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Primordial Black Holes

• Hypothetical black holes formed

before stellar formation.

• Come from extremely dense matter

fluctuations in the early Universe.

• These density perturbations are not

produced in standard slow roll

inflation.
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Hawking radiation

• Hawking radiation gives a lifetime to

all BHs

tev ∼ (M in
BH)3/(3M4

pl)

• Since tuniv. ∼ 13× 109 yr PBHs with

M in
BH . 1014 g would no longer exist.

• Stable BHs will contribute to ΩDMh2

(Not the topic of this talk).

• However BHs radiate all particles,

regardless of interactions, so they

could produce non-interacting dark

matter!
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Black Hole evaporation is a very efficient way to produce dark matter!

Pessimist’s motivation to study it:

• We have a way of producing dark

matter which doesn’t require any

interactions other than gravity.

• This would be very difficult to test.

• arXiv:2107.00013 is dedicated to this,

where we fully track the coupled

system in probably the most precise

way.
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Black Hole evaporation is a very efficient way to produce dark matter!

Optimist’s motivation to study it:

• Many models predict interactions

between the SM and dark matter.

• Current and near future experiments

may even measure this interaction.

• Dark matter detection could be an

indirect probe into PBH’s in early

Universe.

• arXiv:2107.00013 is dedicated to this,

where we make use of the code

developed and now include an

interacting dark matter model.
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Any particles with mDM < Mp will be emitted

• Two separate regimes of particle production for stable particles

NDM ≈
120ζ(3)

π3
gi

g?(TBH)

M2
BH

M2
pl

. NDM ≈
15ζ(3)

8π5
gi

g?(TBH)

M2
pl

m2
DM
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Primordial black hole abundance

• PBH abundance is parameterized by β ≡ ρiBH

ρitot

• PBHs could dominate in early times
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Dark Matter from just PBHs

• We calculate ΩDMh2 for different particle spins.

• Additional, for spinning BHs (a? 6= 0).
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Effect of extended dark sectors

• Multiple particles are predicted in many BSM models, with dark matter being the

lightest one.

• Consider one extra particle and fermionic DM, X → 2DM.
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Freeze-In Dark Matter with PBHs

We considered a vector-mediated,

fermionic dark matter model

ψ

ψ̄

f

f̄

X

ψ

ψ̄

X

X

and systematically explore the parameter

space

Here mDM = 1 MeV and mX = 1 TeV
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Freeze-In Dark Matter with PBHs

• The way PBHs reheat the thermal

plasma depends on a?.

• This can mean that T univ. ∼ mX for

longer.

• On this resonance is when more DM

particles are produced through

standard freeze-in.
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Current work: improving warm dark matter limits

• In our previous work, we performed a

naive estimation for the warm dark

matter constraint.

〈pDM〉 =

∫
pDM

dNDM

dpDM

v0 =

(
aev
a0

) 〈pDM〉
mDM
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Current work: using our code with a CMB calculator

• Baldes et. al (2020) already performed

an analysis with CLASS.

• Which includes phase-space effects

from non-instantaneous evaporation

dN

dp
=

∫ τ

0
dt ′

a(τ)

a(t)
× d2N

dp′dt ′

(
p
a(τ)

a(t)
, t

)

Pχ(k) = PCDM(k)T 2
χ(k)
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Current work: using our code with a CMB calculator

• Previously only done with approximate

phase spaces and with Schwarzchild

BHs.

• Our code keeps track of all emitted

particles and when.

• We’ve already seen effects on fermion

dark matter with Schwarzchild and we

expect greater effects for Kerr BHs.
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Conclusions

• PBHs could have been a big player in the Early Universe.

• If heavy BSM particles exist, evaporating BHs will produce them.

• This is a really efficient way of producing non-interacting dark matter.

• On the other hand, the detection of dark matter would have implications for the

fairly unconstrained region of MPBH ∼ [10−1, 109] g.

• With our code, available on GitHub, we have started a program of understanding

the dynamics at play with interacting dark matter and PBH evaporation.
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From Inflation to BBN: the PBH playground

• Particle injection from PBH

evaporation during nucleosynthesis has

severe consequences for BBN.

• CMB limits on Hubble scale during

inflation, which limits the scale of

density fluctuations.

• Green constraints come from

gravitational waves of simultaneous

PBH evaporation.
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