EOSC Future

Alberto less

A machine learning approach to Gravitational Wave physics

Al goes MAD – Instituto de Física Teórica, Universidad Autónoma de Madrid - CSC

C COSE EUROPEAN COOPERATION IN SCIENCE & TECHNOLOGY

- Gravitational Wave
- A Brief Introfuction To Gravitational Wave Detection
- Machine Learning In Gravitational Wave Physics

What are Gravitational Waves?

Propagating ripples in the curvature of spacetime, generated by accelerated masses.

(gravitational analogue of electromagnetic waves)

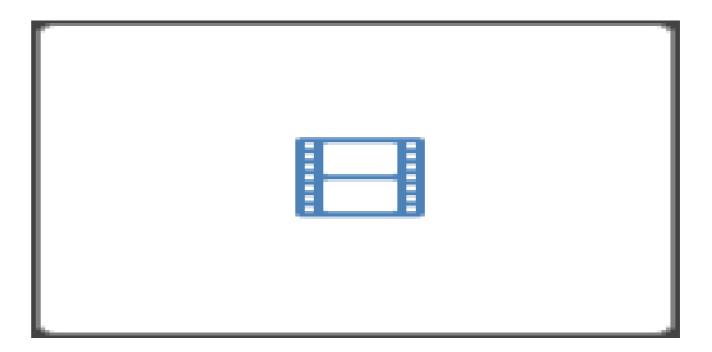


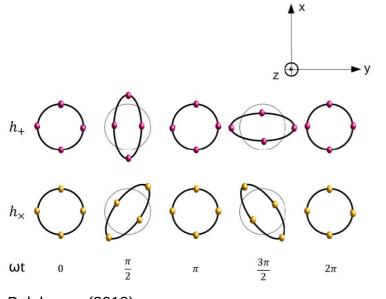
Image credit: NASA Goddard Space Flight Center

GWs are a solution of the Einstein Field Equation:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Perturbation of the flat background metric:

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad \qquad |h_{\mu\nu}| \ll 1$$



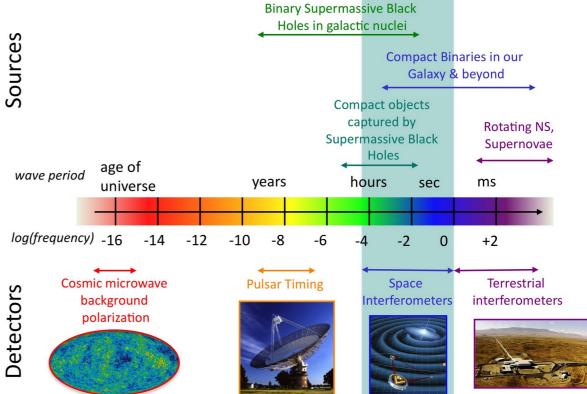


Image credit: NASA Goddard Space Flight Center

Belahcene (2019)

SCUOLA

NORMALE

SUPERIORI

GRAVITATIONAL WAVES

•

•

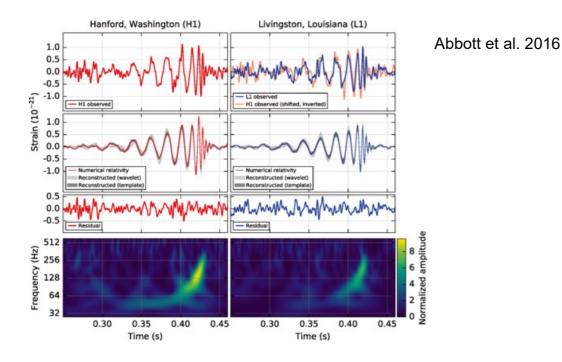
.

GWs are a solution of the Einstein Field Equation:

$$R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R=\frac{8\pi G}{c^4}T_{\mu\nu}$$

Perturbation of the flat background metric:

$$g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$$
 $|h_{\mu
u}| \ll$

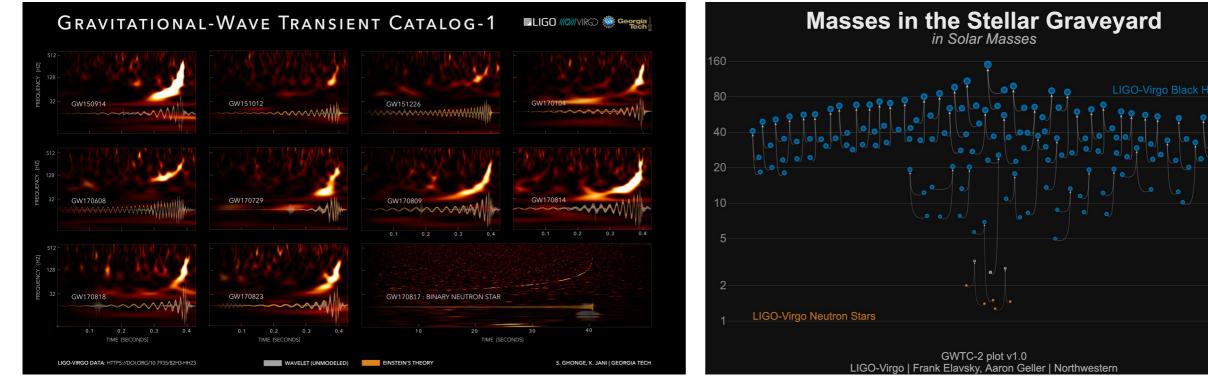


Quantum fluctuations in early universe **Binary Supermassive Black** Holes in galactic nuclei Sources **Compact Binaries in our** Galaxy & beyond **Compact objects** captured by Rotating NS, Supermassive Black Supernovae Holes age of wave period years hours sec ms universe log(frequency) -16 +2 -14 -12 -10 -2 -8 -6 0 **Pulsar Timing** Cosmic microwave Space Terrestrial Detectors interferometers background nterferometers polarization Image credit: NASA Goddard Space Flight Center Inspiraling binaries (BBH, BH-NS, BNS) Stochastic background Rotating asymmetric neutron stars

Core-collapse supernovae

The Gravitational Wave Spectrum

- O1-O2 events in GWTC-1 (Abbott et al 2019).
- O3a events in GWTC-2 (Abbott et al 2021).



Public DCC images, LIGO-Virgo Collaboration

GRAVITATIONAL WAVES

LIGO Livingston

LIGO Hanford

Virgo

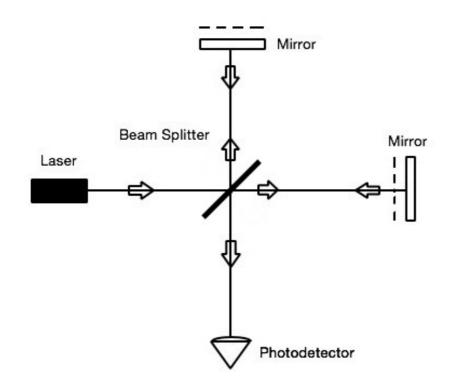
KAGRA

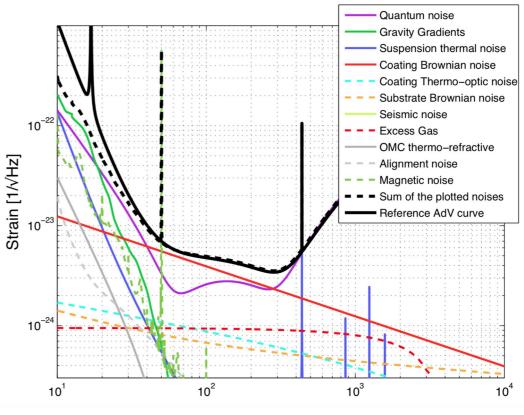
Current and future ground and space based GW detectors

LISA

Cosmic Explorer

- Ground-based interferometers are complex instruments, with <u>strict sensitivity requirements</u>.
- Many noise sources can affect measurements.





Acernese et al. (2015)

GRAVITATIONAL WAVE INTERFEROMETERS

- Ground-based interferometers are complex instruments, with <u>strict sensitivity requirements</u>.
- Many noise sources can affect measurements.

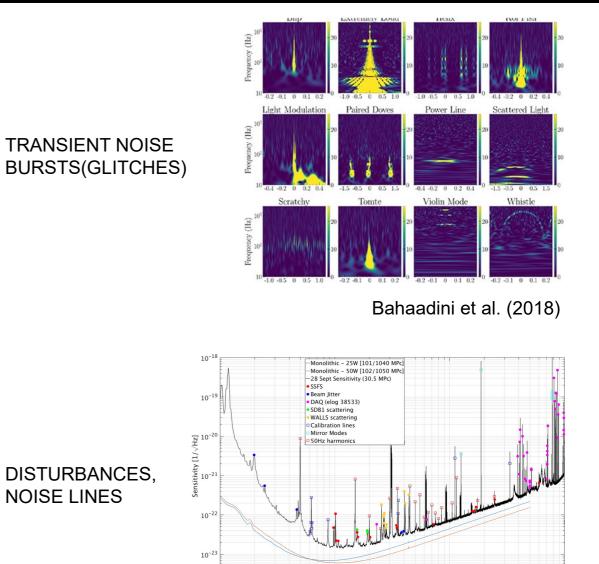
Mirror

Photodetector

Mirror

Beam Splitter

Laser



10²

 10^{1}

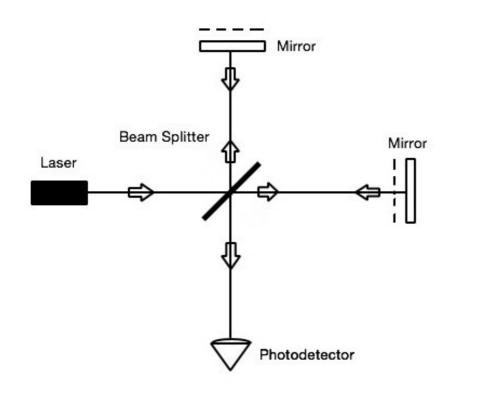
Virgo logbook entry elog40306

 10^{3}

Frequency [Hz]

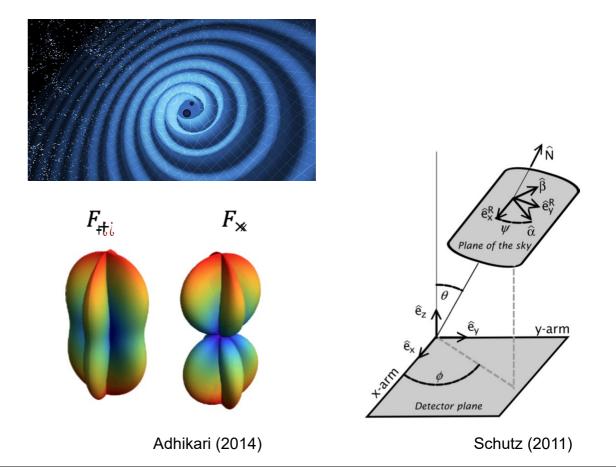
104

- Ground-based interferometers are complex instruments, with <u>strict sensitivity requirements</u>.
- <u>Many noise sources can affect measurements.</u>

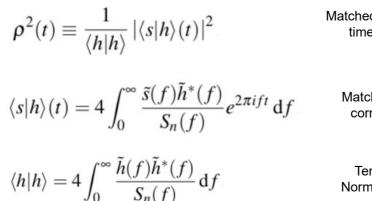


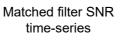
INTERFEROMETER ANTENNA PATTERN FUNCTIONS

$$h(t) = F_{+}(\alpha, \delta, \lambda, \beta, \chi, \eta) h_{+}(t) + F_{\times}(\alpha, \delta, \lambda, \beta, \chi, \eta) h_{\times}(t)$$



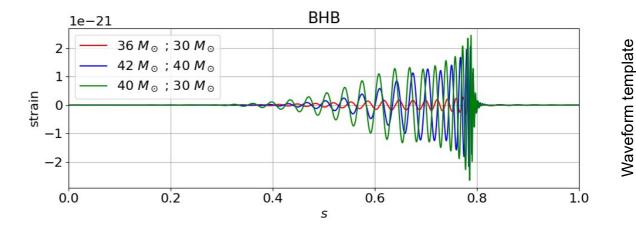
The usual approach in GW data analysis for extraction of a signal from a signal+noise data-stream is to $\pm mp(t)$ be h(t) is $\pm matcheon firtematic (t)$ is the form of the formatic (t) is the formatic (t) as a factor of the factor of t

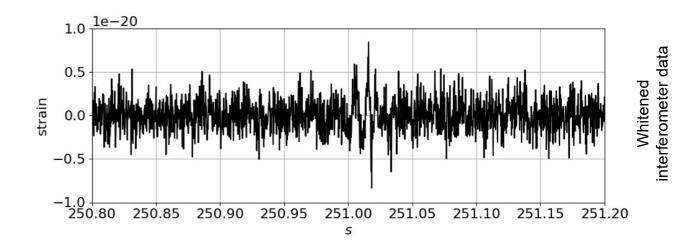




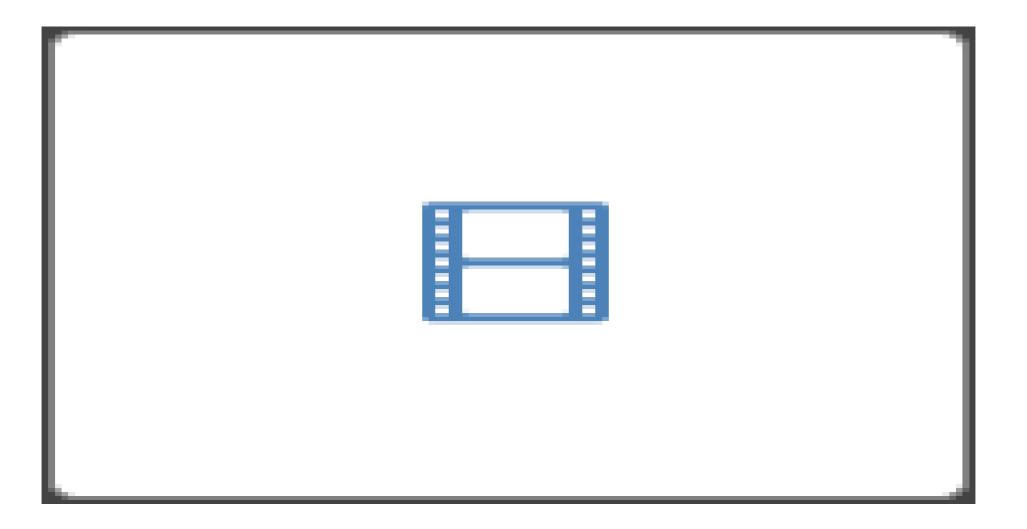
Matched filter correlation

Template Normalization





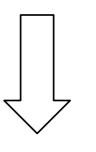
- Large template bank to cover the parameter space (M_c , ϕ_c , t_c , ι , D, θ , φ).
- Requires perfect modeling of phase evolution of the signal.
- Optimal for stationary gaussian background.
- Computationally expensive.



Why Machine Learning In Gravitational Wave Astronomy?

The science case for the use of ML in GW astronomy is well justified:

- Increased interferometer sensitivity \rightarrow more events to be processed
- Large datastream
- Low latency analysis for <u>multimessenger</u> \rightarrow faster sky localization needed
- Joint multimessenger analyses
- Interferometer monitoring, control and noise subtraction



RECENT PROLIFERATION OF ML RELATED PROJECTS

(see Cuoco et al. 2021, Enhancing gravitational-wave science with machine learning)

A. less

MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY

GW170817 → Multi-messenger astrophysics (Abbott et al. 2017 and refs. therein)

- Coincident short GRBs detected in gamma rays
- Host galaxy identification (NGC 4993)
- Optical/infrared/UV counterpart (AT2017gfo) has been detected
- First spectroscopic identification of a kilonova
- X-ray and a radio counterparts have been identified

GRB

Fermi GBM, INTEGRAL, Astrosat, IPN, Insight-HXMT, Swift, AGILE, CALET, H.E.S.S., HAWC, Konus-Wind

X-RAY

Swift, MAXI/GSC, NuSTAR, Chandra, Integral

UV

Swift, HST

RADIO

ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR, LWA, ALMA, OVRO, EVN, e-MERLIN, MeerKAT, Parkes, SRT, Effelsberg

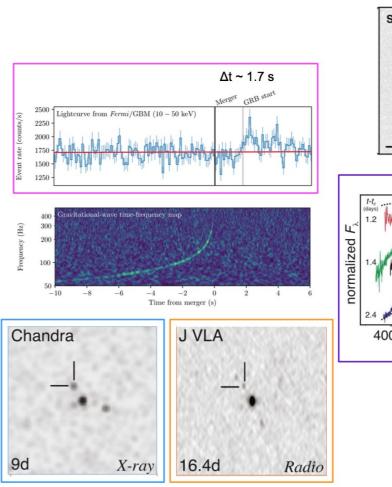
IR

REM-ROS2, VISTA, Gemini-South, 2MASS, SPITZER, NTT, GROND, SOAR, NOT, ESO-VLT, Kanata Telescope, HST

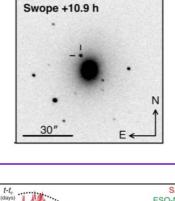
OPTICAL

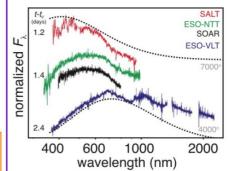
Swope, DECam, DLT40, MASTER, VISTA, ESO-VLT + others

And possibly **NEUTRINOS** (IceCube, ANTARES, Pierre Auger Observatory)



NGC 4993

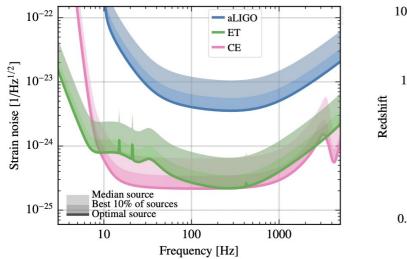


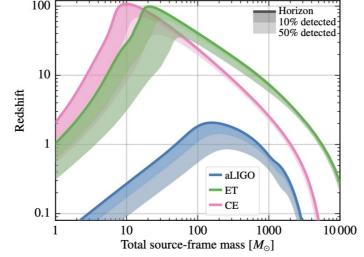


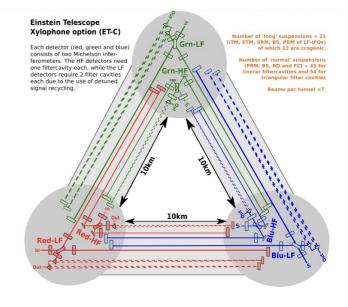
Einstein Telescope (ET) is a 3rd generation ground based interferometer planned for the early 2030s.

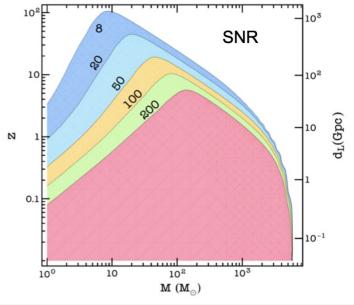
- 10⁵ BNS detections per year
- 10⁵ BBH detections per year
- Order of magnitude gain on sensitivity
- Access lower frequencies (few Hz)

ET Observational Science Board Kick-off meeting







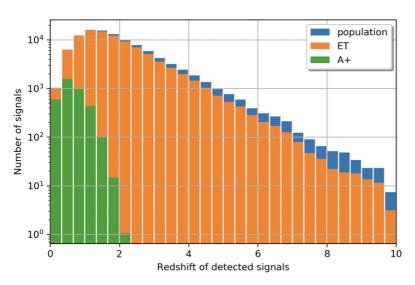


 \mathbb{C}

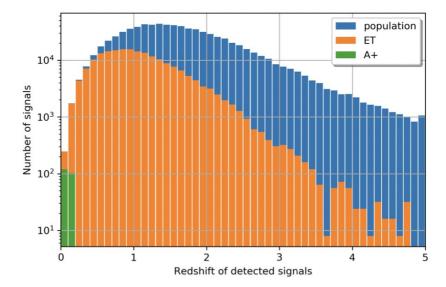
COSC

EUROPEAN COOPERATIO

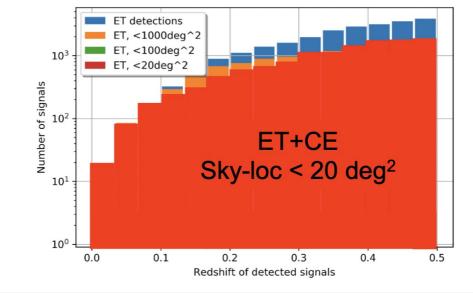
BINARY BLACK-HOLE MERGERS

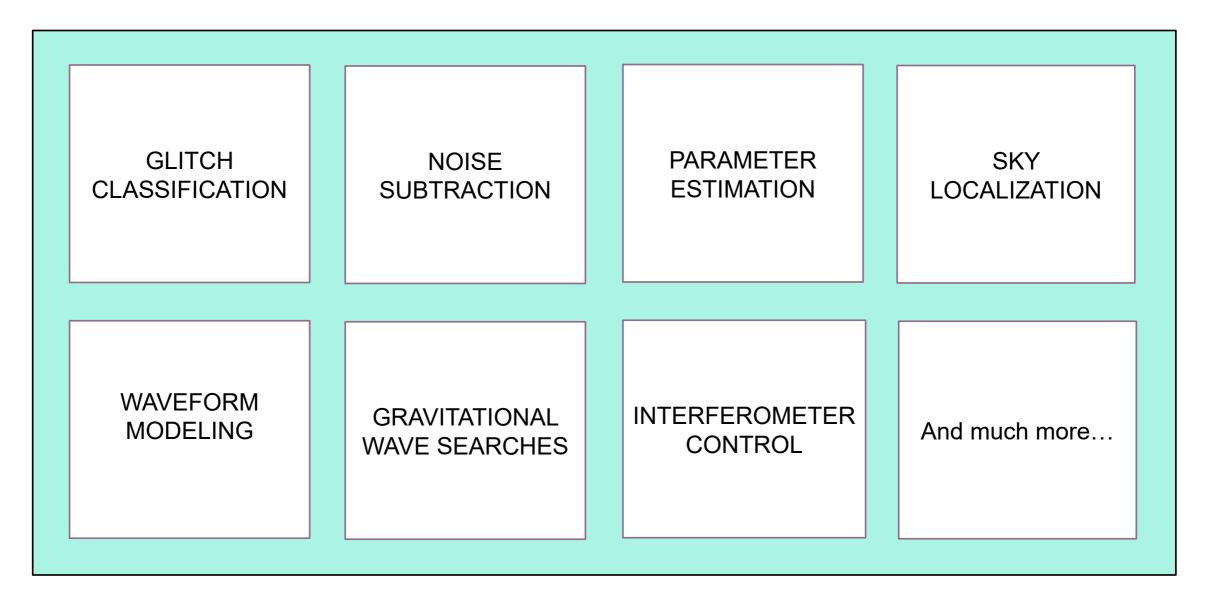


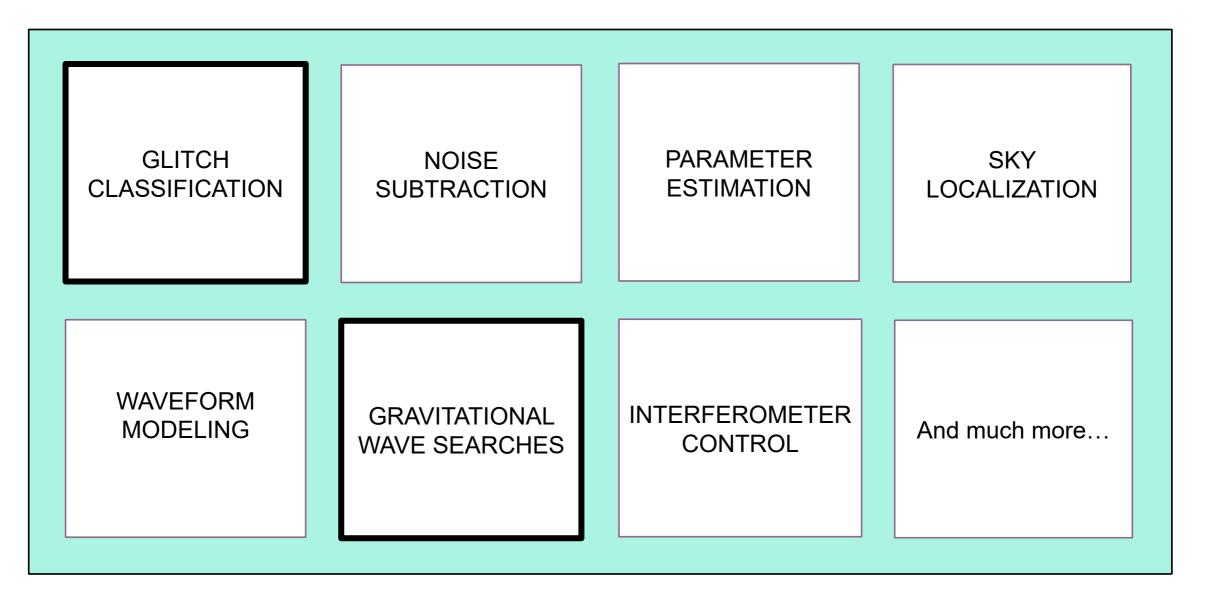
BINARY NEUTRON-STAR MERGERS



We will reach higher redshifts And improve sky localization!



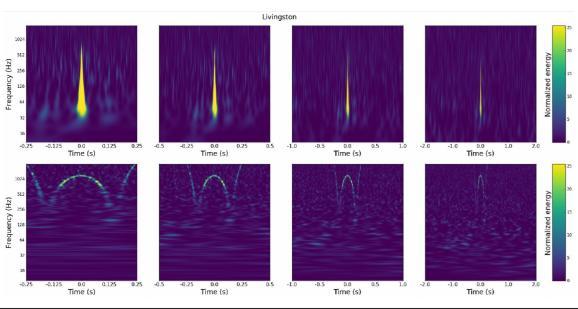


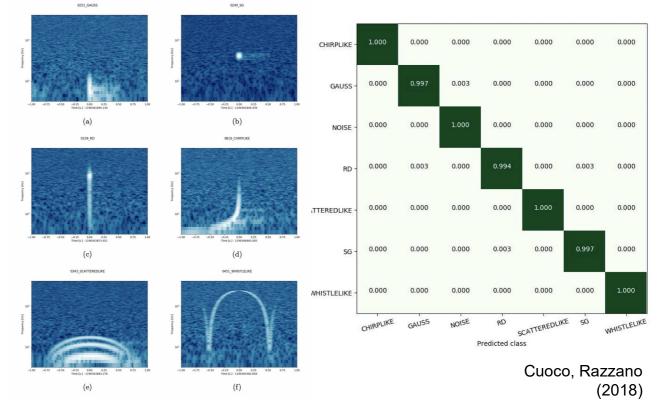


GLITCH CLASSIFICATION

Glitches hamper matched filter searches increasing the FAR and triggering vetoes on pipelines. ML Can be used to:

- Recognize noise burst transients
- Subtract glitches
- Classify into categories depending on origin
- Discover new classes





GRAVITY SPY (citizen science project)

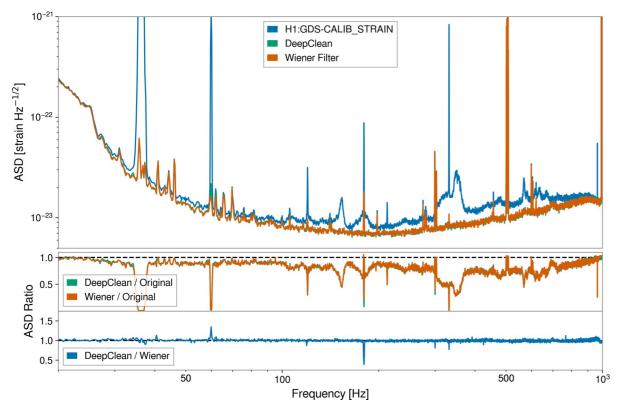
Zevin et al. (2017)

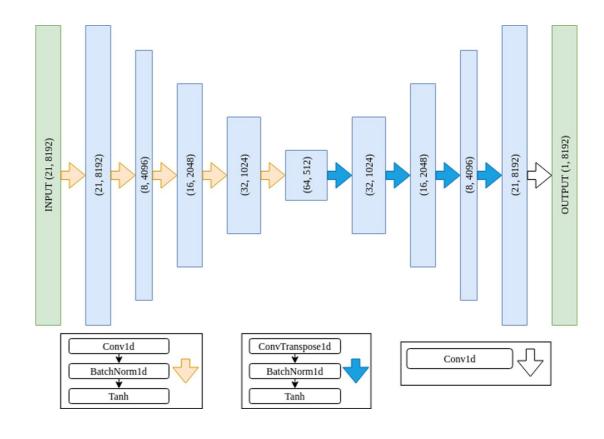
And many more ...

NOISE SUBTRACTION

Use witness channels $w_i(t)$ for environmental noise subtraction.

- Similar results to Wiener filter for linear noise
- Can learn non linear noise



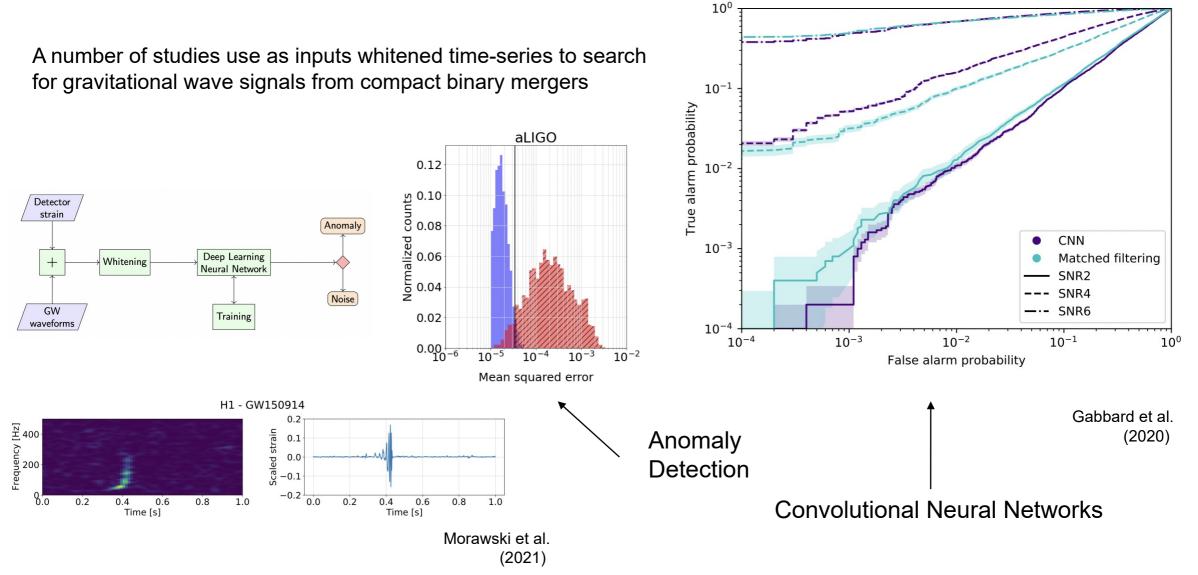


• Different sampling for channels

Ormiston et al. (2020)

• 1-D time-series inputs

GRAVITATIONAL WAVE SEARCHES



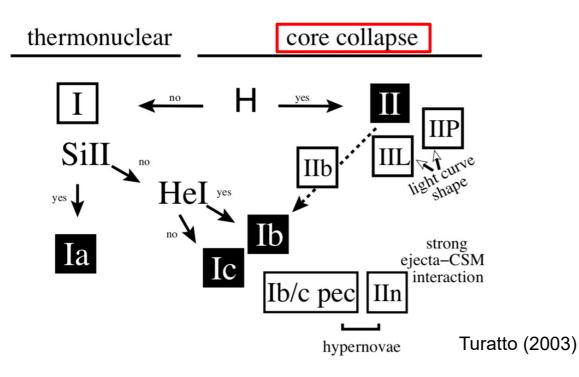
 \bigcirc

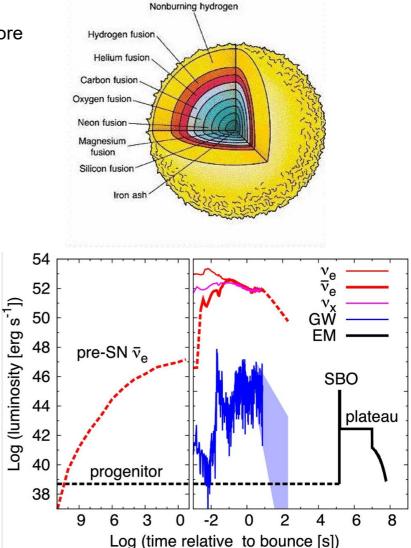
EOSC Future

COSE

EUROPEAN COOPERATIO

- Final evolutionary stages of massive stars, (* after nuclear chumilages iron core arasanguates ito arcoleandass greater tasa licitiandrase khar mass limit.
- Multi-messenger emission, 99% energy in neutrinos.
- Rare, optimistically (~501000 yershint/Milky/VA/a)/).
- Prompt neutrino emission at ~10MeV.
- Weak prompt GW signals, expected less than 0.0001% supernova energy, h.
- Late EM emission.





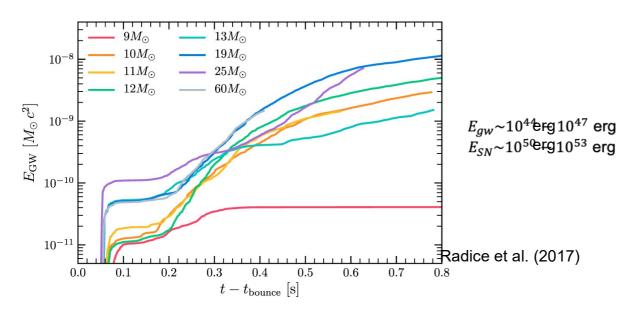
Nakamura et al. (2016)

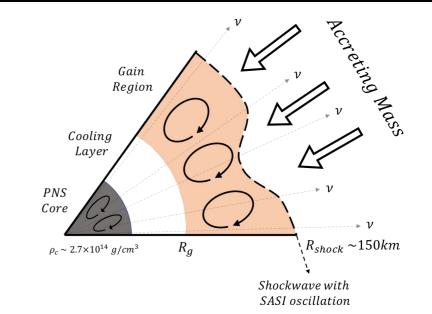
DEEP LEARNING FOR BURST SIGNALS: CORE-COLLAPSE SUPERNOVAE

GWs FROM CORE-COLLAPSE SUPERNOVAE

- Waveform depends on progenitor star
- Different possible emission mechanisms
- Large degree of stochasticity
- Broadband emission
- Best waveform models from computationally expensive 3D simulations

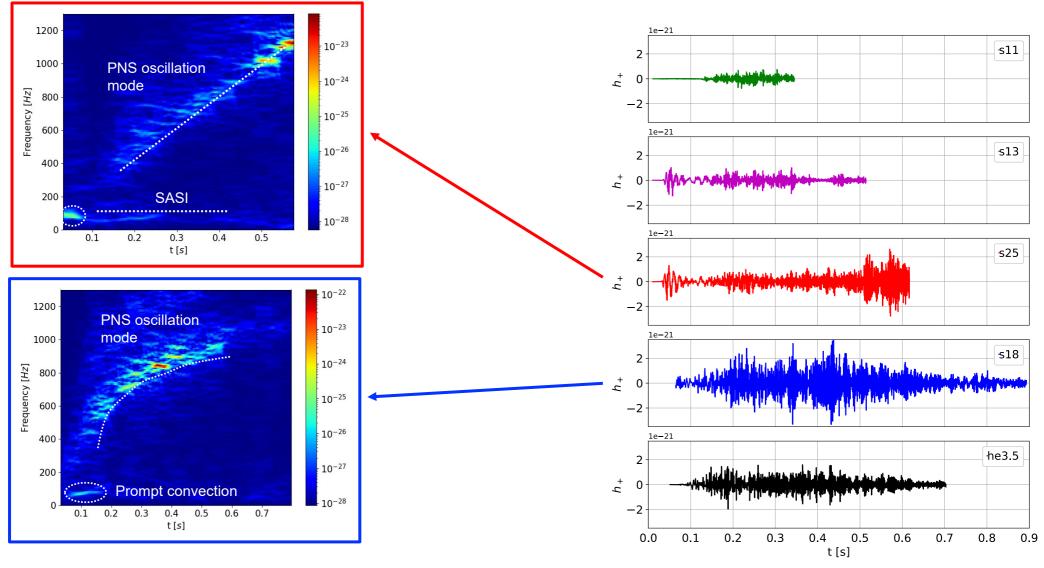
Matched filter not feasible!



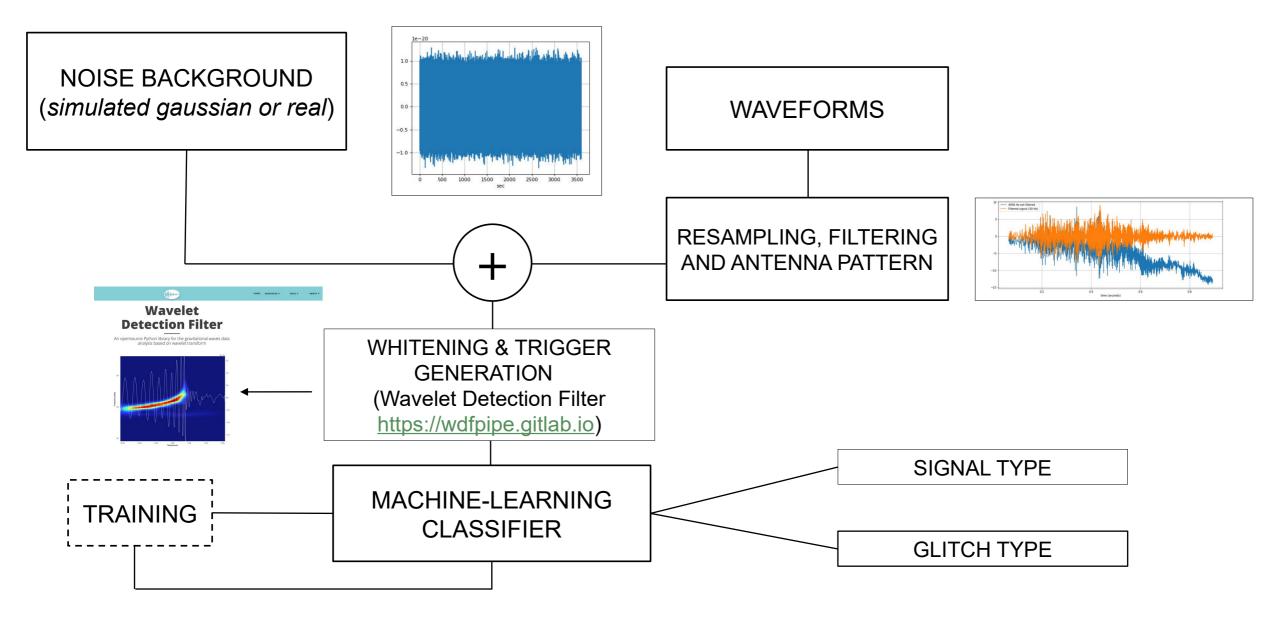


Potential explosion mechanism GW emission MHD mechanism Neutrino mechanism Acoustic mechanism (rapid rotation) (slow/no rotation) Process (slow/no rotation) Strong None/weak None/weak Rotating collapse and Bounce **3D** rotational None Strong None instabilities Convection None/weak Weak Weak & SASI PNS g-modes None/weak None/weak Strong

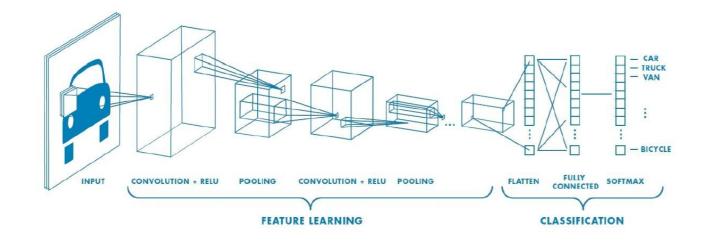
Ott et al. (2017)



less, Cuoco, Morawski, Powell (2020)



CONVOLUTIONAL NEURAL NETWORKS



	_					
0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

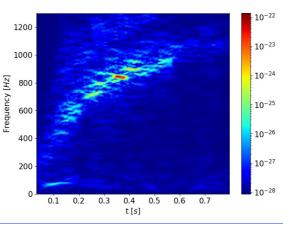
0

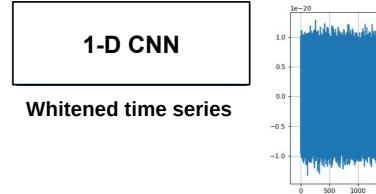
-1

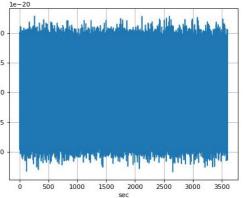
0

114			

Spectrogram images





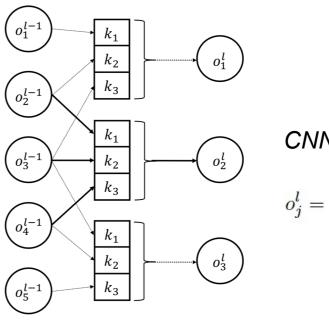


CONVOLUTIONAL NEURAL NETWORKS

CNN (Hubel and Wiesel 1962, LeCun 1998, Fukushima 1980)

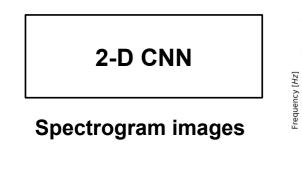
- Recognizes patterns in data by building feature maps.
- Easy to implement, fast to train.
- Translation-invariant.

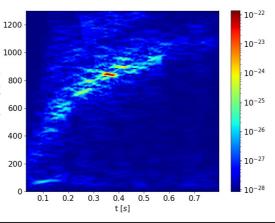
<u>NN with a strong prior on internal weights</u>: for each hidden unit all weights are zero but those that describe the kernel, shared among the different neurons.

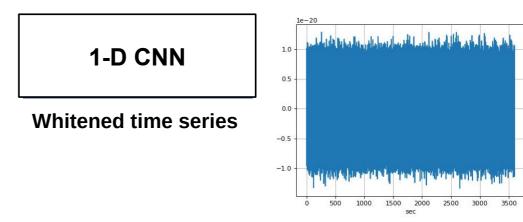


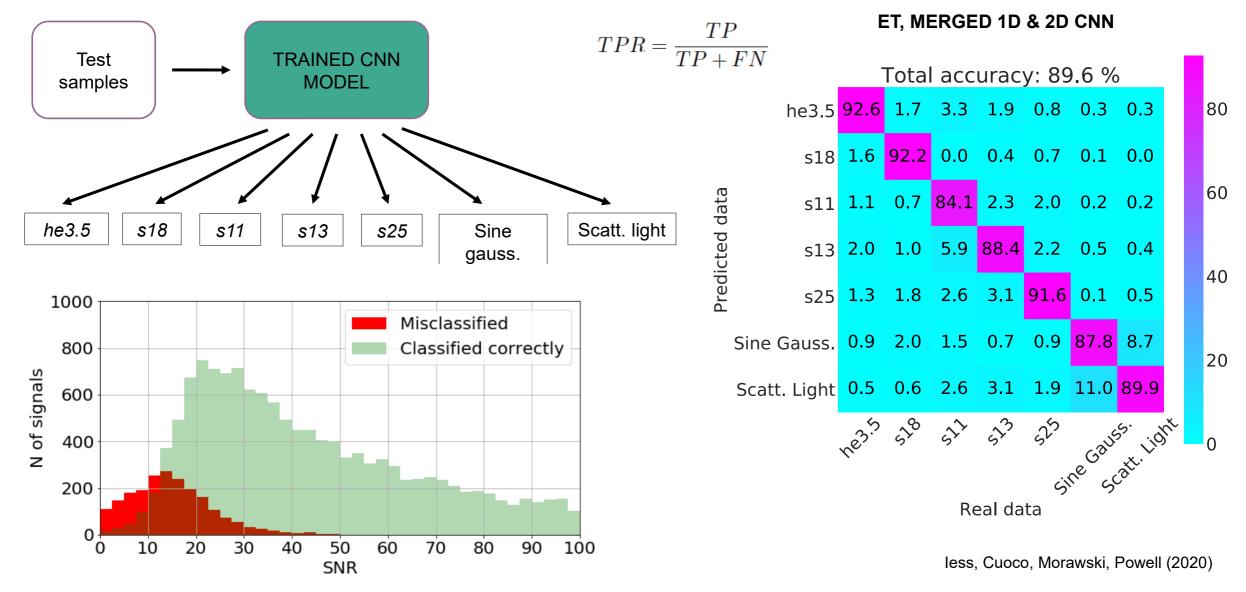
CNN EQUATION











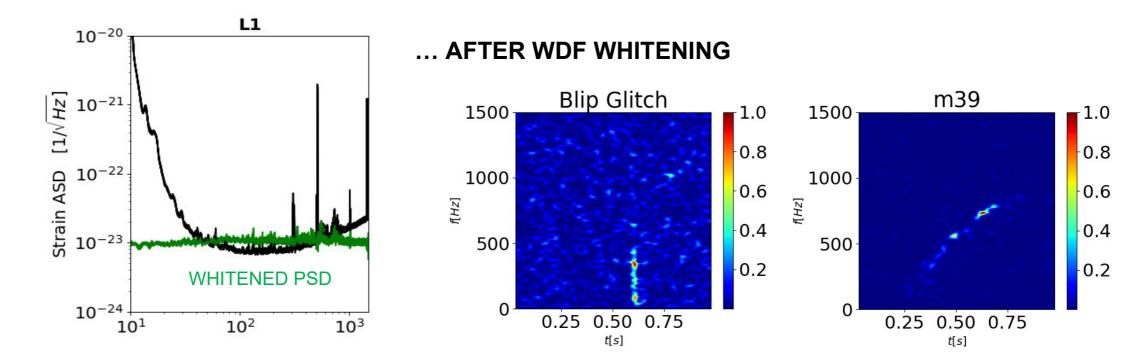
EOSC Future

What happens with real interferometer noise?

DATASET CHARACTERISTICS

- Detector noise PSD is non stationary.
- Multiple Glitch Families.
- CCSN Dataset (at 1 kpc): ~15000 samples.
- Imbalanced Dataset due to different model amplitudes.

	Triggers						
Detector	Signal	Noise	Total				
Virgo V1	9273	47901	57174				
Ligo L1	10480	3810	14290				
Ligo H1	10984	4103	15087				
L1, H1, V1	5647	675	6322				



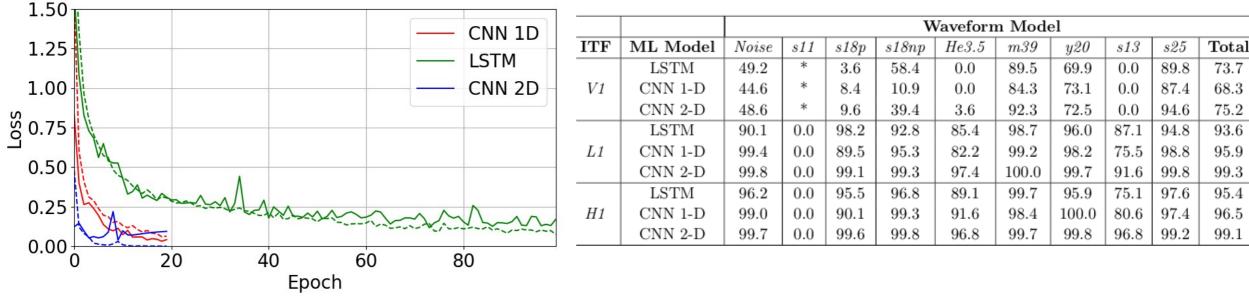
COMPARISON OF ML MODEL ACCURACY

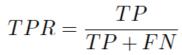
(Single interferometer, V1,H1,L1)

- **<u>Bi-LSTM</u>**, 2 recurrent layers
- ~10 ms/sample
- Best weights over 100 epochs

- <u>1D-CNN</u>, 4 convolutional layers
- ~2 ms/sample
- Best weights over 20 epochs

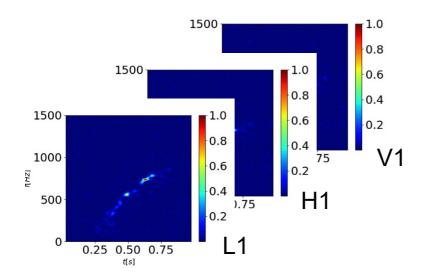
- <u>2D-CNN</u>, 4 convolutional layers
- ~3 ms/sample
- Best weights over 20 epochs





COINCIDENT MERGED MODEL APPROACH

- Take only triple coincident triggers
- Input to NNs have additional dimension (ITF)
- Merge information from time-series and time-frequency representation.



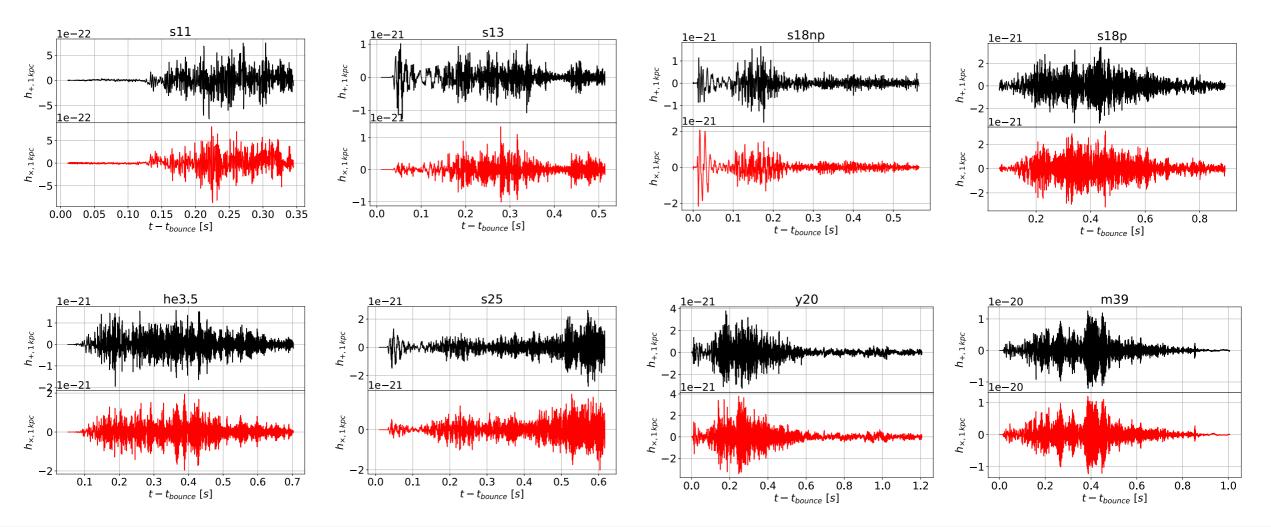
- 1. ACCUMULATE SNR
- 2. DECREASE FAR THROUGH COINCIDENCE REQUIREMENT
- 3. REDUCED TRAINING SET

	Total accuracy: 97.8 %											
	Glitch	97.7	0.0	0.0	3.6	0.0	0.9	0.0	0.0			
	Powell_s18p	0.0	91.6	0.0	10.7	0.0	0.0	0.0	0.0		-	80
_	Powell_s18np [_]	0.0	0.0	97.8	0.0	0.0	0.0	27.3	0.9			
Predicted labe	Powell_he3.5	0.0	1.2	0.0	75.0	0.2	0.0	0.0	0.0		F	60
redicte	Powell_m39 [.]	0.0	0.0	0.0	0.0	98.8	0.0	0.0	0.0		-	40
Δ.	Powell_y20-	1.7	7.2	1.5	10.7	1.0	99.1	18.2	0.0			
	Radice_s13	0.0	0.0	0.0	0.0	0.0	0.0	54.5	0.0		-	20
	Radice_s25	0.6	0.0	0.7	0.0	0.0	0.0	0.0	99.1			-
		Glitch-	Powell_s18p-	Powell_s18np-	a Powell_he3.5	apel_m39.	Powell_y20	Radice_s13-	Radice_s25-	l		0

less, Cuoco, Morawski, Nicolaou, Lahav 2022 (accepted)

CORE-COLLAPSE SUPERNOVAE DATASET

(neutrino-driven explosion mechanism)

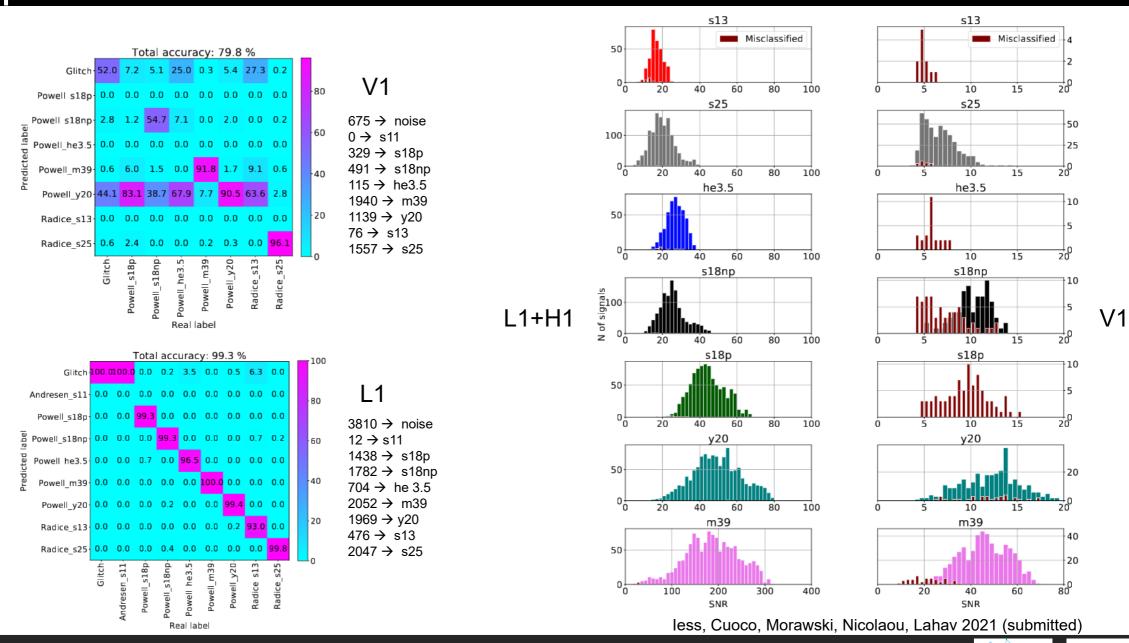


 \mathbb{C}

EOSC Future

COSL

EUROPEAN COOPERATION



COSE

EUROPEAN COOPERATION

EOSC Future

SCUOLA

NORMALE

SUPERIORE

PROS

- Keeps track of dependencies in time-series with internal loop updating a "state" cell (Hochreiter and Schmidhuber 1997).
- Avoids the Vanishing Gradient problem.

CONS

- Many parameters to train, long training times.
- Hyperparameter tuning can be challenging.
- Decreased performances for sequences above O(1000).

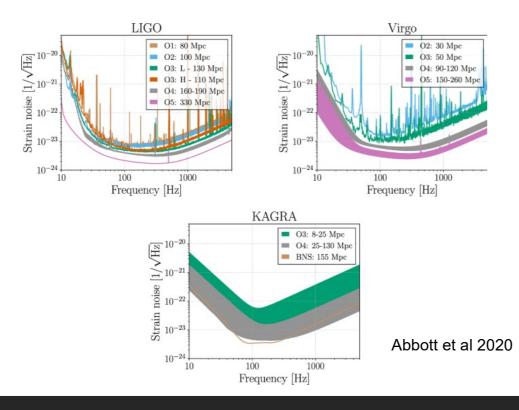
softmax o_t c_t C_{t-1} c_t tanh (* h_t * h_t Γ_{f} Γ_{μ} Γ_{o} \tilde{c}_t Update gate Output gate Forget gate tanh h_{t-1} x_t

LSTM EQUATIONS

$$\begin{split} \tilde{c}_t &= \tanh\left(W_{ch}h_{t-1} + W_{cx}x_t + b_c\right)\\ \Gamma_f &= \sigma\left(W_{fh}h_{t-1} + W_{fx}x_t + b_f\right)\\ \Gamma_u &= \sigma\left(W_{uh}h_{t-1} + W_{ux}x_t + b_u\right)\\ \Gamma_o &= \sigma\left(W_{oh}h_{t-1} + W_{ox}x_t + b_o\right)\\ c_t &= \Gamma_u * \tilde{c}_t + \Gamma_f * c_{t-1}\\ h_t &= \Gamma_o * \tanh\left(c_t\right) \end{split}$$

A. less

- Deep Learning: a fast tool to implement in search pipelines.
- Can reduce the FAR by providing glitch vetoing.
- Can be adapted to multiple sources, in particular when matched filtering cannot be applied.
- Machine Learning models can analyze simultaneously different types of data (EM,GW, Neutrino..) and therefore constitute a promising framework for multi-messenger data.
- Possibility to detect Core-Collapse supernovae GW for events in Milky Way for neutrino-driven models with current generation of detectors, in Milky Way neighbourhood (Mpcs) with 3rd generation ET and CE.



	01	— 02	— O3	04	05
LIGO	80 Мрс	100 Мрс	110-130 Мрс	160-190 Mpc	Target 330 Mpc
Virgo		30 Мрс	50 Мрс	90-120 Мрс	150-260 Мрс
KAGRA			8-25 Мрс	25-130 Мрс	130+ Mpc
LIGO-India					Target 330 Mpc
2015	5 2016	2017 2018 2	2019 2020 202 [.]	1 2022 2023	2024 2025 2026

