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T'oday, we will talk about

Human vs Machine Learning
Learning by example
Imagining new possibilities
What does the Al really learn?

My aim 18
if you already use ML, make you think a bit differently
if you don’t, motivate you to have a closer look



Human vs Machine Learning



Human learning
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VERY IMPRESSIVE, YET
human learning is limited by
our personal viewpoint,
our collective intelligence (newspeak?)
& our inherent capacity to process information
(amount , speed, level of detail)

ON THE OTHER HAND
the ultimate limitations of machine learning
are unknown (if they do exist)
CRUE GREU IR BRE A TR
Quantum Computing, Neurophotonics...




Machine learning

repeat and improve on a task
SUPERVISED MACHINE LEARNING

predict the evolution of a situation
RECURRENT LEARNING

discover unknown relations
CLUSTERING/UNSUPERVISED

choose the option that maximises return
REINFORCEMENT LEARNING

imagine new possibilities
GENERATIVE Al
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Nowadays, Machine Learning is in the middle of a revolution:

processing speed and storing capacity have increased enormously but
more importantly the way machines learn has changed

TRADITIONALLY if something is in the way is True:

stop_moving()
learning was limited to lines o else:

= continue _moving()
code we (humans) were writin
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A new way of thinking: Neural Networks

Structures made of units called neurons
and organised by layers

inputs a outputs

The network learns from data with no structured instructions

Neural networks are able to explore relations between inputs and
outputs which cannot be contained in lines of codes
their degree of expressivity is immense
and it is extremely fast
built from simple units and in a layered architecture



This technology is truly disruptive

we are unable to predict

how fast is going to ARTIFICIAL INTELLIGENCE
evolve and the extent of A programme that can feel, reason,
its app]ications act and adapt to the environment

MACHINE LEARNING
Algorithms which improve as they are
exposed to more data

new algorithms and
applications appear
every day, and this
tendency does not
seem to slow down



n | Lcarning by example:

r Supervised ML

repeat and improve on a task

. |
-
)
» ' .
-

o 000"
: Q0 5\



A basic task: good or bad?

Is it a crocodile?
Yes /No answer




A basic task: good or bad?

Is it a crocodile?
Yes /No answer
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A lot of ML in Particle Physics is answering YES/NO questions

Is it DM?

Background rejection

Isita W?
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mostly using Neural Networks to deal with images (CNNs



A lot of ML in Particle Physics is answering YES/NO questions

Isita W?

Is it a Higgs?

Is it DM?
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Going further

| Imagine new possibilities

i

Here be dragons!



What if we didn’t ask for an outcome?

Supervised learning input-> predict output
what if we just asked “look at this!” with no determined output?
GANSs (Generative Adversarial Networks)

and VAEs (Variational AutoEncoders)
In CNNs, benchmarks were cats/dogs and hand-written digits (MNIST)

Here, human faces
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Supervised learning input-> predict output
what if we just asked ‘look at this!” with no determined output?
GANSs (Generative Adversarial Networks)

and VAEs (Variational AutoEncoders)
In CNNs, benchmarks were cats/dogs and hand-written digits (MNIST)

Here, human faces

STEP 1 - ‘LEARN’ what is a human face

b
N

-
g
-
G
B

Transform them
Take face images: x in complicated ways Create an avatar: X’

Doing this many times, while the DISCRIMINATOR says:
“You are going in the right direction’, “You are completely lost!’



What if we didn’t ask for an outcome?

Supervised learning input-> predict output
what if we just asked “look at this!” with no determined output?
GANSs (Generative Adversarial Networks)

and VAEs (Variational AutoEncoders)
In CNNs, benchmarks were cats/dogs and hand-written digits (MNIST)

Here, human faces

STEP 2 - AFTER MANY ITERATIONS...

- —
SR %

</

When the avatars are indistinguishable to the
DISCRIMINATOR, game is over



What if we didn’t ask for an outcome?

Supervised learning input-> predict output
what if we just asked “look at this!” with no determined output?
GANSs (Generative Adversarial Networks)

and VAEs (Variational AutoEncoders)
In CNNs, benchmarks were cats/dogs and hand-written digits (MNIST)

Here, human faces

STEP 3 - CREATE NEW POSSIBILITIES

AKX D
LR g X5 X

oy ":‘ :_ :':'}:‘73) ':'
o T S %
Ty | XSRS ]

This woman does not exist. It has been generated from noise.
The NN has learnt the concept of ‘human face” and now can
create human faces from noise



What if we didn’t ask for an outcome?

Application I: Once it has learnt a type of phenomena, it will
reconstruct well any new similar phenomena
This can be used as a way to detect unknown anomalies

EXAMPLE - ANOMALY DETECTION with Khosa and Soughton 2203.03669

SMvs EFT

s SM
. EFT

N —
QL < |

N\ \ ;‘A A‘\o

PDF

0086
R

Ask to look only to
Standard Model Learns to ID outliers

(‘normal’) events (‘New Physics’)



What if we didn’t ask for an outcome?

Application II : Generative Al can be used to produce new situations
To cover the parameter space of possibilities e.g. faces consistent with
the laws it has learnt

EXAMPLE - ECOLOGICAL INTERACTIONS
with Ecology experts Methods in Ecology and Evolution (2022)

The landscape where I live is semi-desertic
Among plant species, competition for
resources is fierce, and co-existence rules are
complex
In our Physics language, higher-order
interactions are important

From people at the Research Centre for Desertification, we looked
at such an eco-system and use GenAl to guide re-population efforts



What if we didn’t ask for an outcome?

Application II : Generative Al can be used to produce new situations
To cover the parameter space of possibilities e.g. faces consistent with
the laws it has learnt

EXAMPLE - ECOLOGICAL INTERACTIONS
with Ecology experts Methods in Ecology and Evolution (2022)
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We fed a VAE with the examples of species co-existence until
reaching good accuracy



What if we didn’t ask for an outcome?

Application II : Generative Al can be used to produce new situations

To cover the parameter space of possibilities e.g. faces consistent with
the laws it has learnt

EXAMPLE - ECOLOGICAL INTERACTIONS
with Ecology experts Methods in Ecology and Evolution (2022)

Pree SN v
% ‘ />
JEERSK A 8T

[
.
4

Once trained, we could ask lots of non-trivial questions, e.g.

given a patch with species X, what are the most varied and
compatible patches



= Where is the bunny?

What is the Al really learning?




Why are NNs so good at learning?

f sma Good at handling large amounts of data:
needle in a haystack
Medium NN The NN structure (layers, 0/1 gates) allows a

—-—--—-
-
-

o Smallnn high representation power with moderate

amm -
-
-
-
-
-
-
-
-

Performance

Z il computational demands, e.g. allows
- (e.g. logistic reg) . s
oS parallelisation, use of GPUs...
[t scales better than other learning methods
-

Amount of Data (hke SVMS)
High-bias low-variance, 1803.08823

Good at learning: ability to learn with little domain knowledge
That’s something physicists (as humans) are good at
(Physics -> other things)

DNNs are good at this too, they are able to take large streams of data
and learn features with little guidance, work like black boxes



What's wrong with blackboxes?
Only open if a disaster happened

If it works, why fix it?
DNN is very powerful, in a way that can be
quantified and tensioned against human
performance or other techniques

EXAMPLE - AUTOMATIC DETECTION OF SEISMICITY

Tomography

Easting 177/
TOOO,

20 Soocooo g 70000

a

Vpkmis) /1™ »

(wy) yd

8.2

7.4

6.5

with Seismology experts
Seismological Research Letters (2022) petineadipl s

47 Qcean floor (~4500 m b.s.I)



Ny ol : . ;
A e I What's wrong with blackboxes:

. If they do work, and help solve problems?

The lack of understanding hurts our pride as scientists
* our job is to understand as much as we humanly can

“If you think you understand quantum mechanics, you don’t understand
quantum mechanics” R. Feynman, The Character of Physical Law
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The lack of understanding hurts our pride as scientists
* our job is to understand as much as we humanly can

“If you think you understand quantum mechanics, you don’t understand
quantum mechanics” R. Feynman, The Character of Physical Law

. Any efforts we do to express the workings of NNs from different
viewpoints may lead to new ideas for machine learning



What's wrong with blackboxes?

If they do work, and help solve problems?

The lack of understanding hurts our pride as scientists
* our job is to understand as much as we humanly can

“If you think you understand quantum mechanics, you don’t understand
quantum mechanics” R. Feynman, The Character of Physical Law

. Any efforts we do to express the workings of NNs from different
viewpoints may lead to new ideas for machine learning

The depth and reach of Al in decision making is growing very fast

* we should be concerned about our lack of control over this
e.g. see EU’s draft on regulating Al, April 21st

XAI Ethical Al... all these require a better understanding of DNNs



NNs can learn broad concepts, but how?

EXAMPLE- CONSERVATION LAWS  Itenetal PRL

Before collision After collision j 4// f/

° I ® - k‘&
Vreer I M) (Vo G ), M) X ‘/‘\ Q/‘\ /‘
(@, G0 M) ) N S XA X N e

e ( )

1
S (@ Ao M)
r
r
> O >

Trained a VAE with many examples of
collisions, no mention of concepts like total
angular momentum

After training, % 10 -

NNs were storing somehow information of g
the angular momentum 5 o-

The size of the latent activation was related -

-1 0 1 2

to total angular momentum
Total angular momentum [kg m?/s]



NNs can learn broad concepts, but how?

We (humans) all know what is a human face
but we wouldn’t be able to write code to teach a machine
to transtform noise in a pertfectly realistic face

[f we train NNs on physical situations,
could we interrogate the machine and learn what is doing?

EXAMPLE - SYMMETRIES Symmetry meets Al, SciPost Physics

7, ..... \\‘ 7 ,/ ..... \\, o
@ Ol

N\ p /4
N\ N\
N2 \ B2

Images of physics Did the black-box realise Images of physics
potentials there is something called
Symmetry?

e o e
TSNS

o @5
N XA <

potentials



NNs can learn broad concepts, but how?

We (humans) all know what is a human face
but we wouldn’t be able to write code to teach a machine
to transtform noise in a pertfectly realistic face

If we train NNs on physical situations,
could we interrogate the machine and learn what is doing?

EXAMPLE - SYMMETRIES Symmetry meets Al, SciPost Physics

(A N

N < XS N

YES, it did realise and we used it to build a SYMMETRY SCORE



NNs can learn broad concepts, but how?

Can we go even further from Physics? What about music?
Does the Al realise human concepts?

EXAMPLE - MUSIC in preparation with Barenboim, Hirn and del Debbio

We use an open-source VAE from Google’s project MAGENTA

trained on millions of musical pieces, with the aim to generate new
l\/l/ musical pieces, even choosing the style

R SISLS
SHKETI I X X

la—7 ':
LCEET N\

pitch (MIDI)
pitch (MIDI)

60

60




NNs can learn broad concepts, but how?

Can we go even further from Physics? What about music?
Does the Al realise human concepts?

EXAMPLE - MUSIC in preparation with Barenboim, Hirn and del Debbio

The architecture is ginormous, with a latent space of 500 neurons
Did MAGENTA’s VAE learn something about the music it was
analysing? how do we ask questions?

We discovered the Al is actually not mobilising this huge space
most neurons are just noise, waiting to generate diverse new music
only a handful neurons are meaningful, do they carry human information?

:

TN SR . Central values

m&ittiifﬁ?tfﬁmﬁt*ﬁtffﬁtﬁmﬁfwmﬁﬁﬁmw

Deviations

o—c 1 F———— o




NNs can learn broad concepts, but how?

Can we go even further from Physics? What about music?
Does the Al realise human concepts?

EXAMPLE - MUSIC in preparation with Barenboim, Hirn and del Debbio

only a handful neurons are meaningful, do they carry human information?

Pitch neuron
L | ' -; °
N activations

|
| (]
":l'llﬂiu:
W v
Ulll '

| Rythm neuron

One neuron for rythm activation

—

One neuron for pitch

Similar for melody -2

0 2 4 6 B 0 2 4 6 8 20 40 60 80 100
R15: Note Density R15: Note Density P12: Primary Register

The VAE discovers the concepts of rythm, pitch and melody
aligns its latent space accordingly



Summing up...

We are just starting to understand the applications of ML in Physics

So far, dominated by the low-hanging fruit: supervised classification
ML brings added value, shortening data taking times

They go beyond a mere iteration of our traditional statistical methods:
unsupervised methods, generative Al, reinforcement learning...
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So far, dominated by the low-hanging fruit: supervised classification
ML brings added value, shortening data taking times

They go beyond a mere iteration of our traditional statistical methods:
unsupervised methods, generative Al, reinforcement learning...

NN can discover unknown principles (symmetries, conservation laws)
when asked to perform an unsupervised learning task
Opportunity to learn new concepts in physics



Summing up...

We are just starting to understand the applications of ML in Physics

So far, dominated by the low-hanging fruit: supervised classification
ML brings added value, shortening data taking times

They go beyond a mere iteration of our traditional statistical methods:
unsupervised methods, generative Al, reinforcement learning...

NN can discover unknown principles (symmetries, conservation laws)
when asked to perform an unsupervised learning task
Opportunity to learn new concepts in physics

Through Al methods: interesting cross-pollination between
our area (PP) and others
Opportunity to learn from other areas in Science

Enjoy the meeting!



Can | have a cookie?

Learning by reward

Additional



T'ypes of learning

SUPERVISED

Just touched the surface
Basis to explore further

MACHINE : and incorporate
LEARNING 3 UNSUPERVISED ;i i, your research




Supervised to Reinforced Learning

Cool ways to accelerate learning, capture
important aspects of the data, incorporate
different types of data

Learn from humans to do what humans already do,
but better and faster, and in more difficult situations

But, what if we wanted
a machine to become better than a human
at completing a high-level task?

* See these lectures



https://indico.fnal.gov/event/16720/

lLet’s find a DIFFICULT task

A truly human-difficult task
not just a task that a machine can do faster or with lower resolution

Supervised /unsupervised learning identifies patterns in data
But this isn’t the same as learning to develop a strategy
and to do it better than a human

Chess is a high-level activity
different players develop different strategies
the goal is long-term
important pieces can be sacrificed to achieve
checkmate some moves along the way
and you have an adversary which will oblige

you to reassess your strategy at each step
combinatorics is ginormous



Human VS Machme

February 1996
Deep Blue (IBM) beat Garry
Kasparov (World Champion)
and did it again many times after
brute-force computing power
analysing many hundreds of

millions positions /second



Human vs Machine

February 1996
Deep Blue (IBM) beat Garry

Kasparov (World Champion)

and did it again many times after
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A new paradigm of learning: REINFORCEMENT



Simple game: moves are simple
no hierarchy like chess

king / queen/bishop /pawn...

goal: surround and capture

opponents’ pieces

Simple rules, extreme levels of complexity when building strategies

no machine could beat a Go-master until 2015
Why is it so difficult?
how would you teach a machine to learn this game?

X,y



Simple game: moves are simple
no hierarchy like chess

king / queen/bishop /pawn...

goal: surround and capture

opponents’ pieces

develop a strategy for long-term winning;:
37(19%19)~107172 configurations at one step
decision in this one step guided by possible future gains
but opponent’s actions change every subsequent move



Reinforcement learning

The task of getting better at Go was too difficult
too many possibilities, no human could teach from example
To beat humans we had to allow machines to learn in a different way

Machine needs to learn to make good sequences of decisions
dealing with delayed labels and developing a long-term strategy
Some form of iterative way of improving strategy
which can examine many steps ahead

agent interacts with
the environment in state st

takes actions based on reward rt

f State, Reward Action "’ ' :
ST, a, §which tells about good current state is
| GOAL: maximise total about of
Environment} rewards (return)

RL help the agent to achieve goal




Knowing the past,
predicting the future

predict the evolution of a situation

“Experience is a lantern that you carry on your back and
that only lights up the path you have traveled.” Confucius



Prediction

Never mind, Confucius!
ML can predict the future

By learning from examples of time series
(snapshots of past->future sequences)
and
using RNNss (recurrent NNs)
in particular LSTMs (long short term memory)

’ .
4 i - I?:'.:.‘y
il o AR AT - -
AT Time evolution of
Iy 0T Ma o e,
| B _.f the solar activity
' ; blue-> reality

orange-> prediction

Systematic

Time



