Search for solar axions with helioscopes: towards the initial project

Cristina Margalejo on behalf of the IAXO Collaboration

23rd May 2022

cmargalejo@unizar.es

19th MultiDark Consolider Workshop

Direct Detection

Why axions?

Elegant solution to the strong CP problem of the SM.

Relevant parameter space at reach of current and near-future experiments

Very weakly interacting, very light, very long lived.

Dark matter candidate, not *ad hoc* solution. Experimental efforts growing fast but still small

Astrophysical hints:

- Universe too transparent for HE gamma-rays
- Anomalous stellar cooling

More generic axion-like particles (ALPs) predicted by many theories

Experimental axion searches

rity	Source	Experiments	Model & Cosmology dependency	Technology	
'menta, Bories	Relic axions	ADMX, HAYSTAC, CASPEr, CULTASK, CAST-CAPP, MADMAX, ORGAN, RADES, QUAX,	High	New ideas emerging,	
s cate	Axions created in the lab	ALPS, OSQAR, CROWS, ARIADNE,	Very low	Active R&D going on,	
Large _{CC} amon _k	Solar axions	SUMICO, CAST, <mark>(Baby)IAXO</mark>	Low	Ready for large scale experiment	
Field Cancellation Coi SQUID Amplifier package Refrigeration Antennas 8 Tesla Magne Microwave cavit	insert + Magnet	A CSQA throu throu throu	AR – light shinning gh walls	LHC Magnet 1 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	
ADMX - serch fo	or dark matter axions from esonant cavities for diffe	m the Galactic rent masses)	axions		

Solar axions and helioscopes

Production: stars produce axions from thermal photons via Primakoff effect. **Detection**: conversion of axions into photons in the presence of a magnetic field.

Solar axion MAGNET COIL flux ٨ B field A X-ray detectors Shielding Movable platform **Expected X-ray excess** when the magnet points to the Sun.

X-ray optics .

Very weak interaction \Rightarrow **ultra low background detectors** are required.

Solar axions and helioscopes

CAST (CERN Axion Solar Telescope)

- Most powerful axion helioscope to date.
- CAST sensitivity is the highest for a helioscope thanks to an unprecedented background level of ~ 10⁻⁶ counts/keV/cm²/s achieved with the microbulk technology.

BabyIAXO

- Under construction.
- Technological prototype with only two magnet bores.
- Fully fledged helioscope that will deliver relevant physics results.

The IAXO collaboration, JHEP. 2021, 137

5

IAXO (International Axion Observatory)

- 20-m long superconducting magnet, up to 5.4 T.
- 8 60-cm diameter magnet bores.
- X-ray optics with 0.2 cm² focal spot.
- 8 detectors.
- 12 h solar tracking per day.

E. Armengaud et al 2014 JINST 9 T05002

$$f_M = B^2 L^2 A$$
 $f_{DO} = \frac{\epsilon_d \epsilon_o}{\sqrt{b a}}$ $f_T = \sqrt{\epsilon_t t}$
Magnet Detector Exposure time

Solar axions and helioscopes

Parameter space:

- Coupling constant to photons $g_{a\gamma}$
- Axion mass m_a

CAST has reached similar levels to the most restrictive astrophysical bounds. Nature Physics 4109 (2017)

IAXO will probe:

- Large generic unexplored ALP space.
- QCD axion models in the meV to eV mass band.
- Astrophysically hinted regions.

All this, independent of the axion-as-DM hypothesis!

The IAXO pathfinder ultra-low background detector

Microbulk Micromegas detectors

- Very homogeneous amplification gap, uniform gain.
- Intrinsically radiopure.
- Good energy and spatial resolution.
- Pixelized readout gives topological information.

X-ray window

- Rare event searches require ultra-low background detectors.
- Signal reaches the active volume through a mylar window.
- X-rays ionize the gas in the conversion region and the produced signal is read by the Micromegas.
- Data is analyzed with the <u>REST-for-Physics framework</u> (github.com/rest-for-physics).

Scientific goals

- Physics
 - Improve sensitivity in $g_{a\gamma}$.
 - Clarify origin of 2σ-excess in the 2013-2015 results.
 <u>Nature Physics 4109 (2017)</u>
- R&D for BabyIAXO and IAXO
 - Closed-loop Xe-based gas system (Xe+Ne+2.3% iC4H10).
 - Insight into limitations of background and threshold.
 - Provide technical and operational experience.

CAST data taking in a nutshell

- The 2019-2021 data taking campaign consists of **3 different datasets** and **2 calibration campaigns** in the X-٠ ray lab at CERN with the IAXO-Pathfinder detector.
- Tracking time ~ 300 hours •

Dataset 2 data taking periods from 04/08/2020 to 09/09/2020 06/08/20 13/08/20 20/08/20 27/08/20 03/09/20 Date/Time

Gas mixture: Ar+2.3% isobutane. 4th August 2020 to 9th September 2020. ~400 hours of background.

Gas mixture: 48.85% Xe + 48.85% Ne + 2.3% isobutane. 14th August 2020 to 10th June 2021 ~3540 hours of background.

Taking data?

CAST 80th Collaboration Meeting

Results with Ar-based gas mixtures

- Typical background spectra with Ar-based mixtures:
 - Background is reduced a few orders of magnitude based on the topological signature of X-rays: small, symmetric and point-like events.
 - Copper fluorescence lines at 8 and 8.9 keV. Intrinsic to the detector.
 - Argon escape peak at ~3 keV.

Solar axion peak expected at ~3 keV.

For better results we need to reduce the background in this energy range.

Background ~1 count per day

Towards Xe-based gas mixtures

- Motivation:
 - Xe-based gas mixtures do not have characteristic X-rays in the energy region of interest.
 - They allow for higher detection efficiency than Ar-based gas mixtures.
- Challenges
 - Finding the appropriate gas mixture.
 - Building a new gas system.
 - Getting high enough gain and low energy threshold.
 - Dealing with possible gas different diffusion through the mylar window.

12

Preliminary results with Xe-based gas mixtures

Data taking campaign 2020-2022: 154 hours of solar tracking time + ~3500 h of background

The background in the 3 keV range has no peak \rightarrow important achievement since the peak of Primakoff produced axion is expected in that energy.

- Helioscopes can search for axions and ALPs from the sun in a wide mass range
- **BabyIAXO** is under construction as a prototype of the IAXO helioscope and will explore relevant parameter space down to $g_{a\gamma}$ = 10-11 GeV⁻¹. It is expected to see first light in 2024.
- Key technologies under development: magnet, X-ray optics. Low background detectors, Sun tracking system.
- Axion searches with helioscopes requires **ultra-low background detectors**
- Microbulk Micromegas detectors have been long used by our group for this purpose
- Chamber typically filled with Ar, which has an escape peak at ~3 keV, precisely where the peak of Primakoff produced axions is expected. A new Xe-based gas mixture has been implemented and tested.
- Data using Xe have been taken with the IAXO pathfinder system at CAST, providing ~150 hours of axion sensitive conditions with Xe. The background level has been successfully reduced, but not free of challenges.

Backup slides

Saving information of all the channels

- New data taking strategy
- If there is a trigger, we save the signal of all the channels and not only those above the defined threshold
- Advantages
 - Increases the gain
 - Eliminates energy dependence of some observables
 - Improves event topological information and thus signal-like events are better identified.

IAXO-DO: calibrations with xenon

- Gain with Xe+1.5% isobutane is a **factor 10 lower** than with Ar+2.3% isobutane \rightarrow need to test new mixtures
- Maximum isobutane to have a non-flammable mixture at CERN:

Xenon	Neon	Max. isobutane
100%	0%	2%
90%	10%	2.1%
67%	33%	2.3%
50%	50%	2.4%

IAXO-D0: tests with xenon-based gas mixtures

Aim: find the mixture that **maximizes the gain** and allows to rise the mesh voltage as much as posible.

- Tests performed at IAXO-lab in the University of Zaragoza with a small MM provided by Saclay
- Calibration source: ¹⁰⁹Cd
- Keep constant the amount of Xe in the chamber (500 mbar)

Setup for gas mixtures tests

Gas	V _{mesh}	22keV to ADC	Pressure
Xe + 1.5% iso	357 V	~320	507.6 mbar
67% Xe + 33% Ne + 2.3% iso	393 V	~ 560	763.4 mbar
50% Xe + 50% Ne + 2.4% iso	407 V	~ 550	1024 mbar

Gain is nearly doubled

Gain and transparency curves

Transparency curve

Transparency curve or electron transmission. The selected operation point is $V_{cathode} = 710$ V, as at higher voltages we have leak current.

Run number	Date	Vmesh (V)	Vrim (V)	Vring (V)	Vcath (V)	Edrift (V/cm/bar)	Edrif/Eamp	Peak (Triple Max)
R11197	21/02/21	384	384	400	450	21.0	0.00038	
R11196	21/02/21	384	384	450	500	36.8	0.00067	
R11198	21/02/21	384	384	480	525	44.8	0.00082	2800
R11186	21/02/21	384	384	500	550	52.7	0.00096	3494
R11194	21/02/21	384	384	500	600	68.6	0.00125	4737
R11187	21/02/21	384	384	500	650	84.4	0.00154	5267
R11188	21/02/21	384	384	500	700	100.3	0.00183	5547
R11202	21/02/21	384	384	500	705	101.9	0.00186	5586
R11203	21/02/21	384	384	500	<mark>710</mark>	103.5	0.00189	5619
R11199	21/02/21	384	384	500	725	108.3	0.00197	5630
R11201	21/02/21	384	384	500	730	109.8	0.00200	5652
R11189	21/02/21	384	384	500	750	116.2	0.00212	5671
R11191	21/02/21	384	384	700	800	132.1	0.00241	5698
R11200	21/02/21	384	384	500	820	138.4	0.00252	5744

Gain and transparency curves

Gain curve

Gain curve.

The selected operation point is $V_{mesh} = (370, 390) V$ The voltage we can use depends on the quality and conditions of the gas mixture

Run number	Date	Vmesh (V)	Vrim (V)	Vbottom (V)	Vtop (V)	Vcath (V)	Edrift (V/cm/bar)	Edrif/Eamp	Eamp (V/cm)	Peak
R11504	11/05/21	330	330	550	550	710	120.6	0.00256	66.0	
R11502	11/05/21	335	335	550	550	710	119.0	0.00249	67.0	1476
R11501	11/05/21	340	340	550	550	710	117.5	0.00242	68.0	1730
R11500	11/05/21	345	345	550	550	710	115.9	0.00235	69.0	2006
R11494	11/05/21	350	350	550	550	710	114.3	0.00229	70.0	2287
R11498	11/05/21	355	355	550	550	710	112.7	0.00222	71.0	2609
R11493	11/05/21	360	360	550	550	710	111.1	0.00216	72.0	2998
R11492	11/05/21	<mark>370</mark>	370	550	550	710	107.9	0.00204	74.0	4067
R11491	11/05/21	<mark>380</mark>	380	550	550	710	104.8	0.00193	76.0	5531
R11490	11/05/21	<mark>390</mark>	390	550	550	710	101.6	0.00182	78.0	7643

Detector performance: gain loss

- Energy resolution ~20% at 5.9 keV (slightly better than with Ar)
- Energy threshold affected by the quality of the gas. It will have to be defined using x-ray tube low energy calibrations (e.g. 1.5 keV peak).

Towards Xe-based gas mixtures – detector performance

Gain evolution with time and possible differential permeation through the window

Understanding Xe calibrations: simulations

Xenon X-rays (<u>link</u>)							
Source keV	X-ray (keV)	Escape (keV)					
5.9	3.633	2.267					
	3.955	1.945					
	4.093	1.807					
	4.105	1.795					
	4.414	1.486					
	4.451	1.449					
	4.512	1.388					
	4.569	1.331					
	4.714	1.186					
	5.034	0.866					
	5.307	0.593					
	5.307	0.593					

Neon X-rays (<u>link</u>)					
Source keV	X-ray (keV)	Escape (keV)			
5.9	0.822	5.078			
	1.848	4.052			
	0.849	5.051			

Understanding Xe calibrations: data vs simulations

Neon X-rays (<u>link</u>)						
Source keV	X-ray (keV)	Escape (keV)				
5.9	0.822	5.078				
	1.848	4.052				
	0.849	5.051				

Tables of isotopes

http://nucleardata.nuclear.lu.se/toi/

ToRI	
王	

WWW Table of Radioactive Isotopes

X-rays and Auger electrons from Xe (Z=54)

20 X-rays found

		Iı	ntensity per l	er 100 vacancies in f		
Assignment	E (keV)	K-shell	L ₁ -shell	L ₂ -shell	L3-she	
Xe L _l	3,633	0.145 19	0.078 14	0.039 <i>9</i>	0.25 <i>3</i>	
Xe L _n	3,955	0.065 7	0.040 4	0.213 22		
Xe L _{a2}	4,093	0.40 4	0.22 4	0.107 24	0.70 7	
Xe L _{al}	4,105	3.6 4	2.0 3	0.97 22	6.3 Ó	
Xe L _{β1}	4,414	2.16 22	1.35 14	7.1 7		
Xe L _{β4}	4,451	0.069 14	1.4 3			
Xe L _{B3}	4,512	0.115 23	2.3 5			
Xe L _{B6}	4,569	0.029 <i>3</i>	0.015 3	0.0076 17	0.050 3	
Xe L _{B2}	4,714	0.71 7	0.38 7	0.19 4	1.22 13	
Xe L _{yl}	5,034	0.30 <i>3</i>	0.189 20	0.99 10		
Xe L _{y3}	5,307	0.027 Ó	0.54 11			
Xe $L_{\gamma 2}$	5,307	0.018 4	0.37 8			
Xe K _{a3}	29,112	0.00261 8				
Xe K _{a2}	29,461	25.6 Ó				
Xe K _{al}	29,782	47.4 11				
Xe K _{β3}	33,562	4.35 10				
Xe K _{β1}	33,624	8.40 <i>19</i>				
Xe K ₆₅	33,881	0.085 4				
Xe K _{B2}	34,419	2.54 ó				
Xe K ₆₄	34.496	0.492 20				

59 Auger electrons found								
Intensity per 100 vacancies in the								
Assignment	E (keV)	K-shell	L ₁ -shell	L ₂ -shell	L ₃ -shell			
Xe L ₃ -X	4,491	47			92			
Xe L ₂ -X	4,813	23		76				
Xe L ₁ -X	5,162	2.4	49					
Xe K-L ₁ L ₁	23,659	0.86						

					AI					
							I	ntensity per 10	0 vacancies i	n the
ToRI	W/W/W/ Ta	ble of Ra	dioactive	e Isotones	Assignment	E (keV)	K-shell	L ₁ -shell	L ₂ -shell	L ₃ -shell
1 de la companya de l	<i></i>		alououliv	00000000	$\operatorname{Ar} L_{\beta 1}$	0,251	0.011 3	0.0068 21	0.022 7	
	X-rays and Auger electrons from Ne (Z=10)				$\operatorname{Ar} L_{\beta 4}$	0,310	0.0024 <i>9</i>	0.0070 24		
Ne					Ar $L_{\beta 3}$	0,310	0.0038 14	0.011 4		
	3 X-rays found				Ar K _{α3}	2,880	4.0E-07 4			
					$- \operatorname{Ar} K_{\alpha 2}$	2,955	3.7 4			
Assignment	F (IraV)	Int Kaball	ensity per 10 Lashell	0 vacancies in the Lashell Lashell	Ar $K_{\alpha l}$	2,957	7.4 8			
Ne K ₂₂	0.822	1 52E-09 76	LI-suen	L ₂ -suen L ₃ -suen	Ar K _{β3}	3,190	0.30 <i>3</i>			
Ne K _{a2}	0,848	0.50 5			Ar K _{β1}	3,190	0.59 Ó			
Ne K _{al}	0,849	1.01 10								
					-		23 Auger elect	rons found		
	(0 Auger electro	ns found		_		I	ntensity per 10	0 vacancies i	n the
		Int	ensity per 10	0 vacancies in the	Assignment	E (keV)	K-shell	L ₁ -shell	L ₂ -shell	L ₃ -shell
Assignment	E (keV)	K-shell	L ₁ -shell	L ₂ -shell L ₃ -shell	Ar L ₃ -X	0,249	48			100
	<u>Main page</u>	Radiation sear	ch <u>Nuclide se</u>	earch	Ar L ₂ -X	0,251	40		100	
					Ar L ₁ -X	0,326	2.3	6.6		
3.1	1.1 X Radiations	⁵⁵ Fe			Ar K-L ₁ L ₁	2,553	6.1			
		- Enorgy	Rolativo		Ar K-L ₁ L ₂	2,629	6.7			
		keV	probability		Ar K-L ₁ L ₃	2,631	13			
	V				Ar K-L ₂ L ₂	2,705	1.2			
	Kα ₂	5,88765	51		Ar K-L ₂ L ₃	2,707	30			
	Ka ₁	5,89875	100		Ar K-L ₃ L ₃	2,709	17			
	$K\beta_3 \\ K\beta_5''$	6,49045 } 6,5352 }	20,5		Ar K-L ₁ M ₁	2,851	1.4			
					$Ar K-L_1M_2$	2,864	0.63			
	XL	0.550			Ar K-L ₁ M ₃	2,864	1.2			
	$L\ell$ $L\eta$	0,556			Ar K-L ₂ M ₁	2,926	0.65			
	$L\beta = 0,$,649 - 0,721			Ar K-L ₃ M ₁	2,928	1.3			
					$Ar K-L_2M_2$	2,939	0.22			
3.1	1.2 Auger Electrons	s			Ar K-L ₂ M ₃	2,940	2.5			
	Enor	rer Polotive	_		Ar K-L ₃ M ₂	2,942	2.5			
	keV	V probabili	ty		Ar K-L ₃ M ₃	2,942	2.9			
	Augor V				Ar K-M ₁ M ₁	3,148	0.075			
	KLL 4,953 –	5,210 100			Ar K-M ₁ M ₂	3,161	0.063			
	KLX 5,671 – KXY 6,370 –	5,895 27,2 6,532 1.85			Ar K-M ₁ M ₃	3,161	0.12			
	Auger & NOALZ r	-891ein - N/	lultidark	2022	Ar K-M ₂ M ₃	3,174	0.22		26	
	C. IVIdI	<u>galeju - Iv</u>		2022	Ar K-M ₃ M ₃	3,174	0.13		20	

8 X-rays found

Dataset	Period	Gas	Quencher	Pressure [mbar]	Flow	Saved channels	Comments	Runs
1	2019-early 2020	Ar	2.3% isobutane	1400	Open loop	Hit	Found gain-cluster size relation	10155 to 10513
2	Jul-Aug 2020	Ar	2.3% isobutane	1400	Open loop	Hit /All	Problems with the electronics	10648 to 10694 10781 to 10844
3	Late 2020 - 2021	Xe+Ne	2.3% isobutane	1050	Recirculation	All	Gain loss with time. Many sparks	10710 to 10777 10850 to 11570

*Hit channels means channels above threshold

- Argon phase: 3030 hours of background, including 152 hours of tracking time
- Xenon phase: 3800 hours of background, including 154 hours of tracking time

Datasets are not extremely different, but have to be analysed independently at the beginning, taking into account their own particularities.

Event discrimination

- X-rays are small, symmetric and point-like events.
- Observables are computed using the software REST-for-physics (github.com/rest-for-physics).
- Energy cuts: (1,10) keV.
- Fiducial cut: to select the size of the spot ($\sim 9 \text{ mm}^2$).
- Topological cuts: event size and shape in the XY plane and in the Z direction.

Towards Xe-based gas mixtures – detector performance

- Xe based gas mixtures have intrinsically lower gain.
 - Selected mixture is 48.85% Xe + 48.85% Ne + 2.3% isobutane.
- The energy threshold is higher than with Ar but still good.

	Ar + 2.3% isobutane	48.85% Xe + 48.85% Ne + 2.3% isobutane
Mesh voltage	340 V	380 V
Cathode voltage	815 V	750 V
Energy threshold	~ 0.5 keV	~ 1 keV (depending on the gas conditions)
Normalised gain	1	0.5
Pressure	1.4 bar C. Margalejo - Multida	rk 2022 1.05 bar

Towards Xe-based gas mixtures – detector performance

24-10 18:32

timestamp

13-10 04:09

(M)

0.4

0.2

0.0

01-10 00:00

- New dead channel in the centre of the readout.
- The voltages required by the Xe-based gas mixture are pushing the detector to its limit.

200 🔋

150

100 🌉

50

0

Towards Xe-based gas mixtures – gas system upgrade

- Installation of new gas system with recirculation.
- Installation of gas filters and recirculation pump.

- Xe-based gas mixture, in particular 48.85% Xe + 48.85% Ne + 2.3% isobutane
- The detector runs on slight overpressure (1050 mbar) to avoid inwards gas leaks

Gas flow under normal recirculation conditions²⁰²²

Towards Xe-based gas mixtures – gas system upgrade

- The system includes a moisture filter and an oxygen filter.
 - They are a source of Rn and thus alphas. We observe some high energy events (HEE) that trigger many strips
 - 86 hours of background with V_{mesh} = 250 or 270 V \rightarrow low gain that allow seeing those HEE without saturation
 - Our chamber is small and in principle there are few HEE, so they should barely affect the background rate

Towards Xe-based gas mixtures – detector performance

- Gain decreases with time.
- This effect is seen for the first time under these new conditions.
- Hypothesis: different permeation through the window of the 3 gases in the mixture.
 - Isobutane is a big molecule and its relative concentration increases.
 - Typically more isobutane implies less gain for the same voltage.
 - Xe and especially Ne are very small and escape more easily through the window.

Microbulk Micromegas detectors

- Very homogeneous amplification gap, uniform gain.
- Intrinsically radiopure.
- Good energy and spatial resolution.
- Pixelized readout gives topological information.

Micromegas readout 120 x 120 strips Pitch = 0.5mm

X-ray optics focus the signal, which reaches the active volume through a mylar window. X-rays ionize the gas in the conversion region and the produced signal is read by the Micromegas.

Microbulk Micromegas detectors

- Very homogeneous amplification gap, uniform gain.
- Intrinsically radiopure.
- Good energy and spatial resolution.
- Pixelized readout gives topological information.

s focus the signal, which reaches the active volume through a ow. X-rays ionize the gas in the conversion region and the ignal is read by the Micromegas.

The strong CP problem

- Electroweak interaction violates CP, just as the macroscopic world
- Strong interaction does not violet CP. Why?

$$\begin{aligned} \mathcal{L}_{\text{QCD}} = -\frac{1}{4} G_{\mu\nu a} G_{a}^{\mu\nu} + \sum_{q} i \bar{q} \gamma^{\mu} D_{\mu} q - \bar{q} m q + \frac{\alpha_{s}}{8\pi} \theta G_{\mu\nu a} \tilde{G}_{a}^{\mu\nu} \\ \hline \text{Conserves CP} & \text{Violation of CP} \propto \theta \\ \theta \in (-\pi, \pi) \longrightarrow \text{It's value determines CP violation} \end{aligned}$$

- Observations: $|\theta|\,\leq\,10^{-10}\,$,
- fine tunning problem (the strong CP problem).

Axions as solution to the strong CP problem

• Peccei & Quinn (1977) & Wilzec (1978):

There is a dynamic field *a* whose vacuum energy minimises at $\theta = 0$.

- New scale f_a
- Oscillations about 0 give origin to a new particle: the axion.

$$g_{a\gamma\gamma} \propto 1/f_a \propto m_a$$

Axions as solution to the strong CP problem

Characteristics of the Peccei-Quinn axion

$$f_a > 10^5 \text{ GeV} \qquad m_a = 6 \text{ MeV} \frac{10^9 \text{ GeV}}{f_a}$$

Couplings to ordinary matter

 $g_{a\gamma\gamma} \propto 1/f_a \propto m_a$

C. Margalejo - Multidark 2022

Axion searches

resonant cavities for different masses)

Source	Expe	eriments	Model & Cosmology dependency	Technology					
entarit, ries suc	ADMX, HAYSTAC, CASPEr, CULTASK, CAST-CAPP, MADMAX, ORGAN, RADES, QUAX,		High	New ideas emerging, Active R&D going on,					
xions created in the lab	ALPS, OSQAR, CROWS, ARIADNE,		Very low						
Solar axions	SUMICO, CAST, <mark>(Baby)IAXO</mark>		Low	Ready for large scale experiment					
Field Cancellation Coil SQUID Amplifier package Refrigeration Antennas 8 Tesla Magnet Microwave cavity	<image/> <image/>	OSQAR – light shinni through walls	optical barrier ng $ure full full full full full full full ful$	Iar					
from the Galactic ha	adjusting								