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Image credit: NASA Goddard Space Flight Center

What are Gravitational Waves?

Propagating ripples in the 
curvature of spacetime, 
generated by accelerated 
masses.

(gravitational analogue of  
electromagnetic waves)
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GWs are a solution of the Einstein Field Equation:

Image credit: NASA Goddard Space Flight Center

        ; 

Perturbation of the flat background metric:

Belahcene (2019)
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• Inspiraling binaries (BBH, BH-NS, BNS)
• Stochastic background
• Rotating asymmetric neutron stars
• Core-collapse supernovae

        ; 

Perturbation of the flat background metric:

GWs are a solution of the Einstein Field Equation:

Image credit: NASA Goddard Space Flight Center

Abbott et al. 2016 
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Public DCC images, LIGO-Virgo Collaboration

• O1-O2 events in GWTC-1 (Abbott et al 2019).
• O3a events in GWTC-2 (Abbott et al 2021). 
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Current and future 
ground and space based 

GW detectors
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Acernese et al. (2015)

• Ground-based interferometers are complex 
instruments, with strict sensitivity requirements.

• Many noise sources can affect measurements.
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• Ground-based interferometers are complex 
instruments, with strict sensitivity requirements.

• Many noise sources can affect measurements.

Bahaadini et al. (2018)

Virgo logbook entry elog40306

TRANSIENT NOISE 
BURSTS(GLITCHES)

DISTURBANCES, 
NOISE LINES
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• Ground-based interferometers are complex 
instruments, with strict sensitivity requirements.

• Many noise sources can affect measurements.

     INTERFEROMETER ANTENNA PATTERN FUNCTIONS

         
Schutz (2011)Adhikari (2014)
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The usual approach in GW data analysis for extraction of a 
signal from a signal+noise data-stream is to implement 
matched filtering (see Allen et al 2012, Abbott et al. 2016):
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Matched filter 
correlation

Matched filter SNR 
time-series

• Large template bank to cover the parameter 
space ().

• Requires perfect modeling of phase evolution 
of the signal.

• Optimal for stationary gaussian background.
• Computationally expensive.
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Why Machine Learning In Gravitational Wave Astronomy?
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The science case for the use of ML in GW astronomy is well justified:

• Increased interferometer sensitivity  more events to be processed
• Large datastream
• Low latency analysis for multimessenger  faster sky localization needed
• Joint multimessenger analyses
• Interferometer monitoring, control and noise subtraction

RECENT PROLIFERATION OF ML RELATED PROJECTS
(see Cuoco et al. 2021, Enhancing gravitational-wave science with machine learning)
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GW170817  Multi-messenger astrophysics (Abbott et al. 2017 and refs. therein)

• Coincident short GRBs detected in gamma rays 
• Host galaxy identification (NGC 4993)
• Optical/infrared/UV counterpart (AT2017gfo) has been detected
• First spectroscopic identification of a kilonova
• X-ray and a radio counterparts have been identified

GRB
Fermi GBM, INTEGRAL, Astrosat, IPN, Insight-HXMT, Swift, AGILE, CALET, H.E.S.S., HAWC, 
Konus-Wind 

X-RAY
Swift, MAXI/GSC, NuSTAR, Chandra, Integral

UV
Swift, HST

RADIO
ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR, LWA, ALMA, OVRO, EVN, e-MERLIN, MeerKAT, 
Parkes, SRT, Effelsberg

IR
REM-ROS2, VISTA, Gemini-South, 2MASS, SPITZER, NTT, GROND, SOAR, NOT, ESO-VLT, 
Kanata Telescope, HST

OPTICAL
Swope, DECam, DLT40, MASTER, VISTA, ESO-VLT + others 

And possibly NEUTRINOS (IceCube, ANTARES, Pierre Auger Observatory)
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ET Observational Science Board Kick-off meeting

Einstein Telescope (ET) is a 3rd generation ground based interferometer 
planned for the early 2030s. 

• 105 BNS detections per year 
• 105 BBH detections per year 
• Order of magnitude gain on sensitivity
• Access lower frequencies (few Hz)

https://indico.ego-gw.it/event/240/
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We will reach higher redshifts
And improve sky localization!
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GRAVITATIONAL 
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ESTIMATION

INTERFEROMETER 
CONTROL

SKY 
LOCALIZATION

And much more…
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Zevin et al. (2017) 

GLITCH CLASSIFICATION

Glitches hamper matched filter searches increasing 
the FAR and triggering vetoes on pipelines. ML Can 
be used to:

• Recognize noise burst transients
• Subtract glitches
• Classify into categories depending on origin 
• Discover new classes

GRAVITY SPY
(citizen science project)

Cuoco, Razzano 
(2018) 

And many more…
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Ormiston et al.
(2020) 

NOISE SUBTRACTION

Use witness channels            for environmental noise 
subtraction.

• Similar results to Wiener filter for linear noise
• Can learn non linear noise

 

• Different sampling for channels
• 1-D time-series inputs
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Gabbard et al.
(2020) 

GRAVITATIONAL WAVE SEARCHES

A number of studies use as inputs whitened time-series to search 
for gravitational wave signals from compact binary mergers

 

Morawski et al.
(2021) 

Convolutional Neural Networks

Anomaly 
Detection
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• Final evolutionary stages of massive stars, (), after nuclear burning accumulates iron core 
mass greater than Chandrasekhar mass limit.

• Multi-messenger emission, 99% energy in neutrinos.
• Rare, optimistically (~50100 yrs in Milky Way).
• Prompt neutrino emission at ~10MeV. 
• Weak prompt GW signals, expected less than 0.0001% supernova energy, h.
• Late EM emission.

 

Nakamura et al. (2016) 

Turatto (2003)

DEEP LEARNING FOR BURST SIGNALS: CORE-COLLAPSE SUPERNOVAE
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• Waveform depends on progenitor star
• Different possible emission mechanisms
• Large degree of stochasticity
• Broadband emission
• Best waveform models from computationally expensive 3D 

simulations

GWs FROM CORE-COLLAPSE SUPERNOVAE

Matched filter not feasible!

Ott et al. (2017) 

 erg
 erg

 

Radice et al. (2017) 
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Iess, Cuoco, Morawski, Powell (2020)

PNS oscillation 
mode

PNS oscillation 
mode

Prompt convection

SASI
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NOISE BACKGROUND
(simulated gaussian or real) WAVEFORMS

+
RESAMPLING, FILTERING
AND ANTENNA PATTERN

MACHINE-LEARNING 
CLASSIFIER

SIGNAL TYPE

GLITCH TYPE

TRAINING

WHITENING & TRIGGER 
GENERATION  

(Wavelet Detection Filter
https://wdfpipe.gitlab.io)

https://wdfpipe.gitlab.io/
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2-D CNN

Spectrogram images

1-D CNN

Whitened time series

1-D CNN

CONVOLUTIONAL NEURAL NETWORKS
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CONVOLUTIONAL NEURAL NETWORKS

2-D CNN

Spectrogram images

1-D CNN

Whitened time series

1-D CNN

     CNN (Hubel and Wiesel 1962, LeCun 1998, Fukushima 1980)

• Recognizes patterns in data by building feature maps. 
• Easy to implement, fast to train.
• Translation-invariant.

NN with a strong prior on internal weights: for each hidden unit all 
weights are zero but those that describe the kernel, shared among 
the different neurons.

CNN EQUATION
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Iess, Cuoco, Morawski, Powell (2020)

ET, MERGED 1D & 2D CNN

TRAINED CNN 
MODEL

Test 
samples

he3.5 Sine 
gauss.

s18 s11 s13 s25 Scatt. light
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What happens with real interferometer noise?
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DATASET CHARACTERISTICS

• Detector noise PSD is non stationary.
• Multiple Glitch Families.
• CCSN Dataset (at 1 kpc): ~15000 samples.
• Imbalanced Dataset due to different model amplitudes.

WHITENED PSD

… AFTER WDF WHITENING
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• Bi-LSTM, 2 recurrent layers
• ~10 ms/sample 
• Best weights over 100 epochs

• 1D-CNN, 4 convolutional layers
• ~2 ms/sample 
• Best weights over 20 epochs

• 2D-CNN, 4 convolutional layers
• ~3 ms/sample 
• Best weights over 20 epochs

COMPARISON OF ML MODEL ACCURACY
(Single interferometer, V1,H1,L1)

TRUE POSITIVE 
RATE
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• Take only triple coincident triggers
• Input to NNs have additional dimension (ITF)
• Merge information from time-series and time-frequency 

representation.

L1

H1

V1

Iess, Cuoco, Morawski, Nicolaou, Lahav 2022 (accepted)
1. ACCUMULATE SNR
2. DECREASE FAR THROUGH COINCIDENCE REQUIREMENT
3. REDUCED TRAINING SET

COINCIDENT MERGED MODEL APPROACH
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EXTRA SLIDES



 A. Iess EXTRA SLIDES

CORE-COLLAPSE SUPERNOVAE DATASET
(neutrino-driven explosion mechanism)
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L1+H1 V1

L1

V1

3810   noise 
12  s11
1438   s18p
1782   s18np
704   he 3.5
2052   m39
1969  y20
476   s13
2047   s25

675   noise
0   s11
329   s18p
491   s18np
115   he3.5
1940   m39
1139   y20
76   s13
1557   s25

Iess, Cuoco, Morawski, Nicolaou, Lahav 2021 (submitted)
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• Keeps track of dependencies in time-series 
with internal loop updating a “state” cell 
(Hochreiter and Schmidhuber 1997).

• Avoids the Vanishing Gradient problem.

PROS CONS

• Many parameters to train, long training times.
• Hyperparameter tuning can be challenging.
• Decreased performances for sequences 

above O(1000). 

LSTM EQUATIONS
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• Deep Learning: a fast tool to implement in search pipelines.
• Can reduce the FAR by providing glitch vetoing.
• Can be adapted to multiple sources, in particular when matched filtering cannot be applied.
• Machine Learning models can analyze simultaneously different types of data (EM,GW, Neutrino..) and therefore 

constitute a promising framework for multi-messenger data.  
• Possibility to detect Core-Collapse supernovae GW for events in Milky Way for neutrino-driven models with current 

generation of detectors, in Milky Way neighbourhood (Mpcs) with 3rd generation ET and CE.

Abbott et al 2020
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DeepClean
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