"AI goes MAD" IFT, June 2022

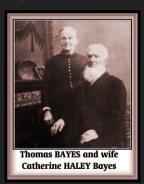
AI goes MAD" IFT, June 2022

A Review on Modern Bayesian Inference

"AI goes MAD" IFT, June 2022

"AI goes MAD" IFT, June 2022

• What is Bayesian Inference?



Thomas BAYES and wife Catherine HALEY Bayes

<u>A</u>

opposed to "Frequentist" approach

$$p(A) = \frac{\# \text{ of occurrences of } A}{Total \ \# \text{ of trials}}$$

$$A: an observable (not a hypothesis)$$

• What is it used for?

• What is it used for?

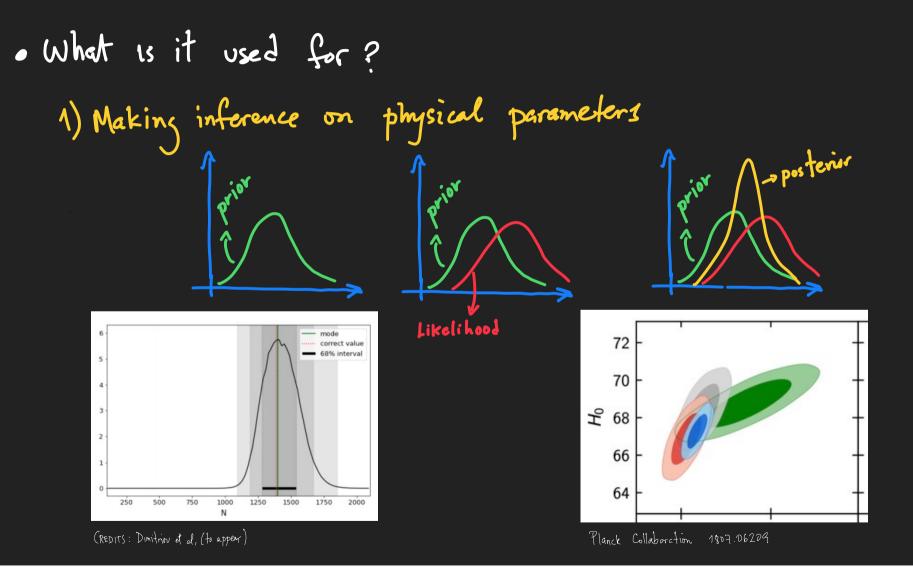
1) Making inference on physical parameters

· What is it used for? 1) Making inference on physical parameters

· What is it used for?

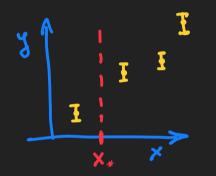
1) Making inference on physical parameters Likelihood

· What is it used for? 1) Making inference on physical parameters -> posterior .01 Likelihood



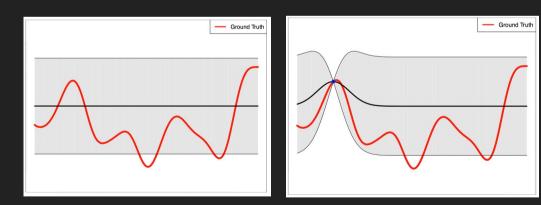
2) Obtaining predictions with uncertainties

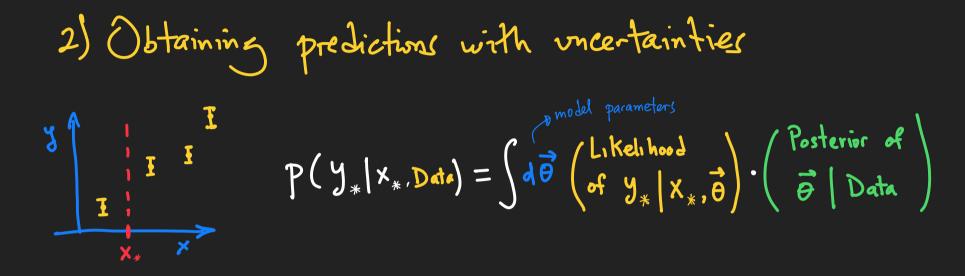
2) Obtaining predictions with uncertainties

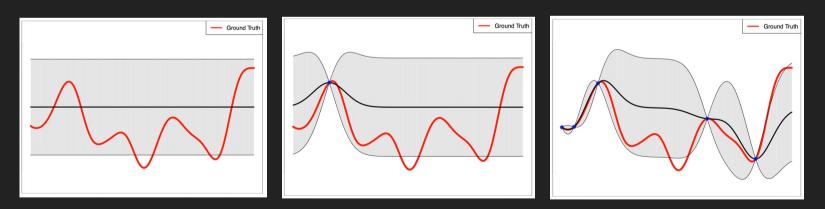


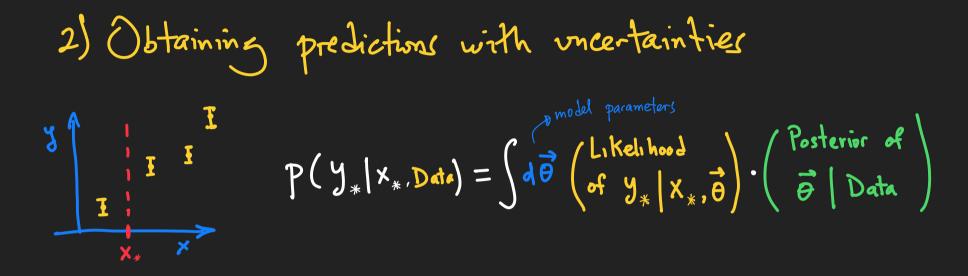
2) Obtaining predictions with uncertainties $y = I = I = I = P(y_*|x_*, \text{Data}) = \int d\vec{\theta} \begin{pmatrix} \text{Likelihood} \\ \text{of } y_*|x_*, \vec{\theta} \end{pmatrix} \cdot \begin{pmatrix} \text{Posterior of} \\ \vec{\theta} \mid \text{Data} \end{pmatrix}$

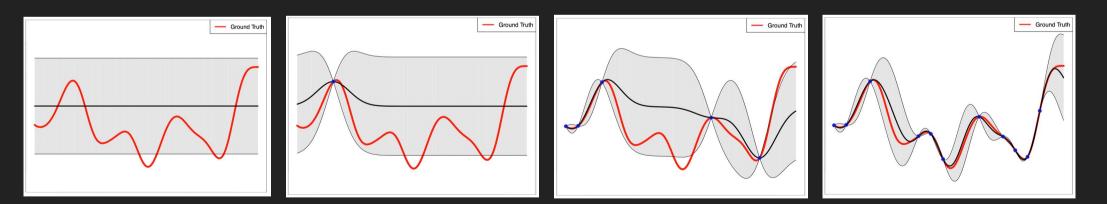
2) Obtaining predictions with uncertainties $J = I = I = P(Y_*|X_*, Date) = \int d\vec{\theta} \begin{pmatrix} Likelihood \\ of & Y_*|X_*, \vec{\theta} \end{pmatrix} \cdot \begin{pmatrix} Posterior & of \\ \vec{\theta} & Data \end{pmatrix}$









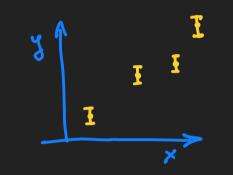


METHODS

· Bayesian Inference is computationally challenging!

· Approximate methods

/



• Data
$$\{x_i, j_i\}_{i=1}^{N}$$
 • Fifting function $f(x, \vec{e})$ \int_{I} I

• Data
$$\{x_i, y_i\}_{i=1}^{N}$$
 • Fifting function $f(x, \vec{\theta})$
• Likelihood $p(\vec{y}|\vec{\theta}) = \prod_{i=1}^{N} N(y_i|f(x_i, \vec{\theta}), \sigma_i)$
 $\sum_{i=1}^{N} N(y_i|f(x_i, \vec{\theta}), \sigma_i)$

• Data
$$\{x_i, y_i\}_{i=1}^{N}$$
 • Fifting function $f(x_j, \vec{\theta})$ $y_{j=1}$
• Likelihood $p(y_j|\vec{\theta}) = \prod_{i=1}^{N} N(y_i|f(x_i, \vec{\theta}), \sigma_i)$
• Prive distrib. for $\vec{\Theta}$: $p(\vec{\theta}) \Rightarrow e.g. also Gravssian$

• Data
$$\{x_{i}, y_{i}\}_{i=1}^{N}$$
 • Fifting function $f(x_{j}, \vec{\theta})$
• Likelihood $p(\vec{y}|\vec{\theta}) = \prod_{i=1}^{N} N(y_{i}|f(x_{i}, \vec{\theta}), \sigma_{i})$
• Prive distribution for $\vec{\theta}$: $p(\vec{\theta}) = \sigma_{i} \sigma_{i} \sigma_{i}$

- · Posterior p(ē)j) not Gaussian in general Typically intractable
- $p(\vec{e} \mid \vec{j}) \approx q(\vec{e} \mid \vec{j})$
 - Tractable
 - · Expressive enrugh

• Data
$$(x_i, j_i]_{i=1}^{N}$$
 • Fifting function $f(x, \vec{\theta})$ j_{I}
• Likelihood $p(\vec{y}|\vec{\theta}) = \prod_{i=1}^{N} N(\forall_i|f(x_i, \vec{\theta}), \vec{\sigma_i})$
• Prior distrib. for $\vec{\Theta}$: $p(\vec{\theta}) \Rightarrow e.g.$ also Gravssian
• Posknior $p(\vec{\theta}|\vec{y})$ not Gaussian in general \rightarrow Typically intractable
• $p(\vec{\theta}|\vec{y}) \approx q(\vec{\theta}|\vec{\eta})$
• Tractable
• Expressive enough

• Standard procedure: Minimize the KL divergence:

$$KL[q_{i}|p] = \int d\vec{\theta} \cdot q \cdot h\left(\frac{q_{i}}{p}\right) \geqslant 0$$

• Standard procedure: Minimize the KL divergence:

$$KL[q_{\eta}|p] = \int d\vec{\theta} \cdot q \cdot h\left(\frac{q_{\eta}}{p}\right) \geqslant 0$$

b the posterior

• Standard procedure: Minimize the KL divergence:

$$KL[q_{1}|p] = \int d\vec{\theta} \cdot q \cdot hr\left(\frac{q_{1}}{p}\right) \geqslant 0$$

proposed of two posterior

• Standard procedure: Minimize the KL divergence:

$$KL[q_1|p] = \int d\vec{\theta} \cdot q \cdot h_1\left(\frac{q_1}{p}\right) \geqslant 0$$

proposed at the posterior vseless since it depends on p

CASE # 1

• In a typical data-science problem y ' Į **)** ×

y i i noise only considered in the dependent variable • In a typical data-science problem

h

U

• In a typical data-science problem
• In a typical data-science problem
• In physics it is quite common to
have incertainties also in the
$$\vec{x}$$

(e.g. instrumental errors)
 $\begin{cases}
1 & \text{if } \vec{x} \\ \text{if } \vec{x} \\ \text{ce.g. instrumental errors}
\end{cases}$
 $\begin{cases}
1 & \text{if } \vec{x} \\ \text{ce.g. instrumental errors}
\end{cases}$
 $\begin{cases}
1 & \text{if } \vec{x} \\ \text{ce.g. instrumental errors}
\end{cases}$
 $\begin{cases}
1 & \text{if } \vec{x} \\ \text{ce.g. instrumental errors}
\end{cases}$
 $\begin{cases}
1 & \text{if } \vec{x} \\ \text{ce.g. instrumental errors}
\end{cases}$
 $\begin{cases}
1 & \text{if } \vec{x} \\ \text{ce.g. instrumental errors}
\end{cases}$
 $\begin{cases}
1 & \text{if } \vec{x} \\ \text{ce.g. f(x) = a + bx} \\ \frac{1}{\sqrt{2}(a,b)} = \sum_{i=1}^{N} \frac{(y_i - f(x_i))^2}{\sqrt{2}_i^2 + b^2 \sqrt{2}_{x_i}^2}}$
het is the impact
 x the fifting function?

h

01

• In a typical data-science problem
• In a typical data-science problem
• In physics it is quite common to
have incertainties also in the
$$\vec{x}$$

(e.g. instrumental errors)
 $\begin{cases}
1 & \text{if } \vec{x} \\ \text{if } \vec{x} \\ \text{(e.g. instrumental errors)} \\
\end{cases}$
 $\begin{cases}
Numerical Recipes] \\
\hline \vec{x} \\ \vec$

• In a typical data-science problem
• In a typical data-science problem
• In physics it is quite common to
have incertainties also in the
$$\vec{x}$$

(e.g. instrumental errors)
 $(e.g. instrumental errors)$
 $(e.g. instrumental errors)$
 $(e.g. instrumental errors)$
 $(e.g. f(x) = a + bx)$
 $(e.g. f(x) = b)$
 $(e.g. f(x) = a + bx)$
 $(e.g. f(x) = b)$
 $(e.g. f$

• In a typical data-science problem
• In a typical data-science problem
• In physics it is quite common to
have incertainties also in the
$$\vec{x}$$

(e.g. instrumental errors)
 $\begin{cases} Nimerical Recipes] \\ + + t \\ x^{2}(a,b) = \sum_{i=1}^{N} \frac{(y_{i} - f(x_{i}))^{2}}{\varphi_{i}^{2} + b^{2} \varphi_{i}^{2}}$
what is the impact $+ Many$ refinements
 r the fifting function?

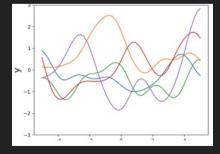
• In a typical data-science problem
• In physics it is quite common to
have incertainties also in the
$$\vec{x}$$

(e.g. instrumental errors)
 $M = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty}$

• I dea : Each input
$$\vec{x}_i = \vec{x}_i + a\vec{x}_i$$

• I dea : Each imput
$$\vec{x}_i = \vec{x}_i + \Delta \vec{x}_i$$

noisy observation

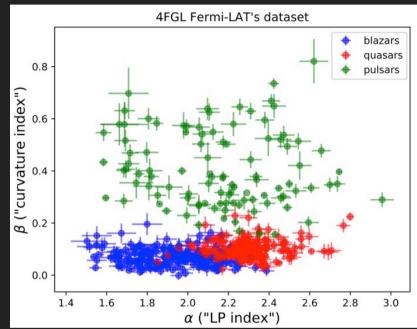


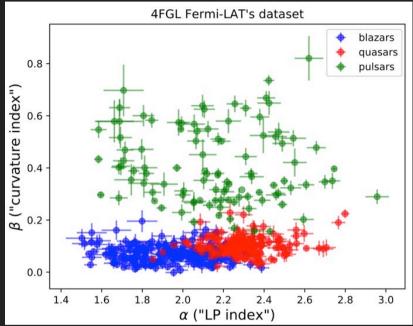
-3

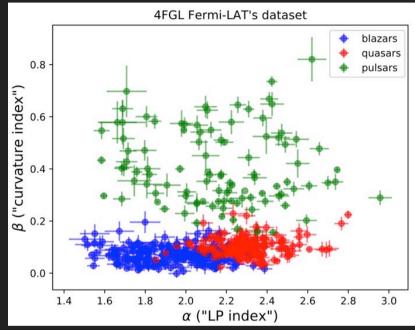
-3

· Tosted the benefits of This approach in several synthetic and real datasets,

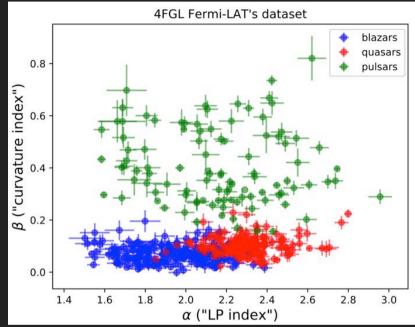
• Tosted the benefits of This approach in several synthetic and real datasets, e.g.







	MGP	NIMGP	$\mathbf{NIMGP}_{\mathbf{NN}}$	NIMGP _{FO}
NLL	$0.377{\pm}0.0194$	$0.246{\pm}0.0097$	$0.261{\pm}0.011$	$0.292{\pm}0.0158$
Test error	$0.075 {\pm} 0.0043$	$0.088{\pm}0.0038$	$0.082{\pm}0.0041$	$0.071 {\pm} 0.0038$



blazars quasars pulsars

3.0

Accuracy

CASE #2

1903.05779

• ML community now considering doing inference in "function space" instead of parameter space

m

• V.I. procedures in function space are computationally challenging ELBO [] [] now for two implicit distributions over functions !

• V.I. procedures in function space are computationally challenging ELBO[]] pour for two implicit distributions over functions!

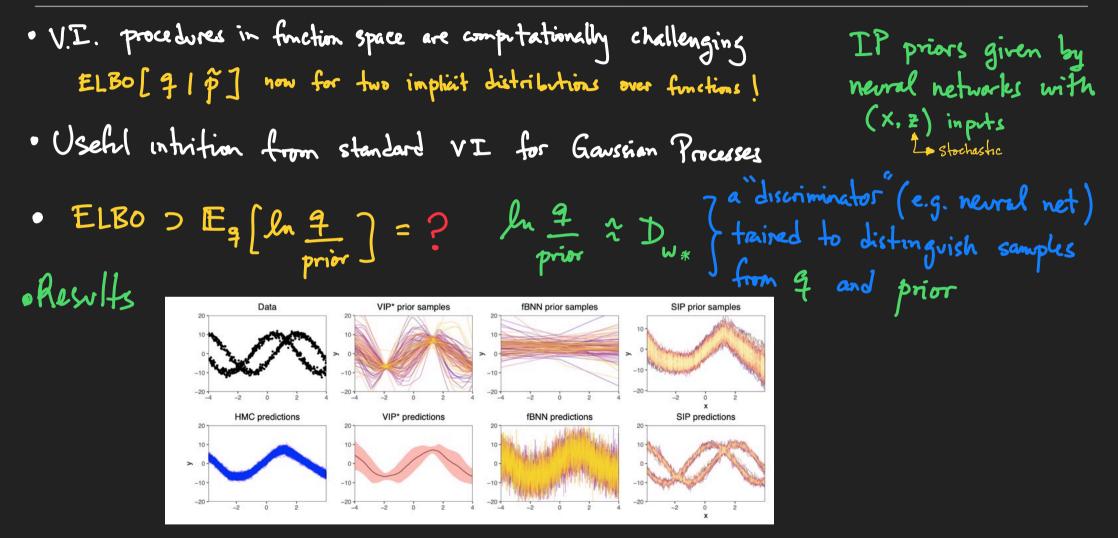
IP priors given by neural networks with (X. Z) in puts La stochastic

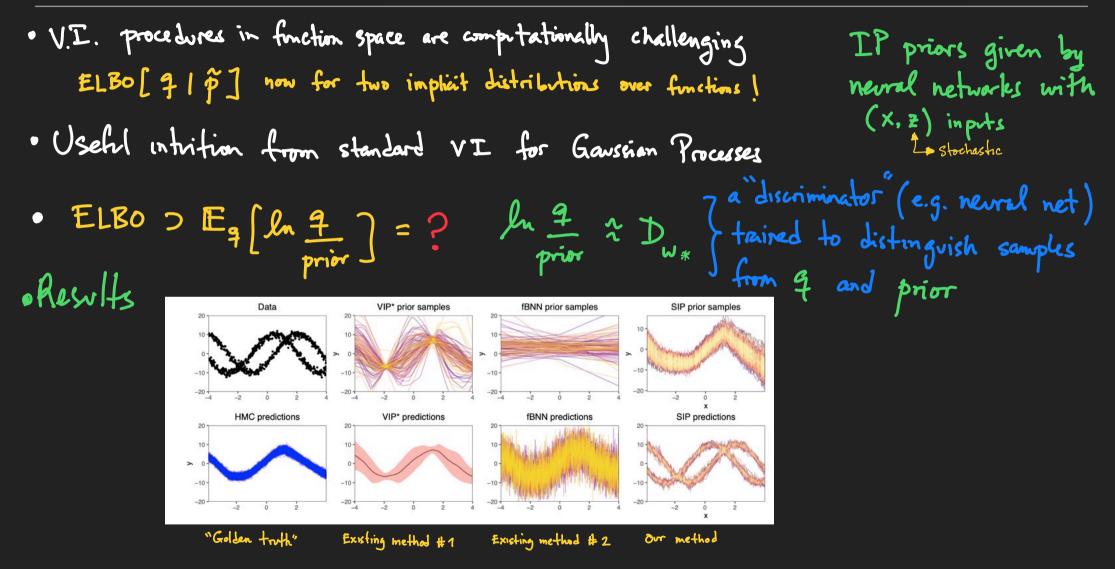
- V.I. procedures in function space are computationally challenging ELBO [] [] now for two implicit distributions over functions !
- · Useful intrition from standard VI for Gaussian Processes

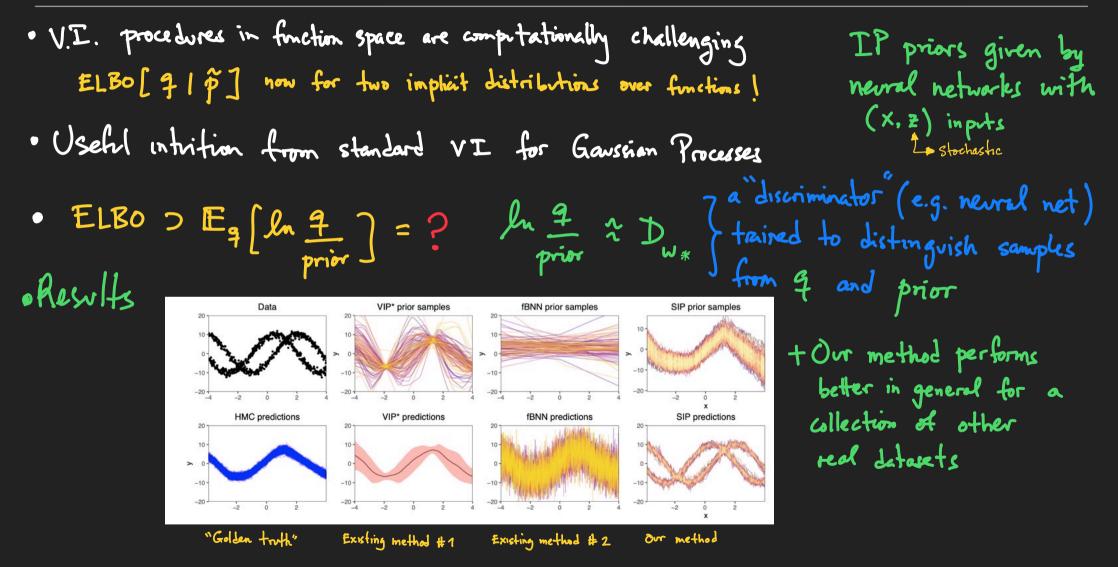
IP priors given by neural networks with (X, Z) inputs

- V.I. procedures in function space are computationally challenging ELBO[]] now for two implicit distributions over functions!
- · Useful intrition from standard VI for Gaussian Processes
- IP priors given by neural networks with (X.Z) inputs Lo stochastic

• ELBO $\supset \mathbb{E}_q \left[ln \frac{q}{prior} \right] = ?$







CASE # 3

Consider the following mathematical identity ("reweighting" - Lattice QCD jargon) $E_{p}[f(\theta)] = \int d\theta \ p(\theta) \ f(\theta) = \int d\theta \ q(\theta) \ p(\theta) \ f(\theta) = E_{q}\left[\frac{p}{q} \ f(\theta)\right] \\ \frac{q(\theta)}{q(\theta)} = \frac{1}{q(\theta)} \left[\frac{p}{q} \ f(\theta)\right]$

Consider the following mathematical identity ("reweighting" - Lattice QCD jargon)

$$E_{p}[f(\theta)] = \int d\theta \ p(\theta) \ f(\theta) = \int d\theta \ q(\theta) \ p(\theta) \ f(\theta) = E_{q}\left[\frac{p}{q} \ f(\theta)\right] \\ \frac{q(\theta)}{q(\theta)}$$
• This is the basis of "Importance Sampling"

Consider the following mathematical identity ("reweighting" - Lattice QCD jargon)

$$E_p[f(\theta)] = \int d\theta \ p(\theta) \ f(\theta) = \int d\theta \ q(\theta) \ p(\theta) \ f(\theta) = E_q[\frac{p}{q} \ f(\theta)] = \frac{1}{2} \left[\frac{p}{q} \ f(\theta)\right] = \frac{1}{2} \left[\frac{p}{q} \ f(\theta$$

Consider the following mathematical identity ("reweighting" - Lattice QCD jargon) $E_p[f(\theta)] = \int d\theta \ p(\theta) \ f(\theta) = \int d\theta \ q(\theta) \ p(\theta) \ f(\theta) = E_q[\frac{r}{q} \ f(\theta)] \\ = \int d\theta \ p(\theta) \ f(\theta) = \int d\theta \ q(\theta) \ f(\theta) = \int d\theta \ q(\theta) \ p(\theta) \ f(\theta) = E_q[\frac{r}{q} \ f(\theta)] \\ = \int d\theta \ p(\theta) \ f(\theta) = \int d\theta \ q(\theta) \ f(\theta) = \int d\theta \ q(\theta) \ p(\theta) \ f(\theta) = E_q[\frac{r}{q} \ f(\theta)] \\ = \int d\theta \ p(\theta) \ f(\theta) = \int d\theta \ q(\theta) \ f(\theta) = \int d\theta \ q(\theta) \ p(\theta) \ f(\theta) = E_q[\frac{r}{q} \ f(\theta)] \\ = \int d\theta \ p(\theta) \ f(\theta) = \int d\theta \ q(\theta) \ p(\theta) \ f(\theta) = \int d\theta \ q(\theta) \ p(\theta) \ f(\theta) = E_q[\frac{r}{q} \ f(\theta)] \\ = \int d\theta \ p(\theta) \ f(\theta) \ f(\theta) \ f(\theta) \ f(\theta) = \int d\theta \ q(\theta) \ p(\theta) \ f(\theta) \ f(\theta) = \int d\theta \ q(\theta) \ f(\theta) \ f(\theta$

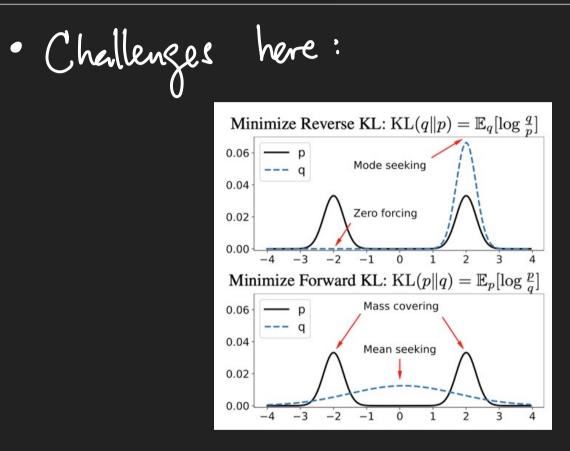
-10

-20

Ó

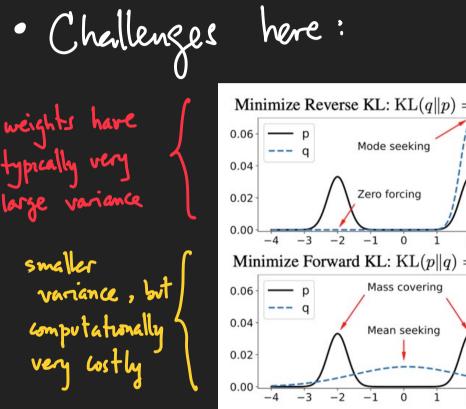
20

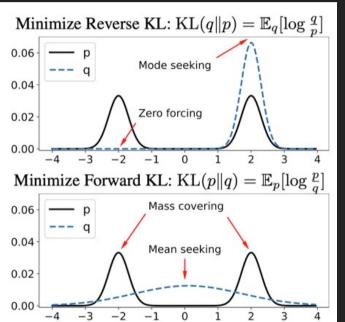
· Challenges here:



• Challenges here : Minimize Reverse KL: $\operatorname{KL}(q \| p) = \mathbb{E}_q[\log \frac{q}{p}]$ 0.06 — p Mode seeking --- q 0.04 Zero forcing 0.02 0.00 -4 -3 -2 -1 Ó ż 3 1 Minimize Forward KL: $\operatorname{KL}(p||q) = \mathbb{E}_p[\log \frac{p}{q}]$ Mass covering 0.06 p --- q 0.04 Mean seeking 0.02 0.00 -4 -3 -2 -1Ó ż 3 1

4

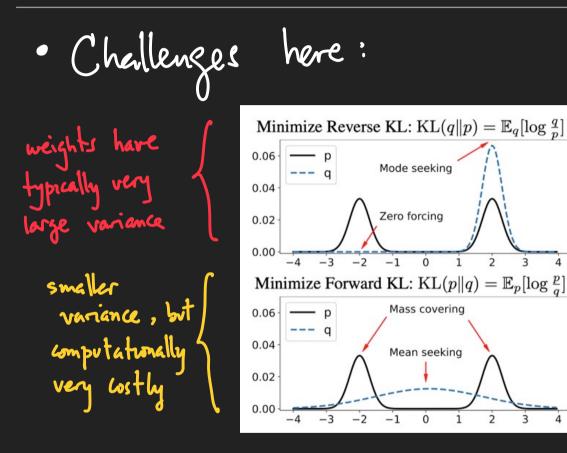




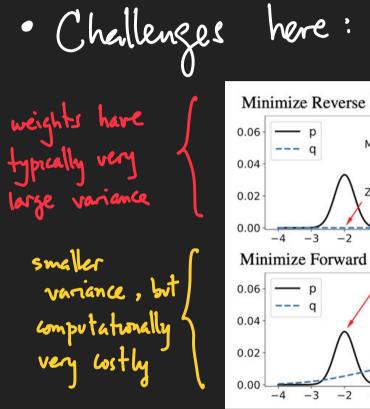
3

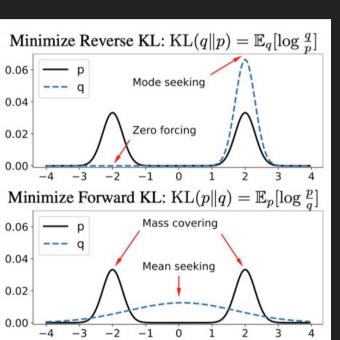
3

4



* Computation - Quality trade-off





CASE#4

•Idea of MCMC

• I dea of MCMC
* Get samples
$$\vec{\theta}_1, \vec{\theta}_2, ..., \vec{\theta}_t, \vec{\theta}_{t+1}, ...$$

from proposal dist. $q(\vec{\theta}_{t+1} | \vec{\theta}_t)$

• I dea of MCMC
* Get samples
$$\vec{\theta}_1, \vec{\theta}_2, ..., \vec{\theta}_t, \vec{\theta}_{t+1}, ...$$

from proposal dist. $q(\vec{\theta}_{t+1} | \vec{\theta}_t)$ Markov chan

Randon walk behaviour
 (e.g., Metropolis-Hastings)

Random walk behaviour
 (e.g., Metropolis-Hastings)



· Randon welk behaviour (e.g. Metropolis-Hastings)

Would be convensiont to have guidance on where to move next!

• Random welk behaviour
(e.g. Metropolis-Hastings)
• Hamiltonian Jynamics at work

$$* \vec{\sigma} = \vec{q} \rightarrow (\vec{q}, \vec{p}) = K(\vec{p}) + V(\vec{q})$$

• Random welk behaviour
(e.g. Metropolis-Hastings)
• Hamptonian Jynamics at work

$$* \vec{\sigma} = \vec{q} \rightarrow (\vec{q}, \vec{p})$$

 $* H(\vec{q}, \vec{p}) = K(\vec{p}) + V(\vec{q})$
 $\frac{dq}{dt} = \frac{\partial H}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial H}{\partial q}$

• Random welk behaviour
(e.g. Metropolis-Hastings)
• Hamiltonian Lynamics of work

$$* \vec{\sigma} = \vec{q} \rightarrow (\vec{q}, \vec{p})$$

 $* H(\vec{q}, \vec{p}) = K(\vec{p}) + V(\vec{q})$
 $\frac{dq}{dt} = \frac{\partial H}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial H}{\partial q}$ to be solved
 $nvmerically$ by
 $a gvod algorithm$

HYBRID (A.K.A. HAMILTON) MONTE CARLO

• Random welk behaviour
(e.g., Metropolis-Hestings)
• Hamptonian Jynamics at work
*
$$\vec{\sigma} \equiv \vec{q} \rightarrow (\vec{q}, \vec{p})$$

* $H(\vec{q}, \vec{p}) = K(\vec{p}) + V(\vec{q})$
 $dq = \frac{\partial H}{dt}$, $dp = -\frac{\partial H}{\partial q}$ to be solved
a good algorithm

HYBRID (A.K.A. HAMILTON) MONTE CARLO

• Random welk behaviour
(e.g. Metropolis-Hastings)
• Hamiltonian Lynamics at work
*
$$\vec{\sigma} = \vec{q} \rightarrow (\vec{q}, \vec{P})$$

* $H(\vec{q}, \vec{P}) = K(\vec{P}) + V(\vec{q})$
 $dq = \frac{\partial H}{dt}$, $dp = -\frac{\partial H}{\partial q}$ to be solved
a good algorithm

• The predictive distribution contain "hyper-parameters"

• The predictive distribution contain "hyper-parameters"

$$P(Y_*|X_*, Date) = \int d\vec{\Theta} \begin{pmatrix} Likelihood \\ of & Y_*|X_*, \vec{\Theta} \end{pmatrix} \cdot \begin{pmatrix} Posterior & of \\ \vec{\Theta} & Data \end{pmatrix}$$

• The predictive distribution contain "hyper-parameters"

$$P(Y_{*}|X_{*}, Date) = \int d\vec{\theta} \begin{pmatrix} U_{k} (U_{*}, V_{*}, \vec{\theta}) \end{pmatrix} \begin{pmatrix} Posterior of \\ \vec{\theta} & Date \end{pmatrix} \end{pmatrix} \begin{pmatrix} V_{*}(X_{*}, \vec{\theta}) \end{pmatrix} \begin{pmatrix} \vec{\theta} & V_{*}(X_{*}, \vec{\theta}) \end{pmatrix} \begin{pmatrix} Posterior of \\ \vec{\theta} & Date \end{pmatrix} \end{pmatrix} \begin{pmatrix} V_{*}(X_{*}, Date) \end{pmatrix} = \int d\vec{\theta} \begin{pmatrix} V_{*}(X_{*}, \vec{\theta}) \end{pmatrix} \begin{pmatrix}$$

• The predictive distribution contain "hyper-parameters"

$$P(Y_*|X_*, Date) = \int d\vec{\theta} \left(\begin{array}{c} \text{Likelihood} \\ \text{of } Y_*|X_*, \vec{\theta} \end{array} \right) \cdot \left(\begin{array}{c} \text{Posterior of} \\ \vec{\theta} \mid Data \end{array} \right) \right\} \ll P(Data|\vec{\theta}, \vec{\sigma}) P(\vec{\theta} \mid \vec{\beta})$$

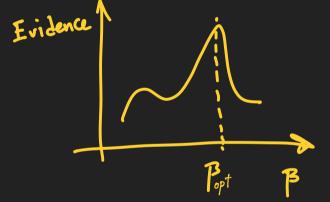
$$e.g. prior = N\left(\vec{\theta} \mid \vec{\mu}, \vec{\sigma} \cdot \vec{1}\right)$$

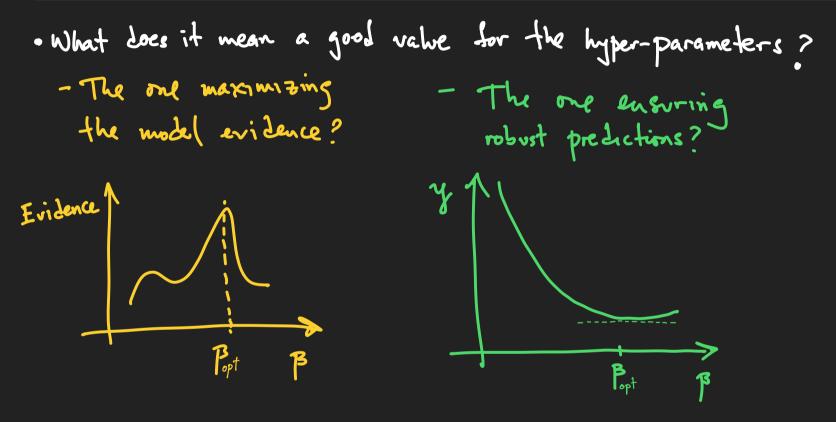
• The predictive distribution contain "hyper-parameters"

$$P(Y_*|x_*, Data) = \int d\vec{\theta} \begin{pmatrix} Likelihood \\ of \ Y_*|x_*, \vec{\theta} \end{pmatrix} \cdot \begin{pmatrix} Posterior \ of \\ \vec{\theta} \ Data \end{pmatrix} \leq c p(Data|\vec{\theta}, \vec{q}) p(\vec{\theta} \ | \vec{\beta})$$

$$P(Y_*|x_*, \vec{\theta}, \vec{q}) = O(\vec{\theta} \ | \vec{\mu}, \vec{\sigma}, \vec{q}) p(\vec{\theta} \ | \vec{\beta})$$

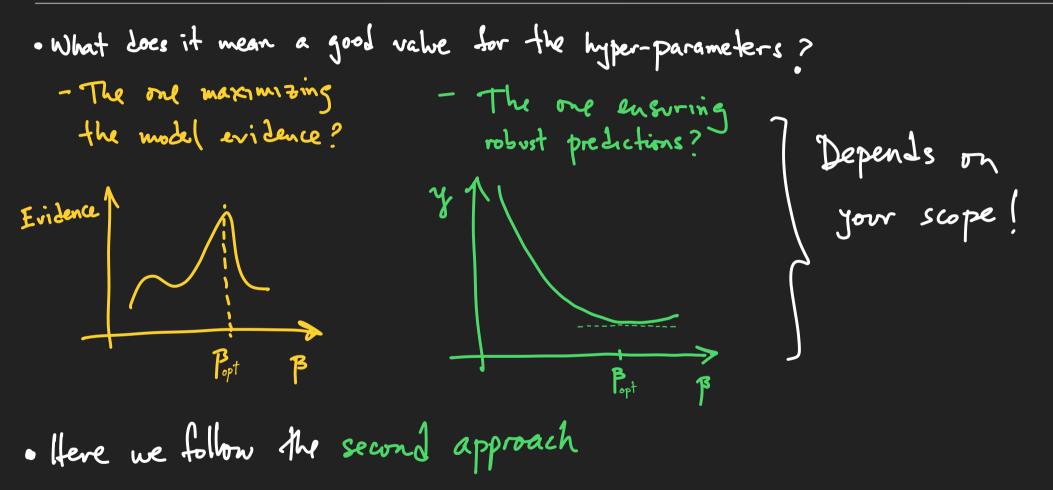
• What does it mean a good value for the hyper-parameters?

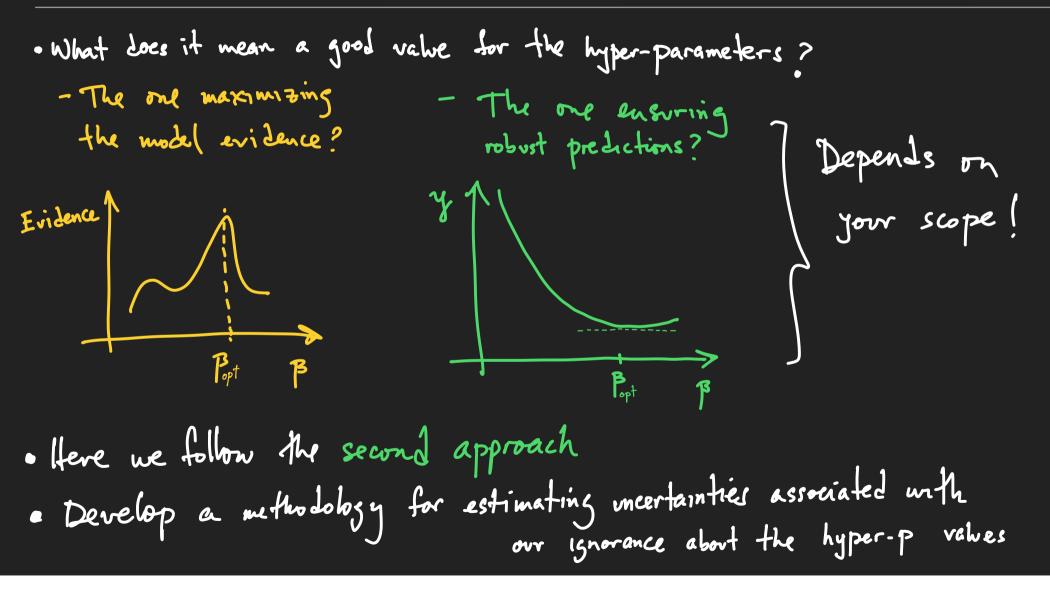


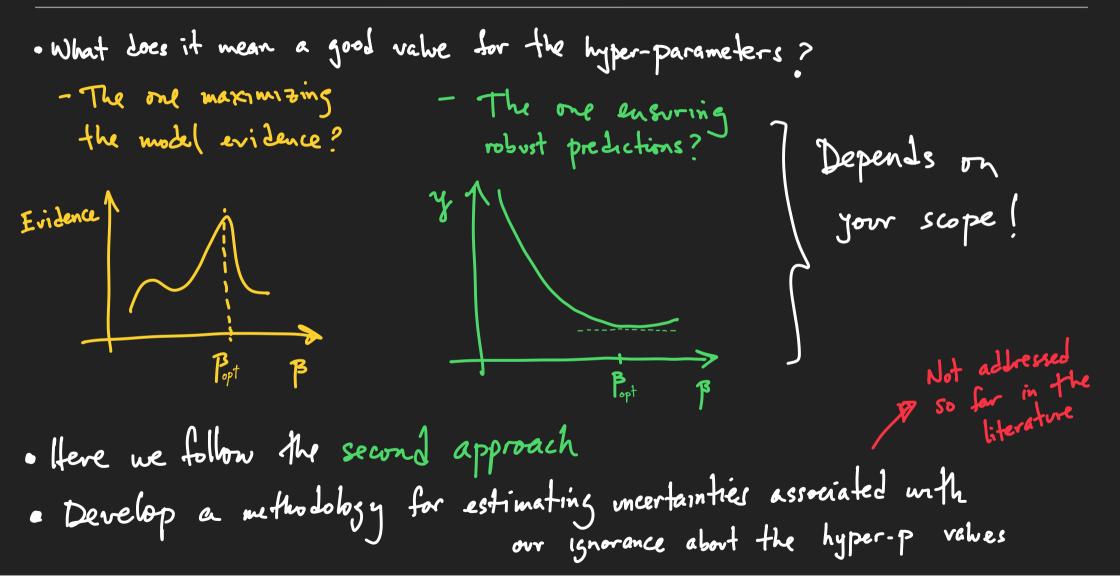


• What does it mean a good value for the hyper-parameters?
- The one maximizing
the model evidence?
Evidence

$$\frac{1}{P_{pt}}$$
 $\frac{1}{P}$ $\frac{1}{P_{pt}}$ $\frac{1}{P}$







• I dea : Compute the derivative of the predictive distribution w.r.t. The hyper-parameters if very small, then predictions are robust

$$P(Y_*|X_*, Date) \stackrel{\text{Lin} N_s \to \infty}{=} \frac{1}{N_s} \sum_{s=1}^{N_s} P(Y_*|X_*, \vec{o}_s, \vec{a})$$

$$P(Y_*|X_*, Date) \stackrel{\text{Lin}\,N_s \to \infty}{=} \frac{1}{N_s} \sum_{s=1}^{N_s} P(Y_*|X_*, \vec{\theta}_s, \vec{a}) \quad \text{with } \vec{\theta}_s \sim \text{Posterior}\left(\vec{\theta} \mid \text{Date}, \vec{a}, \vec{\beta}\right)$$

$$= \int_{N_s} \int_{s=1}^{N_s} P(Y_*|X_*, \vec{\theta}_s, \vec{a}) \quad \text{with } \vec{\theta}_s \sim \text{Posterior}\left(\vec{\theta} \mid \text{Date}, \vec{a}, \vec{\beta}\right)$$

à B

٠

One possible way: Numerical Stochastic Perturbation Theory
using HMC (borrowed from Lattice QCD)
• Expand in Taylor
$$\vec{P} = \vec{P}^{(0)} + \vec{P}^{(1)} \cdot \delta \beta + \dots$$

series $\vec{p} = \vec{p}^{(0)} + \vec{P}^{(1)} \cdot \delta \beta + \dots$

One possible way: Numerical Stochastic Perturbation Theory
using HMC (borrowed from Lattice
$$\Theta(D)$$
)
• Expand in Taylor $\vec{\Theta} = \vec{\Theta}^{(0)} + \vec{\Theta}^{(1)} \cdot \delta \beta + \dots$
series $\vec{P} = \vec{P}^{(0)} + \vec{P}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = \vec{P}^{(0)} + \vec{P}^{(1)} \cdot \delta \beta + \dots$

One possible way: Numerical Stochastic Perturbation Theory
using HMC (borrowed from Lattice
$$\Theta(D)$$
)
• Expand in Taylor $\vec{\Phi} = \vec{\Phi}^{(0)} + \vec{\Phi}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = \vec{p}^{(0)} + \vec{P}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = \vec{p}^{(0)} + \vec{P}^{(1)} \cdot \delta \beta + \dots$

One possible way: Numerical Stochastic Perturbation Theory
using HMC (borrowed from Lattice &CD)
• Expand in Taylor
$$\vec{\theta} = \vec{\Theta}^{(0)} + \vec{\Theta}^{(1)} \cdot \delta \beta + \dots$$

 $\vec{p} = \vec{p}^{(0)} + \vec{p}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = (\vec{\theta} + \vec{p})^{(0)} + (\vec{\theta} + \vec{p})^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = (\vec{\theta} + \vec{p})^{(0)} + (\vec{\theta} + \vec{p})^{(1)} \cdot \delta \beta + \dots$ (similarly with $\vec{\theta} + \vec{p}$)

One possible way: Numerical Stochastic Perturbation Theory
Using HMC (borrowed from Lattice QCD)
• Expand in Taylor
$$\vec{\Theta} = \vec{\Theta}^{(0)} + \vec{\Theta}^{(1)} \cdot \delta \beta + \dots$$

series $\vec{P} = \vec{P}^{(0)} + \vec{P}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = -\frac{2H}{2\vec{P}}$
 $\vec{P} =$

One possible way: Numerical Stochastic Perturbation Theory
Using HMC (borrowed from Lattice QCD)
• Expand in Taylor
$$\vec{\Theta} = \vec{\Theta}^{(0)} + \vec{\Theta}^{(1)} \cdot \delta \beta + \dots$$

series $\vec{P} = \vec{P}^{(0)} + \vec{P}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = (\vec{\Theta} + \vec{P}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = (\vec{\Theta} + \vec{P}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = (\vec{\Theta} + \vec{P}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = (\vec{\Theta} + \vec{P}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = (\vec{\Theta} + \vec{P}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = (\vec{\Theta} + \vec{P}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = (\vec{\Theta} + \vec{P}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = (\vec{\Theta} + \vec{P}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = (\vec{\Theta} + \vec{P}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = (\vec{\Theta} + \vec{P}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P}^{(n)} = (\vec{\Theta} + \vec{P}^{(n)} - \vec{P}^{(n)} + \vec{P}^{(n)} - \vec{P}^{(n)} + \vec{P}^{(n)} - \vec{P}^{(n)} + \vec{P$

One possible way: Numerical Stochastic Perturbation Theory
Using HMC (borrowed from Lattice &CD)
• Expand in Taylor
$$\vec{\Phi} = \vec{\Phi}^{(0)} + \vec{\Phi}^{(1)} \cdot \delta \beta + \dots$$

series $\vec{p} = \vec{p}^{(0)} + \vec{\Phi}^{(1)} \cdot \delta \beta + \dots$
 $\vec{P} = -\frac{2H}{25}$
 $\vec{P} = -\frac{2H}{25}$
• Results in a tower of Hamilton eqs. up to
given truncation order $\vec{P}^{(1)} = -\frac{2H}{25}$

One possible way: Numerical Stochastic Perturbation Theory
Using HMC (borowed from Lattice QCD)
• Expand in Taylor
$$\vec{P} = \vec{P}^{(0)} + \vec{P}^{(1)} \cdot \delta \vec{P} + \dots$$

series $\vec{P} = \vec{P}^{(0)} + \vec{P}^{(1)} \cdot \delta \vec{P} + \dots$
 $\vec{P} = \vec{P}^{(0)} + \vec{P}^{(1)} \cdot \delta \vec{P} + \dots$
 $\vec{P} = -\frac{\partial H}{\partial \vec{P}}$
• Results in a tower of Hamilton eqs. up to
given truncation order $\vec{P}^{(n)} = (\frac{\partial H}{\partial \vec{P}})^{(n)}$ $\vec{P} = -(\frac{\partial H}{\partial \vec{P}})^{(n)}$

This can be implemented using a single HMC similation!

This can be implemented using a single HMC similation ! [with Npert coupled Hamilton eqs.]

```
This can be implemented using a
single HMC similation !
[with Npert coupled Hamilton eqs.]
the magic is possible thanks to
the concept of "Automatic
Differentiation" and "Hyper-dual Hs"
(see A. Ramos, 1809.01289)
```

```
This can be implemented using a
single HMC similation I
[with Npert coupled Hamilton eqs.]
the magic is possible thanks to
the concept of "Automatic
Differentiation" and "Hyper-dual Hs"
(see A. Ramos, 1809.01289)
```

• Toy example :

```
This can be implemented using a
single HMC similation !
[with Npert coupled Hamilton eqs.]
the magic is possible thanks to
the concept of "Automatic
Differentiation" and "Hyper-dual Hs"
(see A. Ramos, 1809.01289)
```

• Toy example : - Gaussian data generated by $f(x) = x^3 + x^2 + x + 1$

• Toy example:
- Gaussian Lata generated by

$$f(x) = x^3 + x^2 + x + 1$$

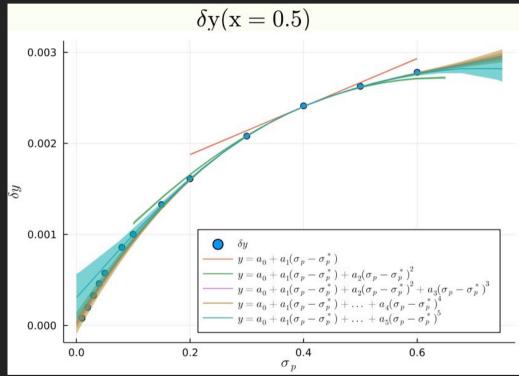
• Model is a
1-hidden layer
Bayesian Neural net
with prior variance

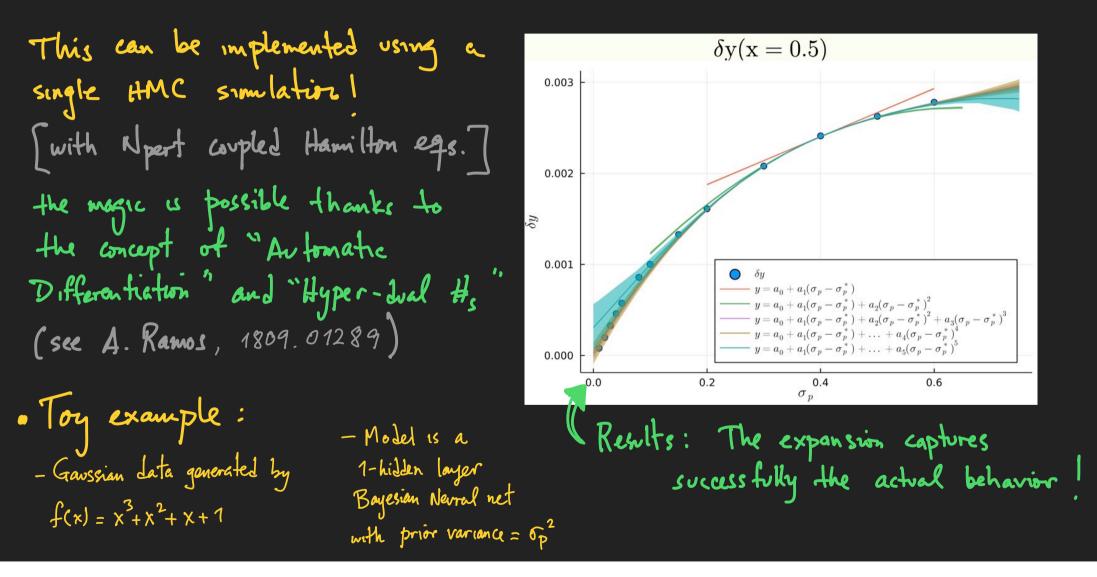
6p2

Toy example:
- Gaussian data generated by

$$f(x) = x^3 + x^2 + x + 1$$

- Model is a 1-hidden layer Bayesian Nevral net with prior variance = $6p^2$





This can be implemented using a single HMC simulation eqs.]
(with Npert coupled Hamilton eqs.]
the magic is possible thanks to
the concept of "Automatic
Differentiation" and "Hyper-dual Hs"
(see A. Ramos, 1809.01289)
Toy example:
- Model is a
- Gaussian data generated by

$$f(x) = x^{3}+x^{2}+x+1$$

 $f(x) = x^{3}+x^{2}+x+1$
 $f(x) = x^{3}+x^{2}+x+1$