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Standard models and open questions
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Particle physics Cosmology

Image credits: E. Kolb; Gianluca Bianco

Many option questions: What is dark matter? Is dark energy dynamic? Where is the anti-matter? What 
caused seed-perturbations? How do black holes grow and merge? How do neutron stars develop? How did 
the first stars form? What stabilized the electroweak scale? Is there grand unification? How do galaxies form 

and grow?



Gravitational waves Gamma rays Stellar streams

Image: LIGO Image: Fermi LAT/CW Image: NASA/JPL-Caltech/R Hurt (SSC/Caltech)

Astrophysical searches for breaks in the standard models

3

Gravitational lensing

Strategy: Search for deviations from standard-model predictions in 
order to get answers on some of the open questions.



Challenge 1) High-dimensional data

Image credit: EuCAPT white paper 2021
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Thousands of petabytes of upcoming data
Preprocessed data can have millions of dimensions



Challenge 2) High-dimensional models
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Example: gamma-ray sky above 1 GeV (Fermi LAT)

Endless statistical analysis challenges
● Hierarchical models (source populations)
● Trans-dimensional models (number of sources)
● Label switching problem (instance detection)
● Parameter degeneracies (distances unclear)
● Non-parametric components (gas maps)
● Inference of fields (diffusion zone)
● Millions of parameters & minutes - hours to evaluate…

More data → More details → More accurate models
More model parameters

Slower simulations



Challenge 3) Signals << Background

6Image credit: Bulbul+ 1402.2301, Noemi Anau Montel

Any mismodeling of backgrounds, or uncharacterized model uncertainty, 
or unjustified simplification, does backfire.

New physics searches = Avoiding to shoot yourself in the foot



The inverse problem = the impossible problem?
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Millions of parameters

Millions of data points

Very expensive simulation model

Posterior with exponentially 
large number of modes

Bayes theorem



Solving the inverse problem
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de facto standard: Markov Chain Monte Carlo

● Step 1: Samples from joined posterior

                                  D: Number of parameters

Prior

Evidence

Likelihood

Posterior
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● Step 2: Marginalization to parameters of interest[Handley, Hosbon, 
Lasenby 1911.01429]

Typical likelihood-based inference algorithms (MH, HMC, VI, …) require a small enough 
number of parameters.



Likelihood-based inference enforces low-dim models

10

Strong lensing 
images

Fermi Galactic 
center excess

Slow GW 
waveforms

Cosmology

Stellar streams

Gamma-ray 
line search

Full model
Simplified tractable

model



The price of model simplification
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Exaggerated (?) illustration of the potential dangers 
of model simplification

● Biases
● Overly optimistic uncertainties



The benefits of high-dimensional models
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Consequences: Large modeling errors because 
of simplistic low-dim models

Data (Fermi LAT)

Residuals
Low-dim model (10 dims)

Storm+ 1705.04065

Residuals
High-dim model (10.000 dims)

We pulled this off with 
gradient-based 
optimization.
Very hard to use in 
practice, only a handful of 
examples in the literature.

Almost all existing 
analysis of Fermi LAT 
data have these kind 
of residuals.

There is no 
shortage in 
anomalies in 
astrophysical 
data…



Neural simulation-based inference (SBI)

General goal: obtain neural network 
approximator for one of the following:

● Posterior*

● Likelihood*

● Ratios of posteriors and priors = 
ratios of likelihood and evidence

● Various variations of the above quantities…

[Cranmer, Brehmer, Louppe 1911.01429]

Very active young research field

13
* require normalization of densities



“Simulated 
images”

Red:
Parameter of interest

Observed data 14

Black:
Nuisance parameters
(parametrizing all possible 
background images)

1, 3, 2, 1, 5, 4, 3, 1, 6, 7, 9, …

6, 2, 5, 8, 6, 8, 4, 3,2 1, 3, 4, …

2, 3, 4, 3, 1, 7, 8, 9, 5, 3, 2, …

4, 2, 1, 4, 6, 8, 6, 4, 3, 2, 4, …

1, 3, 2, 9, 5, 4, 3, 1, 6, 7, 9, …

6, 2, 5, 8, 6, 8, 4, 3,2 1, 3, 4, …

2, 3, 4, 1, 1, 7, 8, 9, 5, 3, 2, …

4, 2, 1, 2, 6, 8, 6, 4, 3, 2, 4, …

1, 3, 2, 4, 5, 4, 3, 1, 6, 7, 9, …

6, 2, 5, 4, 6, 8, 4, 3,2 1, 3, 4, …

?, ?, ?, 8, ?, ?, ?, ?, ?, ?, ?, ?, …

High-dimensional inference can be simple

Examples
x, z ~ p(x|z)p(z)

Image, x Parameter vector, z



Neural ratio estimation (NRE) in a nutshell
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Strategy: Learning to distinguish between matching (parameter, data) pairs and random pairs.

Loss function: Binary cross entropy

Minimizing network 
approximates posteriors

(1,                                     ) (9,                                    )

(8,                                     ) (4,                                    )

Gutman&Hyvärinen 2010 (as NCE), Mnih&Teh 2012 (self-normalizing), …, Hermans+ 1903.04057, Miller+ 2107.01214, Cole+ 2111.08030



What is a Multi-Layer Perceptron?
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Activation function

ReLU

Multi-layer perceptron = MLP = dense network

Training would optimize transformation matrices W 
and biases b.



Three conjectures for scalable SBI

17



1) Marginal posterior rather than joint posteriors
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● A “universal” approach must scale to millions of parameters, and 
outrageously complex posteriors (transdimensional models, label 
switching, strong correlations, …)

Joined: In general intractable
(any approach)

Marginals: Often tractable
(NRE, forward-KL based approaches, …)

● Scientifically, we are usually only interested in marginal posteriors anyway
○ Parameter regression: 1-dim marginals
○ Parameter correlations: 2-dim marginals
○ Bayesian model comparison: ratios of marginals
○ Object identification: density functions
○ …

● Caveats: Goodness-of-fit tests, posterior predictive distribution, requires upfront 
intuition about what matters

1-dim and 2-dim marginals 
for corner plots

Density functions for object 
detection

[for discussions see e.g. Alsing+ 1903.01473, Jeffrey+ 2011.05991, Miller+ 2011.13951]



1) Marginal posterior rather than joint posteriors

[Miller, Cole, Forre, Louppe, CW 2107.01214] 19Estimating marginals breaks naive scaling laws.

#modes = 2^#nparams



2) Truncated priors as sequential proposals
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● Sequential techniques are based on targeted training data

[Durkan+ 2002.03712 for a discussion]

[Alsing+ 1903.00007 as example (pydelfi)]

[see e.g. Alsing+ 1903.01473 for a possible summary-statistics related solution]

[Miller+ 2011.13951, 2107.01214 - swyft & TMNRE]

● To alleviate this we proposed to use a truncation scheme 

● But: Marginal likelihoods/posteriors will be affected by the 
proposal distribution

● This is fine if the goal is to locally train, e.g., the likelihood 
(which is prior independent)



3) Likelihood-to-evidence ratios rather than densities
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● Ratio estimation → Binary classification = Battle-proven simplicity

[Hermans+ 1903.04057]

[but see Hermans+ 2110.06581]

[see Alsing+ 1903.00007 for related discussions in 
context of likelihood estimation]

[see Cranmer+ 1911.01429 for 
discussion of many alternatives]

● When focusing on low-dim marginals, sampling 
is simple (no MCMC or flow-based models required).

● Ratio estimation automatically generates information maximizing 
data compression

+ const

● Usually remains conservative (works well in a truncation scheme)



Miller, Cole, Forre, Louppe, CW 2107.01214 (NeurIPS)
Miller, Cole, Louppe, CW 2011.13951 22

1+2+3 = Truncated Marginal Neural Ratio Estimation

Competitive performance on 
standard tasks, but more 
scalable.

Combination of various properties of existing algorithms



Example 1: Cosmic microwave background
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Planck cosmology

● TT, TE, EE angular power spectrum of CMB with Planck-like noise (Di Valentino+ 2016)
● 6 cosmology parameter to infer, using tight priors (+- 5 sigma Fisher estimate)
● HiLLiPoP likelihood: Planck likelihood,13 varying nuisance parameters [Couchot et al. ‘16]
● Comparison with MCMC is feasible and straightforward
● We use a linear embedding network to go from 7500 → 10 features

24
[Cole, Miller, Witte, Cai, Grootes, Nattino, CW 2111.08030]

Noise = instrument contribution + cosmic variance



Cosmology with ~1000 times less simultations
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[Cole, Miller, Witte, Cai, Grootes, Nattino, CW 2111.08030]



Simulation efficiency through truncation
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● Demonstration of prior that is “too big” by a 
factor of 5 for the cosmological parameters

● Truncation effectively identifies region with 
20000 extra sims.

Structure of ratio estimator
● Input: Vector (7500)
● Embedding: Linear (7500 → 10)
● Marginals: MLP (19 1-dim, 15 2-dim)



Example 2: Supernova cosmology
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Supernova cosmology

28Ongoing work with Kosio Karchev and Roberto Trotta



Simulation efficiency through truncation

29Ongoing work with Kosio Karchev and Roberto Trotta



(Marginal) measurements for 100000 parameters
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MALFOI: marginal likelihood-free object-by 
object inference

● “MCMC” results were obtained using 
pre-marginalized likelihoods (only 
possible under assumptions of 
Gaussianity and SN independence).

● Instead, NRE marginalizes 
automatically and assumption-free.

Structure of ratio estimator
● Input: 100.000 Spectra (100000, 3)
● Embedding: Linear (300000 → 256)
● Marginals: MLP (100009 1-dim, 1 2-dim)

Ongoing work with Kosio Karchev and Roberto Trotta



Example 3: Strong lensing
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Strong galaxy-galaxy lensing
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Warm dark matter

Image credit: ITC @ University of Zurich

Warm vs cold dark matter
Warmer
→ Less small halos

Colder
→ More small halos
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Strong lensing animated
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https://adam-coogan.github.io/lensing-multisub/



Inference challenges

35Slide credit: Noemi Anau Montel



A) Single subhalo, simple source model

36Slide credit: Noemi Anau Montel

Structure of ratio estimator
● Input: Images (typically 200x200)
● Embedding: CNN
● Marginals: MLP (17 1-dim)

Ongoing work led by Adam Coogan



B) Multiple subhalos, complex source model
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Structure of ratio estimator
● Input: Images (typically 200x200)
● Embedding: CNN
● Marginals: MLP (2-dim)

Ongoing work led by Adam Coogan



C) Subhalo mass function cutoff - Combined analysis
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Structure of ratio estimator
● Input: 10 Images (10x100x100)
● Embedding: Stack of CNNs
● Marginals: MLP (1-dim)

Combining observations to reduce subhalo shot noise

Anau Montel+ 2205.09126

Related work: He+ 2010.13221 (similar in spirit, using ABC), Wagner-Carena+ 2203.00690 (constraining 
subhalo mass function normalization)



C) Subhalo mass function cutoff - Combined analysis

39

Subset of 20 target images in 
our analysis.

Let’s focus on this one, 
and call it “A”

Anau Montel+ 2205.09126



C) Subhalo mass function cutoff - Prior truncation
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Round 0

Round 1

Round 2

Round 3

Round 4

Target image “A”

Training data for target image “A”

Constrained prior ranges (round 0 - round 4) for all 
14 main lens & source parameters

Anau Montel+ 2205.09126



C) Subhalo mass function cutoff - Results
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Generating targeted training 
data for 100 images and 
combining their constraining 
power gives tight constraints 
on the subhalo mass function.

Anau Montel+ 2205.09126



D) Halo detection - Probabilistic image segmentation
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In the presence of multiple subhalos, we can also estimate the subhalo density function (which can be 
understood as marginal of the more complex joined subhalo distribution).

Ongoing work led by Elias Dubbeldam Related work: 2009.06639 Ostdiek+ (using U-Net for subhalo detection)



D) Halo detection - Probabilistic image segmentation
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https://dm-lensing-parislfi.github.io/

Structure of ratio estimator
● Input: Image (typically 100x100)
● Embedding: U-Net
● Marginals: Binary marginals 

100x100x10 (ten mass bins)

Ongoing work led by Elias Dubbeldam



TMNRE/SWYFT appear to be broadly applicable
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TMNRE/SWYFT

Hermans et al., 2020
James Alvey, Mathis Gerdes, in progress

Stellar streams

Gravitational waves

Delaunoy+ 2020
Uddipta Bhardwaj+, in 
progress

Interpretation of N-body 
simulations

Androniki Dimitriou+, soon

21 cm cosmology
LHC pheno fits

Fermi data
…



How can one trust results?
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Credibility of inference results can be tested

[Cole, Miller, Witte, Cai, Grootes, 
Nattino, CW 2111.08030] 46

See also Hermans, Delaunoy, Rozet, 
Wehenkel, Louppe 2110.06581

Let                                denote the

Expected coverage of the 68% and 95%



Coverage tests!
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Open source package SWYFT

Check it out on: https://github.com/undark-lab/swyft
(under heavy development)

Estimating marginals of 
interest

Coverage tests Truncation schemes
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https://github.com/undark-lab/swyft


Conclusions
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Conclusions

● Simulation-based inference (SBI) has the potential to deal with ultra-high dimensional 
inference problems.

● We discussed a few components that we found very useful in practice, and which are part of 
TMNRE

○ Neural ratio estimation offers flexibility and simplicity
○ Focus on marginal posteriors rather than the joint
○ Prior truncation

● We demonstrated that this framework is promising in tackling a wide range of astrophysical / 
cosmological data analysis problems. Domain knowledge enters the analysis in terms of 
network architectures.

○ CMB Cosmology
○ SN Cosmology
○ Strong lensing image analysis

● We provide a software implementation for TMNRE (“swyft”), which we currently use for a 
much wider range of dark-matter-related analysis problems.

50


