frac{dR}{dE}(E, t_0) - \frac{dR}{dE}(E, t_0 + 182) \right)$

A distinctive signal hard to mimic by background

- Cosine behaviour
- ✓ 1 year period
- Maximum around June 2nd
- $\checkmark \quad \text{Weak effect} \left(\frac{s_m}{s_0} \sim 0.01 0.1\right)$

✓ Only noticeable at low energy

✓ Phase reversal at low E

DAMA/LIBRA positive signal

DAMA / Nal <u>(1995-2002)</u>

• 10 × 9.7 kg NaI(TI) • 7 annual cycles • 0.29 ton×y

DAMA / LIBRA phase 1

(2003 - 2010)

• 25×9.7 kg Nal(Tl)

7500

7750

8000

Time (day)

• 7 annual cycles • 1.17 ton×y

• 25×9.7 kg NaI(TI) • PMT with high QE \rightarrow threshold at 1 keV • 6 annual cycles • 1.13 ton×y

DAMA / LIBRA phase 2

(2011 - 2018)

The data of DAMA/LIBRA phase1+phase2 favor the presence of a modulation with proper features at **11.9** σ CL (2.17 ton x yr)

M. Martinez. F. ARAID & U. Zaragoza

Interpreting DAMA/LIBRA ph1 as WIMPs

The signal satisfies all requirements for DM and can be interpreted as a WIMP but the parameter's region singled out by DAMA/LIBRA is excluded by most sensitive experiments

Target dependence

Expected rate @ Earth: $\frac{dR}{dE_R} = \frac{\rho_0 M_{Det}}{2m_W m_{WN}^2} \sigma_{WN} \int_{vmin}^{vmax} \frac{f(v)}{v} dv^3$ Halo model

In order to compare experiments using different targets I have to assume:

- Only SI or SD coupling
- For SI: Isospin conserving (couplings are identical for protons and neutrons)
 - A scaling law for the cross section

$$\sigma_{SI} \propto \frac{m_{WN}^2}{m_{Wn}^2} A^2 F^2 \sigma_{SI}^{nucleon}$$

 A model for the WIMPs velocity distribution, usually the standard Halo Model (Maxwellian distribution)

• A good knowledge of the NR quenching factor

M. Martinez. F. ARAID & U. Zaragoza

That is the only dependence that <u>could</u> remain when using the same target

NR quenching factor measurements

DAMA: $QF_{Na} = 0.3 \ QF_{I} = 0.09$

But recent measurements give lower values. Na quenching decreases when decreasing the energy.

M. Martinez. F. ARAID & U. Zaragoza

NR quenching factor measurements

DAMA: $QF_{Na} = 0.3 \ QF_{I} = 0.09$

But recent measurements give lower values. Na quenching decreases when decreasing the energy.

To answer this question, Anais + Yale

QF measurements @ TUNL (Duke Univ.) different NaI(TI) crystals (ANAIS & COSINE) in the same setup Results soon!

M. Martinez. F. ARAID & U. Zaragoza

Does the QF depend on the crystal?

- Impurities
- TI level
- Crystal quality
- ...

MultiDark online meeting, January 26, 2021

Nal experiments around the World

M. Martinez. F. ARAID & U. Zaragoza

ANAIS-112

Annual Modulation with Nal Scintillators

J. Amaré, I. Coarasa, S. Cebrián, D. Cintas, E. García, M. Martínez, M.A. Oliván, Y. Ortigoza, A. Ortiz de Solórzano, J. Puimedón, A. Salinas, M.L. Sarsa

GOAL:

Confirmation of DAMA-LIBRA modulation signal with the same target and technique

(but different experimental approach and environmental conditions)

THE DETECTOR:

3x3 matrix of 12.5 kg NaI(TI) cylindrical modules = **112.5 kg** of active mass

M. Martinez. F. ARAID & U. Zaragoza

WHERE:

At Canfranc Underground Laboratory, @ SPAIN (under 2450 m.w.e.)

taking data since August 2017

ANAIS-112: experimental setup

 9 Nal(Tl) cylindrical crystals (12.5 kg each) in 3x3 matrix

- Ultrapure Nal powder (Alpha Spectra Inc)
- Each coupled to two Hamamatsu R12669SEL2 PMT (QE ~40%)

3.0 m

M. Martinez. F. ARAID & U. Zaragoza

MultiDark online meeting, January 26, 2021

ANAIS-112 Accumulated exposure

M. Martinez. F. ARAID & U. Zaragoza

Total rate and gain stability

Evolution of ¹⁰⁹Cd lines from calibrations along the whole data-taking (\sim 3 years)

MultiDark online meeting, January 26, 2021

M. Martinez. F. ARAID & U. Zaragoza

Light collection and threshold

Outstanding light collection of ~15 phe/keV

For comparison DAMA/LIBRA: Phase 1: 5.5-7.5 phe/keV Phase 2: 6-10 phe/keV JINST 7 (2012)03009

Detector	Total Light Collection	
	(phe/keV)	
DO	14.6± 0.1	
D1	14.8 ± 0.1	
D2	14.6 ± 0.1	
D3	14.5 ± 0.1	
D4	14.5 ± 0.1	
D5	14.5 ± 0.1	
D6	12.7 ± 0.1	
D7	14.8 ± 0.1	
D8	16.0 ± 0.1	

Effectively triggering below 1 keVee

bulk ²²Na and ⁴⁰K events identified by coincidences with high energy gammas

Analysis threshold at 1 keV_{ee} (determined by the event-selection efficiency)

M. Martinez. F. ARAID & U. Zaragoza

Event selection & efficiency

Rol (1-6 keV) blinded!

We use multiplicity-2 and calibration events to calculate the cut efficiencies

The efficiency is calculated with the whole statistics (3 years)

- <u>CUTS</u>
- Pulse shape cut to select pulses with Nal(Tl) scintillation constant
- We remove asymmetric events (<2 keVee) with origin in the PMT
- 3. Remove 1 s after a muon passage
- 4. Multiplicity = 1 (Reject events that deposit energy simultaneously in more than one crystal)

Amaré et al., Eur. Phys. J. C (2019) 79:228, 1812.01472

M. Martinez. F. ARAID & U. Zaragoza

Background model

At very low energy (<20 keV), main contamination in the crystal itself

- ⁴⁰K and ²²Na (T_{1/2} = 2.6 y) peaks
- ²¹⁰**Pb** (bulk+surface) (T_{1/2} = 22.3 y)
- ³H (T_{1/2} = 12.3 y)

Cosmogenic isotopes (³H, ²²Na, ...) and ²¹⁰Pb are decaying \rightarrow prediction of the time dependence of the rate in the Rol

Amaré et al., Eur. Phys. J. C (2019) 79:412, 1812.01377

MultiDark online meeting, January 26, 2021

days after August 3, 2017

M. Martinez. F. ARAID & U. Zaragoza

RESULTS ON ANNUAL MODULATION

Analysis strategy

MODEL INDEPENDENT ANALYSIS TO CHECK: [1-6] keV S_m^{DAMA} = 0.0105 cpd ± 0.0011/kg/keV [2-6] KeV S_m^{DAMA} = 0.0102 ±0.0008 cpd/kg/keV Period fixed @ 1 year, phase fixed @ 2nd June

ANALYSIS STRATEGY

- Focus on model independent analysis searching from modulation
- In order to better compare with DAMA/LIBRA results, we use the same energy regions ([1-6] keV, [2-6] keV) and fit parameters
- Least square fit to

$$R(t) = R_0 + R_1 \exp(-t/\tau) + S_m \cos(\omega(t+\phi))$$

Fixed parameters:

 τ (background model)

 ω (freq. corresponding to a period of 1 year)

 ϕ (maximum in June, 2nd)

Previous annual modulation results

Least squared fit to : $R(t) = R_0 + R_1 \exp(-t/\tau) + S_m \cos(\omega(t + \phi))$

DAMA/LIBRA result with 1 – free parameter is shown for comparison

M. Martinez. F. ARAID & U. Zaragoza

Previous annual modulation results

J. Phys (Conference Series) 1468 (2020) 012014

- Null hypothesis is well supported by the χ^2 test (p-values=0.09, 0.63)
- Best fits for the mod. hypothesis p-values slightly lower than for the null hypothesis
- Best fits are compatible with no modulation and incompatible at 2.6 σ with DAMA/LIBRA results. 2 years sensitivity: 2σ

2 years 213.6 kg x yr

3 years results

M. Martinez. F. ARAID & U. Zaragoza

Work on progress: new fit approaches

1. $R(t) = R_0 + R_1 \exp(-t/\tau) + S_m \cos(\omega(t + \phi))$

2. Substitute the exponential term by the MC simulated background evolution in time converted into a probability distribution function (PDFbkg):

$$R(t) = R_0 + R_1 P D F_{bkg} + S_m \cos(\omega(t + \phi))$$

- Improved background description
- 2 nuisance parameters instead of three

M. Martinez. F. ARAID & U. Zaragoza

MultiDark online meeting, January 26, 2021

PRELIMINARY

Work on progress: new fit approaches

2. $R(t) = R_0 + R_1 P D F_{bkg} + S_m \cos(\omega(t + \phi))$

3. Fit simultaneously all detectors, every one with its own MC simulated background evolution and same modulation amplitude for all of them

M. Martinez. F. ARAID & U. Zaragoza

MultiDark online meeting, January 26, 2021

PRELIMINARY

Work on progress: new fit approaches

1. $R(t) = R_0 + R_1 \exp(-t/\tau) + S_m \cos(\omega(t + \phi))$ [3 nuisance par: R_0, R_1, τ] 2. $R(t) = R_0 + R_1 PDF_{bkg} + S_m \cos(\omega(t + \phi))$ [2 nuisance par: R_0, R_1] 3. $R^i(t) = R_0^i + R_1^i PDF_{bkg}^i + S_m \cos(\omega(t + \phi))$ [18 nuisance par: R_0^i, R_1^i]

Energy region	Fit function	S_m	P value mod	P value null
		events/keV/kg/d		
[1-6] keV	eq. <u>1</u>	-0.0045 ± 0.0044	0.051	0.051
	eq. 2	-0.0034 ± 0.0044	0.033	0.035
	eq. <u>3</u>	-0.0031 ± 0.0042	0.015	0.016
[2-6] keV	eq. <u>1</u>	-0.0008 ± 0.0039	0.245	0.265
	eq. 2	0.0005 ± 0.0039	0.273	0.296
	eq. 3	-0.0007 ± 0.0037	0.182	0.188

Results very similar (publication in preparation)

M. Martinez. F. ARAID & U. Zaragoza

MultiDark online meeting, January 26, 2021

PRELIMINARY

Expected sensitivity

The experimental sensitivity is given by the standard deviation of the modulation amplitude $\sigma(S_m)$, that can be calculated analytically from :

- Updated background
- Efficiency estimate and its error
- Live time distribution

We quote our sensitivity to DAMA/LIBRA result as the ratio $S_m^{DAMA}/\sigma(S_m)$

M. Martinez. F. ARAID & U. Zaragoza

Expected sensitivity

- data confirm our sensitivity projection to DAMA/LIBRA result
- Sensitivity @ 2 years: 2σ
- Preliminary sensitivity
 @ 3 years: 2.6σ

 3σ sensitivity at reach in about 1 year from now!

Future plans

Mid-term

- Complete analysis of the quenching factor measurement and interpretation in ANAIS-112 data
- Machine-learning techniques to improve efficiency in [1-2] keV
- Study of a possible modulation in muon-related events
- Neutron calibration in the ANAIS-112 setup to correct efficiencies for nuclear-recoil populations
- Precise determination of the neutron background at Hall B and its possible seasonal fluctuation, HENSA collaboration (UPC, IFIC, UCM,UZ)

Long-term

- work with NaI(TI) coupled to SiPMs at low temperatures trying to increase the sensitivity (R+D experimental phase)
- We support the installation at LSC of a crystal growing infrastructure to produce ultrapure NaI(TI) crystals underground (coll. SABRE)
- An extension of ANAIS-112 data taking period beyond the scheduled 5 years is under consideration

Summary

- Currently, many efforts trying to confirm / rule out DAMA/LIBRA signal with the same target. Only COSINE-100 and ANAIS-112 in data-taking.
- ANAIS-112 data-taking is progressing smoothly since 3rd August 2017 with excellent performances. Currently it is the best positioned experiment to solve the DAMA/LIBRA puzzle
- ANAIS-112 results are compatible with absence of modulation and incompatible with DAMA/LIBRA at 2σ after 2 years of data-taking. Preliminary results for 3 years reach 2.6 sensitivity in [2-6] keV.
 3σ sensitivity in reach in about 1 year from now!
- ANAIS-112 data-taking extension under consideration. Plans to increase sensitivity in the future:
 - Reduce threshold working with SiPM at low temperature
 - Reduce background by growing ultrapure crystals underground