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Introduction
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Rotation Curves

NGC 6503 Rotation Curve

Katherine Freese  0812.4005
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https://arxiv.org/search/astro-ph?searchtype=author&query=Freese%2C+K
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Brief introduction to Machine Learning
Supervised Learning

Dataset

Training Set

Validation Set

Model

Validation

Real DataTesting Set
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Construction of the Dataset
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TNG100 Simulation

● Planck cosmology
● 106.5 Mpc by side
● 1820^3 DM particles
● 1820^3 hydrodynamic cells
● DM resolution 7.5 *10^6 M⊙

● Baryon resolution 1.4*10^6 M⊙

● 136 snapshots from z=127 to z=0
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SKIRT* (2003.00721, skirt.ugent.be)

Radiative transfer code which  emulates 
the stellar emissions and subsequent 
light-ray propagation to the observer, 
taking into  account  the  absorption and  
re-emission by  dust.
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MARTINI

Allows for the creation of synthetic 
resolved HI line observations (i.e.  
data cubes) directly from  the  
snapshot  of  a  hydrodynamic 
simulation, and its posterior 
analysis.
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Results

14



Comparison between different architectures
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Architecture A

Architecture B

Architecture C

ResNet50



Comparison between different inputs
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SDSS I

SDSS URZ

VHI 

IHI + VHI + σHI

SDSS URZ + VHI  

SDSS URZ + IHI + VHI + σHI 



Prediction of the dark matter profile
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Conclusions and Future work

● Our algorithm is able to reconstruct the DM distribution profile with high 
performance throughout the extension of the galaxy.

● The highest performance is achieved in the intermediate regions with a mean 
square error below 0.2 using all the photometric and spectroscopic information.

● Even in the absence of spectroscopic information, our method is able to recover 
the dark matter profile with a mean square error below 0.3 in the intermediate 
regions. 

● Our reconstruction of the DM distribution is completely data-driven, and does not 
need any assumption on the shape nor the functional form of the DM profile.

● The method developed here is applicable to different types of galaxies since it 
does not rely on explicit physical assumptions regarding the dynamical state of the 
system.
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Conclusions and Future work

● We will make a comparison with the dark matter profile obtained through the 
traditional rotation curve analysis for the simulated galaxies.

● Study the robustness of our results to the hydrodynamical cosmological simulation.

● Apply our method to real galaxies and compare the results with other estimations. 
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Back-up Slides
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Brief introduction to Machine Learning
Neural Networks
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Convolutional layers Pooling layers
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Results
Understanding the results
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Results
Understanding the results
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