ASTROCENT

Primordial Black Hole Evaporation and Dark Matter
Production

MultiDark 19

Andrew Cheek, L. Heurtier, Y. F. Perez-Gonzalez, J. Turner
Based on: arXiv:2107.00013 and arXiv:2107.00016 both in PRD “Editors suggestion”

May 29, 2022


https://arxiv.org/abs/2107.00013
https://arxiv.org/abs/2107.00016

Primordial Black Holes

e Hypothetical black holes formed
before stellar formation.

e Come from extremely dense matter
fluctuations in the early Universe.

e These density perturbations are not
produced in standard slow roll
inflation.
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Hawking radiation

e Hawking radiation gives a lifetime to
all BHs

tey ~ (M]IBIIH)3/(3M§1)

e Since tuniv. ~ 13 x 10° yr PBHs with
M2, < 10 g would no longer exist.

o Stable BHs will contribute to Qpyh?
(Not the topic of this talk).

e However BHs radiate all particles,
regardless of interactions, so they
could produce non-interacting dark
matter!
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Black Hole evaporation is a very efficient way to produce dark matter!

Pessimist’s motivation to study it:

e We have a way of producing dark
matter which doesn’t require any
interactions other than gravity.

e This would be very difficult to test.

e arXiv:2107.00013 is dedicated to this,
where we fully track the coupled

system in probably the most precise

way.

3/14


https://arxiv.org/abs/2107.00013

Black Hole evaporation is a very efficient way to produce dark matter!

Optimist’s motivation to study it:

e Many models predict interactions /
CERN :
between the SM and dark matter. \/—wl Ny pa s
. NS pace Telescope

e Current and near future experiments $ v el

may even measure this interaction.

e Dark matter detection could be an
indirect probe into PBH's in early
Universe.

e arXiv:2107.00013 is dedicated to this,
where we make use of the code
developed and now include an

interacting dark matter model.
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Any particles with mpy < M, will be emitted

e Two separate regimes of particle production for stable particles
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Primordial black hole abundance
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Dark Matter from just PBHs

o We calculate Qpyh? for different particle spins.
e Additional, for spinning BHs (a, # 0).

mpm =1072GeV  —— mpy = 10" GeV
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Effect of extended dark sectors

e Multiple particles are predicted in many BSM models, with dark matter being the
lightest one.

e Consider one extra particle and fermionic DM, X — 2DM.
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Freeze-In Dark Matter with PBHs

We considered a vector-mediated, Here mpy =1 MeV and myxy =1 TeV
fermionic dark matter model
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Freeze-In Dark Matter with PBHs
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Current work: improving warm dark matter limits

Ten = 10mpy
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In our previous work, we performed a

—==- Geometrical — Optics Limit

naive estimation for the warm dark 107

matter constraint.
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Current work: using our code with a CMB calculator

e Baldes et. al (2020) already performed
an analysis with CLASS. Py (k) = Pcom(k) T;(k)
e Which includes phase-space effects

B>Bc, mpm=1GeV
from non-instantaneous evaporation 10 .
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Current work: using our code with a CMB calculator

e Previously only done with approximate 8 o ey M) 12
phase spaces and with Schwarzchild ] — =0t o= 0Gev ' '
BHs. —10F 4 ot et v . 1

e Our code keeps track of all emitted %_12\ il
particles and when. £ -ur T

e We've already seen effects on fermion —16f 1
dark matter with Schwarzchild and we ~18; - . : =
expect greater effects for Kerr BHs. logy(Mijiy/13)
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Conclusions

PBHs could have been a big player in the Early Universe.

If heavy BSM particles exist, evaporating BHs will produce them.

This is a really efficient way of producing non-interacting dark matter.

On the other hand, the detection of dark matter would have implications for the
fairly unconstrained region of Mppy ~ [10_1, 109]g.

With our code, available on GitHub, we have started a program of understanding
the dynamics at play with interacting dark matter and PBH evaporation.
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From Inflation to BBN: the PBH playground

e Particle injection from PBH

evaporation during nucleosynthesis has
severe consequences for BBN.

e CMB limits on Hubble scale during
inflation, which limits the scale of
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density fluctuations.
e Green constraints come from

gravitational waves of simultaneous
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PBH evaporation.
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