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Context: Global Investment in Artificial intelligence

EXHIBIT 1 | Chinese companies are actively setting the pace on Al
Share of active players in Al by country

Total estimated investments in Al start-ups ($ billion), 2011-2017
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2020: US National Science Foundation funds 7 Al institutes for $140 million

Acrobat. Hover cursor over dates below or circles to the right
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National Science Foundation (NSF) announced a $220 million investment in eleven new Art Trustworthy Al in Weather, Climate,

Intelligence (Al) Research Institutes, building on the first round of seven Al Institutes totaling $140 million and Coastal Oceanography
funded last year. (The default map view below shows all awards combined). 202 OAW‘” ds 202 T awords
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LEAD:
University of Oklahoma - Norman Campus

*LEAD ORGANIZATION M PRINCIPAL ORGANIZATIONS @ PARTNERS/COLLABORATORS

PRINCIPAL ORGANIZATIONS:

University of Oklahoma - OK

Colorado State University - CO

North Carolina State University - NC

University at Albany - NY

Texas A&M University - TX

University of Washington - WA

Del Mar College - TX

National Center for Atmospheric Research/University
Corporation for Atmospheric Research - CO

PARTNERS/COLLABORATORS:

« Google - CA

IBM (The Weather Company) - MA

Nvidia - CA

Disaster Technologies Incorporated - Washington, DC
NOAA, National Severe Storms Laboratory, Storm
Prediction Center - OK

National Hurricane Center - FL

Joint Typhoon Warning Center - MS

NOAA's Earth System Research Laboratories, Global
Systems Laboratory - CO

NOAA's National Geodetic Survey - MD

NOAA Operational Oceanographic Products and Services - MD
Cooperative Institute for Environmental Sciences (CIRES)
NOAA Global Systems Laboratory - CO

Oklahoma Climate Survey - OK

Department of Homeland Security and Emergency Services
DOT, Department of Environmental Conservation - NY

NY Thruway - NY

NY Independent System Operator - NY

NY Power Authority - NY

Texas Coastal Offices of the NWS - TX

National Park Service - DC

Texas General Land Office - TX

Texas DOT - TX

Texas Commission on Environmental Quality - TX
Nueces County Coastal Parks - TX

City of Corpus Christi - TX

g J

NSF Al Institute for Engaged Learning

NSF Al Institute for Adult Learning and
Online Education (ALOE)

USDA-NIFA Al Institute: Agricultural Al for
Transforming Workforce and Decision Support (AgAID)

USDA-NIFA Al Institute: Al Institute for
Resilient Agriculture (AlIRA)

The map reflects the approximate location of the Ins lead and principal organizations (staffing and/or activity), as well as their initial funded and unfunded partners
Note: Partners and collaborators related to an Institute may be represented with a single plot due to space limitations.
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2020: US National Science Foundation funds 7 Al institutes for $140 million

2021: 11 more institutes funded (+ $220 million)
2022: 7 more institutes funded (+ $140 million)

¢ Theme 1: Intelligent Agents for Next-Generation Cybersecurity

* Theme 2: Neural and Cognitive Foundations of Artificial Intelligence
e Theme 3: Al for Climate-Smart Agriculture and Forestry
K E BB\ « Theme 4: Al for Decision making

e Theme 5: Trustworthy Al

AN e « Theme 6: Al-Augmented Learning to Expand Education Opportunities and Improve Outcomes
Intelligence (Al) Researq
funded last year. (The

*LEAD ORGANIZATION I PRINCIPAL ORGANIZATIONS @ PARTNERS/COLLABORATORS

Matthew Schwartz
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NSF Al Institute for Research on Trustworthy Al
in Weather, Climate, and Coastal Oceanography

NSF Al Institute for Foundations of Machine Learning

USDA-NIFA Al Institute for Next Generation Food Systems

USDA-NIFA Al Institute for Future Agricultural
Resilience, Management, and Sustainability (AIFARMS)

NSF Al Institute for Student-Al Teaming

Molecule Maker Lab Institute (MMLI): NSF Al Institute
for Molecular Di hetic, and Manufacturing

NSF Al Institute for Artificial Intelligence
and Fundamental Interactions

NSF Al Insti ative Assistance and

Res sivg Interaction foy Networked Groups (AI-CARING)
Only‘institue

NSF‘AI_InsFitute for Learning-enabled .
crpyrimigrily @bout physics

NSF Al Institute for Optimization

NSF Al Institute for Intelligent Cyberinfrastructure with
Computational Learning in the Environment (ICICLE)

NSF Al Institute for Future Edge Networks
and Distributed Intelligence (AI-EDGE)

NSF Al Institute for Edge Computing
Leveraging Next Generation Networks (Athena)

NSF Al Institute for Dynamic Systems

NSF Al Institute for Engaged Learning

NSF Al Institute for Adult Learning and
Online Education (ALOE)

USDA-NIFA Al Institute: Agricultural Al for
Transforming Workforce and Decision Support (AgAID)

USDA-NIFA Al Institute: Al Institute for
Resilient Agriculture (AlIRA)




NSF Al Institute for Artificial Intelligence and
Fundamental Interactions (lAIFI /a1-fai/)

Advance physics knowledge —from the smallest building blocks of nature to the
largest structures in the universe—and galvanize Al research innovation

https://iaifi.org

IAIF| Postdoctoral Fellowship




Boston area collaboration:
e MIT + Harvard + Northeastern + Tufts

e Connections to local (and distant) Industry partners

i& \i*‘:: |
Central administration at MIT
* Dedicated space for CAIFI postdoctoral fellows

J e Encourages cross-disciplinary communication among fellows
U > %’(;» )
r:\;\41, ) J

= Microsoft

Activities and personnel distributed
* |AIFI space at each school

WY i o A6 /\SIZ%“%Q\“S“ e 5 £
- Harvard : Regular seminars, lunch talks, meetings, social hours

* Hybrid seminars
2 @ * Journal clubs
* Social events
* Active Zulip discussion forum




QA IAIFI Mission

Advance physics knowledge — from the smallest building blocks of nature to
the largest structures in the universe — and galvanize Al research innovation

O MmIT

O Harvard

@ Northeastern
@ Tufts

Training, education & outreach at Physics/Al intersection
Cultivate early-career talent (e.g. IAIFI Fellows)

Foster connections to physics facilities and industry
Build strong multidisciplinary collaborations

Advocacy for shared solutions across subfields

Y YV VYY

N .
@ Project in one thrust I I

@——@ Project in two thrusts

rousons AL e Theon =Pl Experiment D's“ Critical mass of Physics/Al expertise in Boston area




|AIFI Senior Scientists

Senior Investigators: 18 Physicists + 9 Al Experts + 11 |AIFI Affiliates = 38 senior scientists
Junior Investigators: =23 FTE PhD Students, =7 IAIFI Fellows in steady state

Pulkit Agrawal Phiala Shanahan Carlos Arguelles  Artan Sheshmani Ning Bao Shuchin Aeron
Lisa Barsotti Tracy Slatyer Demba Ba Haim Sompolinsky James Halverson Taritree Wongjirad
Isaac Chuang Tess Smidt Edo Berger Matthew Schwartz Brent Nelson
William Detmold Marin Soljacic Mike Douglas Yaron Singer Fabian Ruehle
Bill Freeman Justin Solomon Cora Dvorkin Todd Zickler
Philip Harris Washington Taylor Daniel Eisenstein
Lina Necib Max Tegmark Doug Finkbeiner
Kerstin Perez Jesse Thaler Cengiz Pehlevan Inter-institutional, inter-departmental,
Alexander Rakhlin Mike Williams cross-disciplinary
Dan Roberts
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© MIT

O Harvard

@ Northeastern
@ Tufts

7 IAIFI fellows (+3 next year)

* Inter-institutional postdocs

* 3 year positions

* |deally cross physics/ML boundaries

= Foundational Al = Physics Theory = Physics Experiment

Anna Golubeva

JAIFI Fellow, PhD S School ‘ Di Luo Siddharth Mishra-Sharma Denis Boyda Carolina Cuesta Jessie Micallef
etow Ummer Sehoo Ge Yang IAIFI Fellow, IAIFI Early Career and 7 Incoming IAIFI Fellow
Committee Member JAIFI Fellow, Speaker Selecti 4 Incoming IAIFI Fellow .

ellow, Speaker Selection IAIFI Fellow Equity Committee Member Incoming IAIFI Fellow
Theory of Deep Learning, Condensed Matter Committee Member ) ) X . i . " .
Theory particle phy. £ . N ) achine learning, particle physics
T —— based inference, probabilistic programming lattice field theory, generative models, Markov experiments, neutrinos
Chain Monte Carlo, high performance »smology and Al, ML models, statistics
condensed matter physics, high energy reinforcement learning, planning, optimal computing

physics, and quantum information science transport, robotics

+22 affiliated postdocs
+86 graduate students

“Matthew Schv.u o




IAIF]I Research

Theoretical Physics

Nuclear & Particle Physics

e String Theory/Physical Mathematics
e Astroparticle Physics

e Automated Discovery of Models

Experimental Physics
e Particle Physics Experiments
e (Gravitational Wave Interferometry
e (Multi-Messenger) Astrophysics

Foundational Al
e Symmetries & Invariance
e Speeding up Control & Inference
e Physics-Informed Architectures
e Neural Networks Theory

Lots of activities!

Physics N
Theory ‘Q‘ﬂ §

IAIFI in March 2022

“Slindations

[ IAIFI Colloquia
e Biweekly talks from leaders in Al and Physics
e Broadcast live on IAIFI YouTube Channel
e Fall 2021/Spring 2022: every other Friday at 2 pm

(" I1AIFI Fellowship Program

e Three-year postdoctoral appointment

e Freedom in pursuing research and collaborations
\__*® Applications for 2023-2025 open Summer 2022

e Take 4 classes, 1 each in the areas of Probability,
Statistics, Computation & Statistics, and Data
Analysis

e Submit and defend a PhD thesis that involves the
utilization of statistical methods in a substantial way

IAIFI Affiliate Program
e Senior researchers in the Boston area contributing to
IAIFI mission
e Must include nomination from existing IAIFI Senior
Investigator

Interdlsmpllnary PhD Program at MIT
e Physics, Statistics, and Data Science

é IAIFI Early Career and Equity Committee
Serves as advisory board to IAIFI Management on aspects
related to early career researchers and diversity, equity,
and inclusion (DElI)

e Developed a Code of Conduct for IAIFI
\__® Established and monitors anonymous form for feedback

N

J

4 IAIFI Internal Events

e Includes IAIFI Internal Discussion Seminars, Journal Club,
and social/networking events

e Open to IAIFI Investigators and affiliated junior and senior

\_ researchers in the Boston area

~

é IAIFI Computing Resources
Conducted a survey of IAIFI members regarding their
computing needs

e Plan to purchase 8 Lenovo GPU nodes, each with 4x
nVidia A100 GPUs (~$540Kk)

\__® Will be stored and operated through Harvard Cannon

)
\

)

( MITx course

e Developing digital course based on IAP course:
“Computational Data Science in Physics”

e 12 weeks of content at the undergraduate/graduate level

\_® Received a $72,000 grant from MIT for development

~



https://www.youtube.com/channel/UCueoFcGm_15kSB-wDd4CBZA

S

oo
‘ l#« ‘

¥ 0 /4
W ‘
R

AN

Research Overview

jmm

L P




- /
NN
AL : . .. "l' ! I‘ »i 101 ‘%\*‘ Z '0
. a8 f";"\'];' ‘.‘LUJD}‘ ,:- W 3 g{ " ‘ 0' : \_/
~l'-~. e \ Q‘ "0A
% 18 S / N

Foundational Al Research

v 0
pumm




Galvanize Al innovation by incorporating
physics intelligence into artificial intelligence

Symmetries & invariances Efficient algorithms
Physics-informed architectures Algorithm speed
Statistical physics Inverse problems




Foundational Al Overview

Contributing to Research Objectives:

Breaking down barriers between Al and Physics

Developing methods that can be applied to real-world tasks and generalized to previous unseen domains

Identifying ways to solve problems faster and more accurately

Intelligent Clustering for High-Energy Collider Physics:
Demba Ba, Electrical Engineering and Bioengineering,
Harvard

Group Sparse Autoencoders: Demba Ba, Electrical
Engineering and Bioengineering, Harvard

Understanding the Generalization Gap in Visual
Reinforcement Learning: Pulkit Agrawal, EECS, MIT

Learning Task Informed Abstractions: Pulkit Agrawal,
EECS, MIT

Light Field Networks: William Freeman, EECS, MIT ‘

Generalization in Overparametrized Models: Alexander
Rakhlin, Brain and Cognitive Sciences, MIT

Visual Grouping with a Field of Junctions: Todd Zickler,
Engineering and Applied Sciences, Harvard

Scalable Differentiable Models for Task-Specific Inverse
Optical Design: Todd Zickler, Engineering and Applied
Sciences, Harvard

Learning Pointcloud Representations: Pulkit Agrawal,
EECS, MIT

The Principles of Deep Learning Theory: Dan Roberts,
Physics, Salesforce (Affiliate)




Neural Network utH A W Quantum Field
(NN): \ i , Theory (QFT):

Theory of u Theory of
random I random
functions functions

Defined by their . Defined by their S[¢| = /ddrcf)(r)(D+7712)<b(<r>
construction : distribution

%= / D¢ e 51l

NN-QFT correspondence: Progress by considering one from the other’s perspective

QFT ideas for NNs: [Halverson, Maiti, Stoner] 2020 QFT ideas for NNs: [Halverson, Maiti, Stoner] 2021 NN ideas for QFTs:

t " . . [Halverson] in progress
Modeling NN Densities Symmetry-via-Duality

Building Quantum Fields out of Neurons

e Non-Gaussian phenomenological model of NN e Deduce symmetries of NN actions by study of correlations
density. computed in parameter space.

e Compute NN ensemble correlations with Feynman e Input / output symmetries of NN are analog of spacetime /
diagrams. internal symmetries in QFT.

e RG flow arises in some density models. e Both continuous and discrete symmetries,

e Agreement with NN experiments. Abelian and non-abelian.

o Reframe randomness of QFs in parameter-space;
How we build fields, not how we draw them.

o Use NNs to define Lorentz-invariant, unitary QFTs.

e Explains prevalence near-Gaussianity in QFT.

Other work progress:

[Gukov, Halverson], [Halverson, Maiti, Stoner, Schwartz]
See also: [Roberts, Yaida], [Erbin, Lahoche, Samary]



https://arxiv.org/abs/2008.08601
https://arxiv.org/abs/2106.00694

IAIFI Affiliate: Dan Roberts

With Sho Yaida (Facebook Al Research), Boris Hanin (Princeton)

THE PRINCIPLES OF The Principles of Deep Learning Theory
DEEP LEARNING

THEORY A new monograph/textbook on deep learning theory inspired by ideas from physics.
Available online now (arxiv:2106.10165), to be published by Cambridge University Press.

An Effective Theory Approach
to Understanding Neural Networks

e Puts forth a set of principles that enable us to theoretically analyze deep neural networks
of practical relevance.

e Based on the "effective theory" framework of physics, draws on (i) the Wilsonian
renormalization group, (ii) criticality and universality, and (iii) the 1/n expansion.

e Develops tools for understanding the statistics of wide and deep networks at
initialization as well as for understanding the training dynamics when learning from data.

e  Representation learning in deep networks can be understood in terms of the interactions
of neurons that occur in realistic networks.

based on research in collaboration with Boris Hanin



https://arxiv.org/abs/2106.10165
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Enable (theoretical) physics discoveries by developing
and deploying the next generation of Al technologies

Point clouds
Normalizing flows
Uncertainty quantification

Symbolic regression

Provably-exact ab-initio
theory calculations

Discovery of physical
features, symmetries,
correlations

Interpretable automated
algorithm design




Physics Theory Overview

*  New applications for ML in theoretical physics and also theoretical physics for ML. ML for ab initio calculations!

+  Examples: 1) develop ML architectures for ab initio calculations and/or the resulting datasets
2) lessons from math and physics for ML, as well as the converse.
e.g. of both: SU(N)-equivariant normalizing flows for lattice QCD

Generative Flow Models to Accelerate Lattice Quantum Field Theory Calculations:
Phiala Shanahan, Physics, MIT

Al Preconditioners for Dirac Matrix Inversion: Phiala Shanahan, Physics, MIT

Efficient Variational Calculations for Nuclear Theory with Al: Phiala Shanahan, Physics,
MIT & William Detmold, Physics, MIT

Point Cloud Learning with Energy Flow: Jesse Thaler, Physics, MIT & Justin Solomon,
EECS, MIT

Infinite Networks for Self-Generative Learning: Jim Halverson, Physics, Northeastern
Machine Learning for Topology: Knot Theory: Jim Halverson, Physics, Northeastern
NN-QFT Correspondence: Jim Halverson, Physics, Northeastern

An architecture to extract the dark matter signal: Siddharth Mishra-Sharma (Fellow),
Physics, MIT

Discovering Sparse Interpretable Dynamics from Partial Observations:
Marin Soljacic, Physics, MIT

Path-Integral Contour Deformation for Estimation of Noisy Observables in
Lattice Field Theory: William Detmold, Physics, MIT

Jet Metrics and Autoencoders: Matthew Schwartz, Physics, Harvard

Exploring Dual Moduli Spaces via Topological Data Analysis: Brent Nelson,
Physics, Northeastern

Machine-Learning Invariance & Invariants: Max Tegmark, Physics, MIT
ML and Calabi-Yau Geometry: Washington Taylor, Physics, MIT

Topological Obstructions to Autoencoding: Dan Roberts, Physics,
Salesforce

Discoveries from applying neural networks to QFT and string theory: Harold
Erbin (Postdoc), Physics, MIT




Phiala Shanahan, Daniel Hackett, Gurte

| S. Albergo (NYU, CCPP), Sébasten
Racaniére, Danilo J. Rezendg (Deeph

yle Cranmer (NYU, CCPP)

+Ref-VE)

Generative models \ Symmetry structure of the
based on normalizing flows 1 Standard Model of particle physics

Development of machine learning frameworks for
efficient sampling in lattice quantum field theory

e Series of papers developing generative flow models on compact domains, and on U(n) and SU(n) Lie group variables
e Proof-of-principle demonstration of orders-of-magnitude acceleration over traditional sampling approaches
e Roadmap to QCD for state-of-the-art nuclear/particle physics studies

o 8 Architectures for compact variables

o 8 Incorporation of gauge symmetry

o 8 Non-Abelian groups

o @ Fermions

o O Scaling to state-of-the-art, exascale hardware

[PRD 103, 074504 (2020), PRL 125, 121601 (2020), ICML, PMLR 8083-8092 (2020), 2107.00734 (2021), PRD 104, 114507 (2021),
2101.08176 (2021), 2202.11712 (2022) ]


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.074504
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.121601
https://proceedings.mlr.press/v119/rezende20a.html
https://arxiv.org/abs/2107.00734
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.114507
https://arxiv.org/abs/2101.08176
https://arxiv.org/abs/2202.11712

Neural Networks

Discoveries from applying neural networks to QFT and string theory

improvement L
<> e QFT and renormalization flow for neural networks

theory space

- 7% o (NN-QFT): RG scale = weight standard deviation
85%
68% = e Inception neural networks for algebraic topological
55% data (Hodge numbers of Calabi-Yau 3- and 4-folds)
. 45%
. o e Volume extrapolation of phase transition for 3d
RG flow I compact QED using neural networks
° °
C

)

%
A
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R T e Neural network computation of Casimir energy for 2d

- ‘i‘i@*“‘j@%\‘“’"@‘"i,\ O and 3d lattice scalar field theories
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Cohen et al [ICLR 2018]

Spherical CNNs

Hermans et al [ICML 2020]

Defferard et al [NIPS 2016, ICLR 2020]

Input graph signals Feaure o
B “

Graph signal processing

Likelihood-free inference

An architecture to extract the
dark matter signal

* Account for structure of data
domain (observations on the celestial
sphere)

* Account for physical symmetries
expected in signal

o Rotational equivariance (signal
features are similar across the sky)

o Rotational invariance (there is no noise
preferred direction)

* Infer statistically-meaningful
quantity: likelihood ratio

;’—1

Input maps g

Spherical convolutions with progressive coarsening

Gravitational lensing of background stars due to dark
matter clumps as measured by e.g. the Gaia satellite

23

S Significantly greater sensitivity to dark matter

n#(z | 6) = In .20
p(x g
2 compared to traditional methods

6

0.1
/
Global average pooling

fully-connected

Reference: Mishra-Sharma [MLST 2022; arXiv:2110.01620]







Enable (experimental) physics discoveries by developing
and deploying the next generation of Al technologies

Reinforcement learning
Optimal transport
Normalizing flows

Robust/Interpretable ML
Deep Learning Compression

Data Augmentation

Data Reconstruction Algorithms that
extract parameters from higher
dimensional information

Ultra Fast Real Time data processing
Real Time Detector Controls

Reconciling data and simulation

Discovering New Physics without an
underlying physics model

4
8 O
o B8y g

% &




Physics Experiment Overview

+ Aiming to improve the operations and enhance the physics potential of various experiments, including the Large Hadron
Collider (LHC), the Deep Underground Neutrino Experiment (DUNE), and the Laser Interferometer Gravitational Wave

Observatory (LIGO)

. Using machine learning techniques for prediction and classification across astrophysics fields

*  Applying neural network techniques for imaging and mapping in astronomy and cosmology

Robust Al for Real-Time Applications: Mike Williams, Physics, MIT

High-Dimensional Uncertainty Quantification for Collider Physics: Jesse Thaler,
Physics, MIT

Fast Machine Learning: Phil Harris, Physics, MIT
Semi-supervised Anomaly Detection for Physics Discovery: Phil Harris, Physics, MIT

Physics Factorized Al for Measurements of Fundamental Physics Properties: Phil
Harris, Physics, MIT

Using Generative Networks in the Reconstruction and Analysis of Neutrino
Interactions: Taritree Wongjirad, Physics and Astronomy, Tufts

Galaxy Surveys and CMB Foreground Removal in Cosmology: Douglas Finkbeiner,
Astronomy, Harvard

Machine Learning Classification of Optical Transients and Multi-Messenger
Astrophysics: Edo Berger, Astronomy, Harvard

Emulating Energy Injection Effects in the Early Universe: Tracy Slatyer, Physics,
MIT

Discerning Line-of-Sight Halos from Substructure with Machine Learning: Cora
Dvorkin, Physics, Harvard

Improving the Performance of the LIGO Instruments with Al, An Exploration: Lisa
Barsotti, Astrophysics and Space Research, MIT

Reconstructing the Primordial Density Field from Galaxy Redshift Surveys: Daniel
Eisenstein, Astronomy, Harvard

A Compound Poisson Generator Approach to Point Source Inference in
Astrophysics: Kerstin Perez, Physics, MIT




Semi-Supervised Anoma
Phil Harris, Sang.Eon Park, Mikaeel Y. nus, Patrick McCormack (MIT),
Matft SchwértzyBryan-Ostdich Ka raser (Harvacd)

Normalizing Flow Models & D) ‘, ' Search for new physics
to identify anomalies E ) with limited injected priors

e Approach builds on semi-supervised learning

e Exploring new ways to search for anomalous new physics
e First version of algorithm demonstrated on LHC Olympics
e Further exploration with Optimal transport ideas

-25 00 25 50 75 100




Using Generative Networks in the Reconstruction and

Analysis of Neutrino Interactions
Taritree Wongjirad (Tufts), Paul Lutkus (Tufts), Nikita Saxena (Tufts), Jared Hwang (Tufts),

Shuchin Aeron (Tufts)

from simulation

-.

from generative network

Project Goals
e Generate images of single particles
in liquid argon time projection
chambers (LArTPCs) conditioned on
particle type and momentum.

e Use the generator to improve the
reconstruction of neutrino
interactions in LArTPCs.

Demonstrated method for quantifying
quality of generated images to guide
further exploration
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Reinforcement learning (RL) agents - > “ : Squeezed light to improve LIGO
able to optimally tune systems . \ sensitivity to gravitational waves

New RL methods with potential to optimize LIGO squeezing performance over long periods of time

o 154
o ©

training visibility

o
S

5000

2 DoF training visibility

Used deep learning to understand causes of squeezing degradation on past data

Made progress in predicting squeezing levels based on a large set of auxiliary channels, selecting
those with predictive power

Built a simulation environment to train a Deep-Q-Network (DQN) RL Agent on simple versions of the
optimization problem, specifically how to optimize mirror alignment with 2 and 4 degrees of freedom

The far reaching goal is to create an agent able to observe the system and react to keep it on its
optimal state by modifying a variety of parameters

10000 15000 20000 25000 30000 35000



it Discerning Line-of-Sight Halos from
l‘@ F-I Substructure with Machine Learning

Cora Dvorkin, Arthur Tsan, Bryan Ostdiek, Cagan Sengul (Harvard)

Subhalos versus line-of-sight halos

e Direct detection of substructure is
computationally very expensive.

 log(Pso/Fig) log(Ps o/ Fro) . og(Pso/Pig)

~ :. s/ \ :“ e BELLS

. {e ‘> SLACS =
£ . ': o | : s [ eoenee ® Can we speed up the process of analyzing
= ! b | o * JVAS B1938+666 )
4 JE 2l 2 . sorsr the huge number of lensed galaxies
) / 3 .
o 1 !i ; ! : ! expected with near-future surveys?
Q 1 —1 =
= = 1{ i 0 1S — . . .
§ , b .3 o . e We can predict with high accuracy the curl

B - : I ) = . component of the deflection field caused by
0 1 2 3 0 1 2 3

halos along the line of sight for a problem
without any additional noise.

Lens redshift Lens redshift Lens redshift
fsub= 0.4% fsub= 2% rsub= 4%

Fraction of dark matter halo mass in substructure (fsub) =)




NSF Al Institute for Artificial Intelligence and
Fundamental Interactions (lAIFI /a1-fai/)

Advance physics knowledge —from the smallest building blocks of nature to the
largest structures in the universe—and galvanize Al research innovation

https://iaifi.org

IAIF| Postdoctoral Fellowship




Part 2:
Machine learning for Amplitudes

Based on

arXiv:2206.04115

Simplifying Polylogarithms with Machine Learning

Aurélien Dersy, Matthew D. Schwartz, Xiaoyuan Zhang



Machine learning has transformed collider physics

Top tagging

Jet substructure approach (2008-2017)
Mass drop, helicity angle, W subjet

rFeynnm

do/dM (fb/100 GeV)

10°

—
100 pb* [ K

1500 2000 2500 3000 3500 4000
dijet/tt invariant mass M (GeV)

After top-tagging . e

10°

10*

1000

100

do/dM (fb/100 GeV)

0.1

100 pb* .

«««««

+ 30% signal efficiency
* 1% bg efficiency
* Revolutionary at the time

1500 2000 2500 3000 3500
dijet/tt invariant mass M (GeV)

Machine learning methods are much better

Significance improvement €s/yeg
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ML requires less “thinking”
Less physical insight
Better performance

traditional
collider physics




What about the rest of hep-ph? hep-th?
What field ML make obsolete next?

* Most ML in physics is highly numerical
» Collider physics applications involve millions of events
« Data is real numbers
» Approximate answers are ok

* Most hep-ph and hep-th papers are symbolic
* Model building
« Approximate but exact solutions to some equation
* Analytic understanding of some simplified system
» Loop calculations
» Analytical computation of loops
* Numerical implementation for precision physics

Symbolic ML methods will be key
to future progress in HEP



Simplifying scattering amplitudes
e.g. Compton scattering at NLO [Lee, Schwartz, Zhang Phys.Rev.Lett. 126 (2021)]

Compute some

Feynman diagrams Reduce to iterated integrals

M g l

v

Do integrals
(not so easy)

r(s) r SN2 —_
1(3):/ dlnv/ am =2 1 2
. r(.asult. Is complicated CP 1 5 — 1=iV3
+ simplifying result ~ 1 month / / (‘_ r zl+7"’—’2) 272
2
T — lnTr (—— +In7)In(r — z;) + In(rz;) In(r — z,) /

1 : 1 72 —le(l—z1)+L12(1—rzl)—le(l—zz)-{-LiQ(l_,,2)
I(s) = —gLiz(—rs) + Lig(—7) — 51n r+ 1—8

Why is simplification important?

* Removes unphysical singularities

* Alot of physics in analytic structure

+ Simple form indicates deeper structure

« Simplification at intermediate steps make full calculation tractable
* In asense, all of science is simplification



How do we simplify polylogarithms?

Logarithm is easy: only one identity

In(zy) =Inzx +Iny

Dilogarithms have lots of identities

_ _ , . (1 72 log’(—x
(inversion) Liy(z) = —Li, (5> . %)

2

(reflection) Lis(z) = —Lis(1 —x) + % —log(z) log(1 — z)

(duplication) Lis(z) = —Liy(—x) + %Liz(ﬁ)

Lis(z) + Liz(y) + Lis (11__;;) + Lis(1 — ) + Lis (11_— ;/y) 5-term identity:

g—ln(x)ln(l —2) —In(y)In(1 - y) — In (11—_36 ) ln( — )

Lis, Lis, etc. have identities too (complete set not known)

()

1 1 2

Lis(z) = Lis (;) — < In’(~a) - % In(~2)



Problem statement:

Given some polylogarithmic expression:

—i+V/3

)

+4 (—Lig(:v) +Lis (m _“; 1) + Lig(z + 1) — Liz(—z) In(z + 1))

—4 (Liz(:z: +1)In(z +1) + élng(x +1)+ %ln(—x) In?*(z + 1))

1. What is its simplest form?
2. Does it simplify to zero?
3. What identities do we apply in what order to simplify it?

Polylogarithmic expression

Lig(%) + % lnz(—x)

Symbol

-[(1-1) @i+ [z

RL
—

Simplified polylogarithmic expression

I Transformer

Simplified Symbol

(1-2)®x

Two approaches
1. Reinforcement learning
2. Transformer networks



Reinforcement learning

* Applying identities can be viewed as moves in a game

Reflection EEE' Inversion ,3:}, Duplication EEE'
: (1 . : 7. 5
—TLix(x) = TLir(1 — x) —7Lix(x) — 7TLi; 2 —TLip(x) — TLip(—x) — Ele(x )
- internal state x
Killer Ap: AlphaZero g feward
(Deepmind, 2017) Q l environment
.
action §'l
' EAATEIAL i B
:5% "m\ """"H )c/
; & T Ny leaming rater
sl T ettt
KasWers X 25%
AAALA:AA 20% ]
. = observation

Tries action to take based on state
» Success reinforces good choices
* Learns best move given state



Reinforcement learning

1 if Ntdﬂogs < Nsﬂogs Vit <t (#dilogs goes down)
Reward 7t = 0 else

« Simple reward works better than more sophisticated ones
(depending on expression length for example)

» Analog of "taking the king” in chess
* RL learns more sophisticted value function during training

Dataset: Linear combinations of dilogarithms that reduce to O

0= 2Li(1 —x) —2Li(1 —x)
D Duplication
—2Li(x — 1) + Li(x?) — 2 Li(1 —x)

( 1 ) ) .
2 Li + Li(x“) — 2Li(1 — x)
x—1

Inversion

Generate 13,500 training expressions + 1,500 testing expressions



Reinforcement learning

Policy and value: learned by RL as neural networks

Agent: We use Trust Region Policy Optimization (TRPO)
« Ensures the policy updates stay close [Schulman et al, 2017]
« Maximizes the advantage of the new policy over the old policy
 (also tried Proximal Policy Optimization (PPO), but not as good)

Sentence embedding:
« Explored both one-hot encoding and graph neural networks

® ® O 0 o

(+
Word 4 Word 2 Word 4 Word 1
X (1141 )
— depth 1
(z)/Q\m & o
= (}/\& - ~ depth2
2 OO

i 7o
N “\l/‘ x
(-1




Percentage Solved (%)

Results

Greedy: best guess only Beam 3: try best 3 choices

Reward Agents Greedy Beam size 3
Solved (%) # Unscramble Solved (%) # Unscramble
steps steps
One-hot 50 % 5.3 78 % 14.7
No penalty
GNN 56 % 6.4 80 % 15.9
P —
One-hot 7.4 85 % 19.2
Ar; penalty
GNN 53 % 8.7 89 % 20.3
T
Random 13 % 8.7
Classical 91 % 39.3

a 60 —e— Classical algorithm
9 -#- GNN - Beam 3
$ -~ Random Agent
e} GNN - Greedy
c 40
. o
—
3 ,,,,,
c e
> s
S . ® 352
—e— Classical algorithm o DU °
20 -#- GNN - Beam 3 # P
-#-- GNN - Greedy 3 9 —”/":%:::::._ PO PO @
--#-- Random Agent e ) . & o g:z27--
1 3 5 1 3 5
Number of scrambles (truth) Number of scrambles (truth)

Does as well as classical algorithm with many fewer steps
* Has learned something!



Transformer networks

An alternative approach to simplifying polylogarithms is to translate them

Attention is all you need

A Vaswani, N Shazeer, N Parmar... - Advances in neural oceedings.neurips.cc

The dominant sequence transduction models are based on complex recurrent orconvolutional
neural networks in an encoder and decoder configuration. The best performing such ...

¢ Save Y9 Cite CCited by 43724 Related articles All 35 versions 99

« 13 cites in hep-ph
« 15 cites in hep-th

This Nondisclosure Agreement (the "Agreement") is entered into by and between __
with its principal offices at , ("Disclosing Part

y") and , located at ("Receiving Party") for the
purpose of preventing the unauthorized disclosure of Confidential Information as
defined below. The parties agree to enter into a confidential relationship conce
rning the disclosure of certain proprietary and confidential information ("Confi
dential Information"). 1. Definition of Confidential Information. For purposes o
f this Agreement, "Confidential Information" shall include all information or ma
terial that has or could have commercial value or other utility in the business
in which Disclosing Party is engaged. If Confidential Information is in written
form, the Disclosing Party shall label or stamp the materials with the word "Con
fidential" or some similar warning. If Confidential Information is transmitted o
rally, the Disclosing Party shall promptly provide writing indicating that such
oral communication constituted Confidential Information. 2. Exclusions from Conf
idential Information. Receiving Party's obligations under this Agreement do not
extend to information that is: (a) publicly known at the time of disclosure or s
ubsequently becomes publicly known through no fault of the Receiving Party; (b)
discovered or created by the Receiving Party before disclosure by Disclosing Par
ty; (c) learned by the Receiving Party through legitimate means other than from
the Disclosing Party or Disclosing Party's representatives; or (d) is disclosed
by Receiving Party with Disclosing Party's prior written approval.

GPT-3

Translate for
2nd grader

This means that if you tell anyone else
something | told you in private, | can sue
you and make you pay me lots of money. It
also means that if | tell you something in
private, | can sue you if you tell anyone
else. It also means that if | tell you
something in private and then | change my
mind and want to tell everyone else about it,
| can sue you if you tell anyone else first.



What are 5 key points I should know when studying multiple polylogarithms ?

How can you simplify dilogarithms?

There is no general way to simplify dilogarithms. However, there are some special cases where
dilogarithms can be simplified. For example, if the argument of the dilogarithm is 1, then the dilogarithm

can be simplified to O.

inf1]:= PolyLog[2, 1]

2 Hmm...
Out[ll= —
6




Transformer networks -

Probabilities

Feed
Ke!! Facts Forward
« Sequence to sequence model ) | | e -~
Multi-Head
* Encoder and Decoder structure _Foed Atention -
» Used in translation tasks n m%
- Uses attention blocks () | | [ e
Attention :ttgnti)an
X 7 L -
e J U p—)
Posilional ositiona
Encoding ®_@ ¢ l'fr:codw'lgl
Input Output
Embedding Embedding
I I
Inputs Outputs
(shifted right)

Attention allows it to appreciate context

The animal didn't cross the street because it was too tired.
L'animal n'a pas traversé la rue parce qul était trop fatigué.

The animal didn't cross the street because If was too wide.
L'animal n'a pas traversé la rue parce quellé était trop large.



How can we use transfomers?
Treat polylogarithmic expressions as sentences

English French

Data generation

« Can no longer only consider functions that simplify to zero

Z a; Liy(g;(x)) + Z [c; Lia(h — ¢; Lig(h;(z))]
Scramble W|th dilog |dent|t|es \
e.g. . N
~4Lip (22 — 2+ 1) + 3Ly (2 — 22 + 1) — 3Lip (1)
6 Lis(1 — ) Scramble -
—_— +5 Liz (42214?;11) — 4Lip(—2 — 1) — 5 Lis (557)
: 1
—4 Lip (_$2—x+1) +2Liy (z* — 22° + 32% — 2z + 1) + 6 Lip (-5) — 4 Lix(z + 2)

—3 Lis ( 5 Lis (

% +1) ) 3 Liy (2a:+1)



Transformer vs RL

 For RL, 0 is unique correct answer
RL tries to find path to O
Knows when it succeeds

« For transformer, many equivalent simple expressions
Path not determined, just result
Not guaranteed to be correct

Can be many equally simple translations

1
Input : —Liy (—22%) + Liy [ —=—
npu iy (—22%) + 12( 2x2)
: : 1
—7L12(—2$) — 7L12 (—£>
4Lip (2% — 2z + 2)
Target : 4Liy (—2* + 2z — 1)

transformer

—

Hypothesis Valid ?
—4Li, (22 — 2z + 2) Ve
—4Li, (—m) e
4Lip (—22 + 2z — 1) v
AL, <x2_;—x+2> e

1
ALio (-
2 ( z2+2x+1

)

>Beam 5




Correct prediction (%)

100 oo 100 w===c____
+ - —..-_'_—.“~—.____._>_-.~~ “““ O L I
a oSS N S A -
80 oot 80
60 See 60
40 I S - 40
20 _e- Correct simple form 20 _e- Correct simple form
Exact simple form o~ Exact simple form
0 3 5 7 9 %9 1 2 3
Number of scrambles Number of dilogarithms in output

Predicts a correct simplified answer 91% of the time!



Symbols

An alternative approach to simplifying polylogarithms is with the symbol

[Goncharov, Spradlin, Vergu, Volovich PRL 2010]
Used symbol to simplify 17 page 2-loop 6 point amplitude to a few lines

Polylogarithms are iterated integrals

V y

, _[? dx
n. ~ .
Symbol is a map that extracts the dlog forms

b
S[/ dlano---odlan] =R®---®R,

S[Lin(x)] =—(1-72)z® --®z

n—1

1
Sl—ln"az] = ---Qx
n! \ /

-
n




Symbols

Symbol satisfies the product rule (and other identities, but this is the most powerful)

* Reduces simplifying Li,(x y) to simplifying log(xy)

e.g.

S [Li2(a:) + Liy (%) + %lnz(—x)] =—[(1-2)®z]—[(1- é) Q—]+[z®@z]=0

No free lunch: integating the symbol back to polylogarithms not trivial

Polylogarithmic expression RL Simplified polylogarithmic expression
—
Lig(%) + %ln2(—x) or Liy(z)
transformer
l I Transformer
Symbol Simplified Symbol

-(1-H® i +[z®4] (l-z)®




Example symbol integration

Training data looks like this

Input symbol §; Simple expression F;

(-2 -z+1)(1—-2)+(-2*-72+1)®2z Li, ((1—z2(z+1))

T

—(—2*-z+1)Q(z+1)+z(1—2)—zQz+zR (xz+1)

—B1l-2)Qz—-6(2*+r+1)Qxz 2Li, (z%) — § Lis(z)
—40(6—2*)® (6 —2?) —3(1 —z) ® (—2°® — 22 + 3) 3Liy (—2% — 2% + 3)
3z+1)®@(—2°—22+3) -3 (z* + 22 +2) ® (—2° — 2% + 3) —31 Liy(2z — 4)
+31(56—-22)® (2 —1x) —201n? (2* — 6)

2’ —z—1

8

1 Rr—8((z+1)(z*—z-1)) Rz

1 (2
+8(1—z)R(—z*+2>—2—1)—38 Rz 4Li; (%)

z—1

8(1-—2)® (z(2®* — 2>+ + 1))




Results

c =
2 ks
O O
o o
Q D
Q Q 40 he
[ oo, D
g -0 — Bepm 5 [ g —— Beam 5 - Weight 4 ---- Beam 1 - Weight 4
S T Beam_ - _ _1 S 20 Beam5-Weight3 ---- Beam 1 - Weight 3
"""" Classical algorithm Weight 2 —— Beam 5 - Weight2  ---- Beam 1 - Weight 2
0 4 7 0 13 0 5 9 13 17 21
Number of distinct symbols in input Number of distinct symbols in input
Beam Size 1 Beam Size 5 Weight 2 Weight 3 Weight 4
Weight 2 Transformer 82% 91% Liy(z) Lis(z) Liy(z)
: . In(z) In(y) Lis(z) In(y) Lis(z) In(y)
Classical Algorithm 59% 59% In(2) Iny) In(2) Lia(2)Lin(y)
Weight 3 Transformer 78% 88% Liz(z) In(y) In(2)
In(w) In(z) In(y) In(2)
Weight 4 Transformer 80% 89%

Can simplify complicated expressions with Li,, Lis, Lis
« Limited by compute (network size, training time)



Final example

1. Scattering amplitude gives some function of GPLs with complex arguments

A e
G(0,0,l,x)+G<0,0, ﬁz,x)ﬂ}(o,o, +\/§2,x>]

fl)=4G+9 2 9

+4 l—G(—l, ~1,-1,2) + G(-1,0,-1,2) + G(0, —1,—1,z) + G(0,0,1,z) — G (0, 0,1, i 1)}

2. Express in terms of classical polylogs

+4 (—Lig(x) + Liy (x _“; 1) + Lig(z + 1) — Lig(—2) In(z + 1))

4 <L12(x +1)In(z+1) + é1n3(x +1)+ 3 In(~2) n’(a + 1))

3. Compute the symbol and simplify
Slfx)] =9(="+z+1)®@z@z+13(1-2)@zQz+4(z+1)QzQ=z

4. Integate the symbol with a transformer network

f(z) = —Lis(2®) — Lis(z%) + 4¢G;



Summary

We considered the problem of simplifying polylogs with ML

. . 1
—le (—2332) + L12 (_ﬁ)
1 —_—y 4Liy (—2%2 422 -1
—7Liy(—2z) — TLis (—2—) 2 )
xr

4Li, (22 — 2z + 2)

Reinforcement learning

* Applies identities like moves in a game
« Learns which identity to apply

Transformer network
» Guesses the answer like in langauge translation
« Can be used to integrate the symbol
» Powerful method works for high-weight polylogs

Methods around 90% accurate
Perform non-trivial task better than any public algorithm



Outlook

Numeric

Most ML in
high-energy

fUtUre

« Machine learning has revolutionaized data-driven particle physics
» Most work in high energy theory is symbolic
* Machine learning can help with that too!



