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2021: 11 more institutes funded (+ $220 million)
2022: 7 more ins@tutes funded (+ $140 million)

2020: US Na@onal Science Founda@on funds 7 AI ins@tutes for $140 million

Only institue 
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MIT

Harvard

Tufts

North-
eastern

Central administra=on at MIT
• Dedicated space for CAIFI postdoctoral fellows
• Encourages cross-disciplinary communica=on among fellows

Regular seminars, lunch talks, mee=ngs, social hours
• Hybrid seminars
• Journal clubs
• Social events
• Ac=ve Zulip discussion forum

Activities and personnel distributed
• IAIFI space at each school

Boston area collabora@on:
• MIT + Harvard  + Northeastern + TuHs
• Connec@ons to local (and distant) Industry partners



IAIFI Mission
Advance physics knowledge — from the smallest building blocks of nature to
the largest structures in the universe — and galvanize AI research innovation

➢ Training, education & outreach at Physics/AI intersection
➢ Cultivate early-career talent (e.g. IAIFI Fellows)
➢ Foster connections to physics facilities and industry
➢ Build strong multidisciplinary collaborations
➢ Advocacy for shared solutions across subfields

Critical mass of Physics/AI expertise in Boston area



IAIFI Senior Scien,sts

Senior Inves+gators: 18 Physicists + 9 AI Experts + 11 IAIFI Affiliates = 38 senior scien,sts
Junior Inves+gators: ≈23 FTE PhD Students, ≈7 IAIFI Fellows in steady state 

Pulkit Agrawal 
Lisa Barsotti 

Isaac Chuang 
William Detmold 

Bill Freeman 
Philip Harris 
Lina Necib

Kerstin Perez
Alexander Rakhlin

Dan Roberts

Phiala Shanahan 
Tracy Slatyer
Tess Smidt

Marin Soljacic 
Justin Solomon 

Washington Taylor
Max Tegmark 
Jesse Thaler 
Mike Williams 

Carlos Argüelles
Demba Ba 
Edo Berger

Mike Douglas
Cora Dvorkin 

Daniel Eisenstein 
Doug Finkbeiner 
Cengiz Pehlevan

Ning Bao
James Halverson 

Brent Nelson 
Fabian Ruehle

Shuchin Aeron
Taritree Wongjirad 

Inter-institutional, inter-departmental,
cross-disciplinary

Artan Sheshmani
Haim Sompolinsky
Matthew Schwartz 

Yaron Singer 
Todd Zickler 
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Quantum 
computation

Sta=s=cal 
mechanics 

for AI

Supermassive 
black holes

(EHT) Nonconvex 
optimization 

methods

Black hole 
mergers
(LIGO)

Lattice QCD
Collider physics

String theory

Cosmology

Quantum Field 
Theory

Founda=on
al AI
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The Rise of AI2:  Ab Initio Artificial Intelligence
Can we naturally incorporate first principles and best practices from physics into ML architectures?  
Symmetries, scaling relations, limiting behaviors, factorization, unit tests, systematic uncertainties, …

E.g. Energy Flow Networks
[Komiske, Metodiev, Thaler, JHEP 2019]

Energy Weighting for
Infrared/Collinear Safety

Indistinguishability of
Identical Particles

!p = {E, n̂x, n̂y, n̂z}
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J = { !p1, !p2, !p3, . . . , !pN}
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QM: 

QFT:  

4 0 6 0 8 1 0

Learning the fractal behavior and
singularity structure of QCD from

training data of quark/gluon jets:

[see also Zaheer, Kottur, Ravanbakhsh,
Poczos, Salakhutdinov, Smola, NIPS 2017]
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Matthew Schwartz

7 IAIFI fellows (+3 next year) 
• Inter-institutional postdocs
• 3 year positions
• Ideally cross physics/ML boundaries

+22 affiliated postdocs
+86 graduate students



IAIFI in March 2022

IAIFI Research
Theoretical Physics
● Nuclear & Particle Physics
● String Theory/Physical Mathematics
● Astroparticle Physics
● Automated Discovery of Models

Experimental Physics
● Particle Physics Experiments
● Gravitational Wave Interferometry
● (Multi-Messenger) Astrophysics

Foundational AI
● Symmetries & Invariance
● Speeding up Control & Inference
● Physics-Informed Architectures
● Neural Networks Theory

IAIFI Fellowship Program
● Three-year postdoctoral appointment
● Freedom in pursuing research and collaborations
● Applications for 2023-2025 open Summer 2022

IAIFI Affiliate Program
● Senior researchers in the Boston area contributing to 

IAIFI mission
● Must include nomination from existing IAIFI Senior 

Investigator

IAIFI Colloquia
● Biweekly talks from leaders in AI and Physics
● Broadcast live on IAIFI YouTube Channel
● Fall 2021/Spring 2022: every other Friday at 2 pm

Interdisciplinary PhD Program at MIT
● Physics, Statistics, and Data Science
● Take 4 classes, 1 each in the areas of Probability, 

Statistics, Computation & Statistics, and Data 
Analysis

● Submit and defend a PhD thesis that involves the 
utilization of statistical methods in a substantial way

IAIFI Early Career and Equity Committee
● Serves as advisory board to IAIFI Management on aspects 

related to early career researchers and diversity, equity, 
and inclusion (DEI)

● Developed a Code of Conduct for IAIFI
● Established and monitors anonymous form for feedback

IAIFI Internal Events
● Includes IAIFI Internal Discussion Seminars, Journal Club, 

and social/networking events
● Open to IAIFI Investigators and affiliated junior and senior 

researchers in the Boston area

IAIFI Computing Resources
● Conducted a survey of IAIFI members regarding their 

computing needs 
● Plan to purchase 8 Lenovo GPU nodes, each with 4x 

nVidia A100 GPUs (~$540k)
● Will be stored and operated through Harvard Cannon

MITx course
● Developing digital course based on IAP course: 

“Computational Data Science in Physics”
● 12 weeks of content at the undergraduate/graduate level
● Received a $72,000 grant from MIT for development

Lots of ac)vi)es!

https://www.youtube.com/channel/UCueoFcGm_15kSB-wDd4CBZA


Research Overview



Foundational AI Research



Symmetries & invariances Efficient algorithms 

Physics-informed architectures Algorithm speed

Statistical physics

Neural network dynamics

Galvanize AI innovation by incorporating
physics intelligence into artificial intelligence

Field theory techniques

Inverse problems



Foundational AI Overview
Contributing to Research Objectives:
• Breaking down barriers between AI and Physics
• Developing methods that can be applied to real-world tasks and generalized to previous unseen domains
• Identifying ways to solve problems faster and more accurately

• Intelligent Clustering for High-Energy Collider Physics: 
Demba Ba, Electrical Engineering and Bioengineering, 
Harvard

• Group Sparse Autoencoders: Demba Ba, Electrical 
Engineering and Bioengineering, Harvard

• Understanding the Generalization Gap in Visual 
Reinforcement Learning: Pulkit Agrawal, EECS, MIT

• Learning Task Informed Abstractions: Pulkit Agrawal, 
EECS, MIT

• Light Field Networks: William Freeman, EECS, MIT

• Generalization in Overparametrized Models: Alexander 
Rakhlin, Brain and Cognitive Sciences, MIT

• Visual Grouping with a Field of Junctions: Todd Zickler, 
Engineering and Applied Sciences, Harvard

• Scalable Differentiable Models for Task-Specific Inverse 
Optical Design: Todd Zickler, Engineering and Applied 
Sciences, Harvard

• Learning Pointcloud Representations: Pulkit Agrawal, 
EECS, MIT

• The Principles of Deep Learning Theory: Dan Roberts, 
Physics, Salesforce (Affiliate)



NN-QFT correspondence: Progress by considering one from the other’s perspective

Neural Network 
(NN): 

Theory of
random

functions

Defined by their 
construction

IAIFI Senior Investigator: Jim Halverson

Quantum Field 
Theory (QFT): 

Theory of
random

functions

Defined by their 
distribution

Other work progress:
[Gukov, Halverson],  [Halverson, Maiti, Stoner, Schwartz]

See also: [Roberts, Yaida], [Erbin, Lahoche, Samary]

QFT ideas for NNs:  [Halverson, Maiti, Stoner] 2020
Modeling NN Densities

● Non-Gaussian phenomenological model of NN 
density.

● Compute NN ensemble correlations with Feynman 
diagrams.

● RG flow arises in some density models.
● Agreement with NN experiments.

QFT ideas for NNs:            [Halverson, Maiti, Stoner] 2021
Symmetry-via-Duality

● Deduce symmetries of NN actions by study of correlations 
computed in parameter space.

● Input / output symmetries of NN are analog of spacetime / 
internal symmetries in QFT.

● Both continuous and discrete symmetries,
Abelian and non-abelian.

NN ideas for QFTs:        [Halverson] in progress
Building Quantum Fields out of Neurons

● Reframe randomness of QFs in parameter-space;
How we build fields, not how we draw them.

● Use NNs to define Lorentz-invariant, unitary QFTs.
● Explains prevalence near-Gaussianity in QFT.

https://arxiv.org/abs/2008.08601
https://arxiv.org/abs/2106.00694


The Principles of Deep Learning Theory

A new monograph/textbook on deep learning theory inspired by ideas from physics.
Available online now (arxiv:2106.10165), to be published by Cambridge University Press.

● Puts forth a set of principles that enable us to theoretically analyze deep neural networks 
of practical relevance.

● Based on the "effective theory" framework of physics, draws on (i) the Wilsonian 
renormalization group, (ii) criticality and universality, and (iii) the 1/n expansion. 

● Develops tools for understanding the statistics of wide and deep networks at 
initialization as well as for understanding the training dynamics when learning from data.

● Representation learning in deep networks can be understood in terms of the interactions 
of neurons that occur in realistic networks.

IAIFI Affiliate:  Dan Roberts
With Sho Yaida (Facebook AI Research), Boris Hanin (Princeton)

https://arxiv.org/abs/2106.10165


Physics Theory Research



Enable (theoretical) physics discoveries by developing 
and deploying the next generation of AI technologies

Point clouds

Normalizing flows

Uncertainty quantification

Symbolic regression

Provably-exact ab-initio 
theory calculations

Discovery of physical 
features, symmetries, 
correlations

Interpretable automated 
algorithm design



• Discovering Sparse Interpretable Dynamics from Partial Observations: 
Marin Soljacic, Physics, MIT

• Path-Integral Contour Deformation for Estimation of Noisy Observables in 
Lattice Field Theory: William Detmold, Physics, MIT

• Jet Metrics and Autoencoders: Matthew Schwartz, Physics, Harvard

• Exploring Dual Moduli Spaces via Topological Data Analysis: Brent Nelson, 
Physics, Northeastern

• Machine-Learning Invariance & Invariants: Max Tegmark, Physics, MIT

• ML and Calabi-Yau Geometry: Washington Taylor, Physics, MIT

• Topological Obstructions to Autoencoding: Dan Roberts, Physics, 
Salesforce

• Discoveries from applying neural networks to QFT and string theory: Harold 
Erbin (Postdoc), Physics, MIT

• Generative Flow Models to Accelerate Lattice Quantum Field Theory Calculations: 
Phiala Shanahan, Physics, MIT

• AI Preconditioners for Dirac Matrix Inversion: Phiala Shanahan, Physics, MIT

• Efficient Variational Calculations for Nuclear Theory with AI: Phiala Shanahan, Physics, 
MIT & William Detmold, Physics, MIT

• Point Cloud Learning with Energy Flow: Jesse Thaler, Physics, MIT & Justin Solomon, 
EECS, MIT

• Infinite Networks for Self-Generative Learning: Jim Halverson, Physics, Northeastern

• Machine Learning for Topology: Knot Theory: Jim Halverson, Physics, Northeastern

• NN-QFT Correspondence: Jim Halverson, Physics, Northeastern

• An architecture to extract the dark matter signal: Siddharth Mishra-Sharma (Fellow), 
Physics, MIT

Physics Theory Overview
• New applications for ML in theoretical physics and also theoretical physics for ML. ML for ab initio calculations!

• Examples: 1) develop ML architectures for ab initio calculations and/or the resulting datasets                   
2) lessons from math and physics for ML, as well as the converse.
e.g. of both: SU(N)-equivariant normalizing flows for lattice QCD



● Series of papers developing generative flow models on compact domains, and on U(n) and SU(n) Lie group variables 
● Proof-of-principle demonstration of orders-of-magnitude acceleration over traditional sampling approaches 
● Roadmap to QCD for state-of-the-art nuclear/particle physics studies

○ 🤵 Architectures for compact variables
○ 🤵 Incorporation of gauge symmetry
○ 🤵 Non-Abelian groups
○ 🤵 Fermions
○ ☐ Scaling to state-of-the-art, exascale hardware

Development of machine learning frameworks for
efficient sampling in lattice quantum field theory 

Generative models
based on normalizing flows

Generative Flow Models to Accelerate Lattice 
Quantum Field Theory Calculations

Symmetry structure of the
Standard Model of particle physics

[PRD 103, 074504 (2020), PRL 125, 121601 (2020), ICML, PMLR 8083-8092 (2020), 2107.00734 (2021), PRD 104, 114507 (2021), 
2101.08176 (2021), 2202.11712 (2022) ]

Phiala Shanahan, Daniel Hackett, Gurtej Kanwar (MIT), Denis Boyda (MIT & ANL), Michael S. Albergo (NYU, CCPP), Sébasten 
Racanière, Danilo J. Rezende (DeepMind), Julian M. Urban (U. Heidelberg, ITP), Kyle Cranmer (NYU, CCPP)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.074504
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.121601
https://proceedings.mlr.press/v119/rezende20a.html
https://arxiv.org/abs/2107.00734
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.114507
https://arxiv.org/abs/2101.08176
https://arxiv.org/abs/2202.11712


● QFT and renormalization flow for neural networks 
(NN-QFT): RG scale = weight standard deviation

● Inception neural networks for algebraic topological 
data (Hodge numbers of Calabi-Yau 3- and 4-folds) 

● Volume extrapolation of phase transition for 3d 
compact QED using neural networks

● Neural network computation of Casimir energy for 2d 
and 3d lattice scalar field theories

Discoveries from applying neural networks to QFT and string theory

Neural Networks

IAIFI Postdoc: Harold Erbin

QFT and String Theory

improvement



IAIFI Fellow:  Siddharth Mishra-Sharma

Gravitational lensing of  background stars due to dark 
matter clumps as measured by e.g. the Gaia satellite

Spherical CNNs

Graph signal processing

Likelihood-free inference

Cohen et al [ICLR 2018]

Hermans et al [ICML 2020]

Defferard et al [NIPS 2016, ICLR 2020]

★ Account for structure of data 
domain (observations on the celestial 
sphere)

★ Account for physical symmetries
expected in signal

○ Rotational equivariance (signal 
features are similar across the sky)

○ Rotational invariance (there is no 
preferred direction)

★ Infer statistically-meaningful
quantity: likelihood ratio

Significantly greater sensitivity to dark matter
compared to traditional methods

Reference: Mishra-Sharma [MLST 2022; arXiv:2110.01620]

An architecture to extract the 
dark matter signal



Physics Experiment Research



Reinforcement learning

Optimal transport

Normalizing flows

Robust/Interpretable ML

Deep Learning Compression

Data Augmentation

Data Reconstruction Algorithms that 
extract parameters from higher 
dimensional information

Ultra Fast Real Time data processing

Real Time Detector Controls

Reconciling data and simulation 

Discovering New Physics without an 
underlying physics model

Enable (experimental) physics discoveries by developing 
and deploying the next generation of AI technologies



• Machine Learning Classification of Optical Transients and Multi-Messenger 
Astrophysics: Edo Berger, Astronomy, Harvard

• Emulating Energy Injection Effects in the Early Universe: Tracy Slatyer, Physics, 
MIT

• Discerning Line-of-Sight Halos from Substructure with Machine Learning: Cora 
Dvorkin, Physics, Harvard

• Improving the Performance of the LIGO Instruments with AI, An Exploration: Lisa 
Barsotti, Astrophysics and Space Research, MIT

• Reconstructing the Primordial Density Field from Galaxy Redshift Surveys: Daniel 
Eisenstein, Astronomy, Harvard

• A Compound Poisson Generator Approach to Point Source Inference in 
Astrophysics: Kerstin Perez, Physics, MIT

Physics Experiment Overview
• Aiming to improve the operations and enhance the physics potential of various experiments, including the Large Hadron 

Collider (LHC), the Deep Underground Neutrino Experiment (DUNE), and the Laser Interferometer Gravitational Wave 
Observatory (LIGO)

• Using machine learning techniques for prediction and classification across astrophysics fields

• Applying neural network techniques for imaging and mapping in astronomy and cosmology 

• Robust AI for Real-Time Applications: Mike Williams, Physics, MIT

• High-Dimensional Uncertainty Quantification for Collider Physics: Jesse Thaler, 
Physics, MIT

• Fast Machine Learning: Phil Harris, Physics, MIT

• Semi-supervised Anomaly Detection for Physics Discovery: Phil Harris, Physics, MIT

• Physics Factorized AI for Measurements of Fundamental Physics Properties: Phil 
Harris, Physics, MIT

• Using Generative Networks in the Reconstruction and Analysis of Neutrino 
Interactions: Taritree Wongjirad, Physics and Astronomy, Tufts

• Galaxy Surveys and CMB Foreground Removal in Cosmology: Douglas Finkbeiner, 
Astronomy, Harvard



● Approach builds on semi-supervised learning
● Exploring new ways to search for anomalous new physics
● First version of algorithm demonstrated on LHC Olympics
● Further exploration with Optimal transport ideas

New approach to search for anomalous physics models 

Semi-Supervised Anomaly Detection for Physics Discovery
Phil Harris, Sang Eon Park, Mikaeel Yunus, Patrick McCormack (MIT), 

Matt Schwartz, Bryan Ostdiek, Katie Fraser (Harvard)

Search for new physics 
with limited injected priors

Normalizing Flow Models
to identify anomalies



Project Goals
● Generate images of single particles 

in liquid argon time projection 
chambers (LArTPCs) conditioned on 
particle type and momentum.

● Use the generator to improve the 
reconstruction of neutrino 
interactions in LArTPCs.

Demonstrated method for quantifying 
quality of generated images to guide 
further exploration

Using Generative Networks in the Reconstruction and 
Analysis of Neutrino Interactions

Taritree Wongjirad (Tufts), Paul Lutkus (Tufts), Nikita Saxena (Tufts), Jared Hwang (Tufts), 
Shuchin Aeron (Tufts)

from simulation from generative network



New RL methods with potential to optimize LIGO squeezing performance over long periods of time

● Used deep learning to understand causes of squeezing degradation on past data
● Made progress in predicting squeezing levels based on a large set of auxiliary channels, selecting 

those with predictive power
● Built a simulation environment to train a Deep-Q-Network (DQN) RL Agent on simple versions of the 

optimization problem, specifically how to optimize mirror alignment with 2 and 4 degrees of freedom
● The far reaching goal is to create an agent able to observe the system and react to keep it on its 

optimal state by modifying a variety of parameters

Reinforcement learning (RL) agents 
able to optimally tune systems

Improving the Performance of the
LIGO Instruments with AI

Squeezed light to improve LIGO 
sensitivity to gravitational waves

Lisa Barsotti, Christopher Whittle, Dhruva Ganapathy, Ge Yang, Pulkit Agrawal, Matthew Evans (MIT)



● Direct detection of substructure is 
computationally very expensive.

● Can we speed up the process of analyzing 
the huge number of lensed galaxies
expected with near-future surveys?

● We can predict with high accuracy the curl 
component of the deflection field caused by 
halos along the line of sight for a problem 
without any additional noise.

Discerning Line-of-Sight Halos from
Substructure with Machine Learning

Cora Dvorkin, Arthur Tsan, Bryan Ostdiek, Cagan Sengul (Harvard)

Subhalos versus line-of-sight halos

Fraction of dark matter halo mass in substructure (fsub) 
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Part 2:
Machine learning for Amplitudes

arXiv:2206.04115

Based on 



Machine learning has transformed collider physics
Top tagging
• Jet substructure approach (2008-2017)
• Mass drop, helicity angle, W subjet

• 30% signal efficiency
• 1% bg efficiency
• Revolutionary at the time

best jet subsubstructure
algorihm

Machine learning methods are much better

• ML requires less “thinking”
• Less physical insight
• Better performance

traditional 
collider physics



What about the rest of hep-ph? hep-th?
What field ML make obsolete next?

• Most ML in physics is highly numerical
• Collider physics applications involve millions of events
• Data is real numbers
• Approximate answers are ok

• Most hep-ph and hep-th papers are symbolic
• Model building
• Approximate but exact solutions to some equation
• Analytic understanding of some simplified system
• Loop calculations

• Analytical computation of loops
• Numerical implementation for precision physics

Symbolic ML methods will be key 
to future progress in HEP



Simplifying scattering amplitudes
e.g. Compton scattering at NLO [Lee, Schwartz, Zhang Phys.Rev.Lett. 126 (2021)]

Compute some 
Feynman diagrams Reduce to iterated integrals

Do integrals
(not so easy)

• result is complicated
• simplifying result ~ 1 month

Why is simplification important?
• Removes unphysical singularities
• A lot of physics in analytic structure
• Simple form indicates deeper structure
• Simplification at intermediate steps make full calculation tractable
• In a sense, all of science is simplification



How do we simplify polylogarithms?

Logarithm is easy: only one identity

Dilogarithms have lots of identities

5-term identity:

Li3, Li4, etc. have identities too (complete set not known) 



Problem statement:
Given some polylogarithmic expression:

1. What is its simplest form?
2. Does it simplify to zero? 
3. What identities do we apply in what order to simplify it?

Two approaches
1. Reinforcement learning
2. Transformer networks



Reinforcement learning
• Applying identities can be viewed as moves in a game

Killer Ap: AlphaZero 
(Deepmind, 2017)

Tries action to take based on state
• Success reinforces good choices
• Learns best move given state



Reinforcement learning

Reward

• Simple reward works better than more sophisticated ones
(depending on expression length for example)

• Analog of "taking the king” in chess
• RL learns more sophisticted value function during training

Dataset: Linear combinations of dilogarithms that reduce to 0

0=

Generate 13,500 training expressions + 1,500 testing expressions

(# dilogs goes down)



Sentence embedding:
• Explored both one-hot encoding and graph neural networks

Reinforcement learning
Policy and value: learned by RL as neural networks

Vφ,θ(s)

Agent: We use Trust Region Policy Optimization (TRPO)
• Ensures the policy updates stay close 
• Maximizes the advantage of the new policy over the old policy
• (also tried Proximal Policy Optimization (PPO), but not as good)

[Schulman et al, 2017]

πφ,θ(a|s)



Results

Greedy: best guess only Beam 3: try best 3 choices

Does as well as classical algorithm with many fewer steps
• Has learned something! 



Transformer networks

An alternative approach to simplifying polylogarithms is to translate them

This means that if you tell anyone else 
something I told you in private, I can sue 
you and make you pay me lots of money. It 
also means that if I tell you something in 
private, I can sue you if you tell anyone 
else. It also means that if I tell you 
something in private and then I change my 
mind and want to tell everyone else about it, 
I can sue you if you tell anyone else first.

GPT-3

Translate for
2nd grader

• 13 cites in hep-ph
• 15 cites in hep-th



How can you simplify dilogarithms?

There is no general way to simplify dilogarithms. However, there are some special cases where 
dilogarithms can be simplified. For example, if the argument of the dilogarithm is 1, then the dilogarithm 
can be simplified to 0.

Hmm...



Attention allows it to appreciate context

Key Facts
• Sequence to sequence model
• Encoder and Decoder structure
• Used in translation tasks
• Uses attention blocks

Transformer networks



How can we use transfomers?

Treat polylogarithmic expressions as sentences

English French

Data generation

• Can no longer only consider functions that simplify to zero

Scramble with dilog identities

e.g.

Scramble



Transformer vs RL
• For RL, 0 is unique correct answer

• RL tries to find path to 0
• Knows when it succeeds

• For transformer, many equivalent simple expressions
• Path not determined, just result
• Not guaranteed to be correct

transformer

• Can be many equally simple translations

Beam 5



Results

Predicts a correct simplified answer 91% of the time!



Symbols

An alternative approach to simplifying polylogarithms is with the symbol

[Goncharov, Spradlin, Vergu, Volovich PRL 2010] 
• Used symbol to simplify 17 page 2-loop 6 point amplitude to a few lines

Symbol is a map that extracts the dlog forms 

Polylogarithms are iterated integrals

etc.



Symbols

Symbol satisfies the product rule (and other identities, but this is the most powerful)

• Reduces simplifying Lin(x y) to simplifying log(xy)

e.g.

No free lunch: integating the symbol back to polylogarithms not trivial

or 
transformer



Example symbol integration
Training data looks like this



Results

Can simplify complicated expressions with Li2, Li3, Li4,...
• Limited by compute (network size, training time)



Final example

1. Scattering amplitude gives some function of GPLs with complex arguments

2. Express in terms of classical polylogs

3. Compute the symbol and simplify

4. Integate the symbol with a transformer network

✓



Summary
We considered the problem of simplifying polylogs with ML

• Reinforcement learning
• Applies identities like moves in a game
• Learns which identity to apply 

• Transformer network
• Guesses the answer like in langauge translation 
• Can be used to integrate the symbol
• Powerful method works for high-weight polylogs

• Methods around 90% accurate
• Perform non-trivial task better than any public algorithm



Outlook

Symbolic problems

Most ML in 
high-energy

Hep-ph

Hep-th

Numerical problems
future

• Machine learning has revolutionaized data-driven particle physics
• Most work in high energy theory is symbolic
• Machine learning can help with that too!

ML

ML


