

Francesca Scarcella

Prospects for primordial black hole detection with high redshift gravitational wave observations

Teórica

Primordial black holes (PBHs)

S. Hawking, MNRAS 152 (1971); Carr and Hawking, MNRAS 168 (1974)

Primordial black holes as dark matter

- Cold
- Collisionless
- Neutral
- Stable
- Non-baryonic

Small scale distribution of DM: not known!

Constraints

https://github.com/bradkav/PBHbounds

Constraints

https://github.com/bradkav/PBHbounds

Can primordial black holes be (a part of) the dark matter?

Constraints

https://github.com/bradkav/PBHbounds

Can primordial black holes be (a part of) the dark matter?

GWTC-3 Catalog

High redshift: no astrophysical background

Prospects for the Einstein Telescope

Forecast for Einstein telescope to assess:

- ability to *detect* PBH
- ability to *measure* PBH abundance

MULTIDARK 24TH MAY 2022

PREPARED FOR SUBMISSION TO JCAP

arXiv: 2205.02639

Dancing in the dark: detecting a population of distant primordial black holes

Matteo Martinelli,^{*a,b*} Francesca Scarcella,^{*b*} Natalie B. Hogg,^{*c,b*} Bradley J. Kavanagh,^{*d*} Daniele Gaggero,^{*e,f,b*} and Pierre Fleury^{*c,b*}

^aINAF - Osservatorio Astronomico di Roma,

via Frascati 33, 00040 Monteporzio Catone (Roma), Italy

^bInstituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid,

May 2022

S

Merger rate of primordial binaries

Nakamura et al. 9708060, Ali-Haimoud et al. 1709.06576, Vaskonen et al. 1812.01930

$$\tau(a,j) = \frac{3}{170} \frac{a^4}{M^3} j^7 \qquad j = \sqrt{1 - e^2} \qquad \qquad j \sim \left(\frac{x}{\bar{x}}\right)^3$$

Small separations *→*very *high eccentricity → short time to merger*

Prospects for the Einstein Telescope

Forecast for Einstein telescope to asses:

- ability to *detect* PBH
- ability to measure PBH abundance

Prospects for the Einstein Telescope

Forecast for Einstein telescope to asses:

- ability to *detect* PBH
- ability to measure PBH abundance

Model the detector's response

ET mock data generation

gitlab.com/matmartinelli/darksirens

- Compute expected number of events (T_{obs})
- Each event (redshift, position, inclination) \rightarrow *waveform* (PyCBC)
- ET antenna patterns \rightarrow strain h(f)
- Compute *signal-to-noise ratio* ρ_i
- Discard faint events ($\rho_i < 8$)
- Estimate *instrumental error on distance* σ_i^{inst}
- Extract observed value of D_L
- Obtain error on D_L including lensing effects

$$p_i = \left[4 \int_{f_{\text{lower}}}^{f_{\text{upper}}} \mathrm{d}f \, \frac{h_i(f)h_i^*(f)}{S_n(f)}\right]^{\frac{1}{2}}$$

 $\sigma_i^{\rm inst} = 2\tilde{D}_i/\rho_i$

ET mock data generation

gitlab.com/matmartinelli/darksirens

- Compute expected number of events (T_{obs})
- Each event (redshift, position, inclination) \rightarrow *waveform* (PyCBC)
- ET antenna patterns \rightarrow strain h(f)
- Compute *signal-to-noise ratio* ρ_i
- Discard faint events ($\rho_i < 8$)
- Estimate *instrumental error on distance* σ_i^{inst}
- Extract observed value of D_L
- Obtain error on D_L including lensing effects

$$p_i = \left[4 \int_{f_{\text{lower}}}^{f_{\text{upper}}} \mathrm{d}f \, \frac{h_i(f)h_i^*(f)}{S_n(f)}\right]^{\frac{1}{2}}$$

$$\sigma_i^{\rm inst} = 2\tilde{D}_i/\rho_i$$

Mock data generation

gitlab.com/matmartinelli/darksirens

Final result: *mock catalog* (D_i, σ_i)

Mock data generation

gitlab.com/matmartinelli/darksirens

Data analysis - 1

Cut-and-count

- Divide data in two bins, evaluate $N_>$: # events with $z > z^*$
- Generate catalogs for *different values of* f_{PBH} , evaluate $N_{>}$
- Compare with null hypothesis: **ABH only** data set $\rightarrow N_{>} = 1 \pm 1.7$

• Smallest detectable fraction (3 σ): $f_{\text{PBH}} \approx 10^{-5} \rightarrow N_{>} = 16 \pm 5$

Likelihood analysis

Unbinned likelihood - probability of a set of observed events

$$\mathscr{L}(f_{\text{PBH}} | \mathscr{D}) = \frac{\bar{N}_{\text{obs}}(f_{\text{PBH}})^{N_{\text{obs}}} e^{-N_{\text{obs}}(f_{\text{PBH}})}}{N_{\text{obs}}!} \times \prod_{i=1,N_{\text{obs}}} p(D_i | f_{\text{PBH}})$$

• **Posterior distribution for** f_{PBH}

$p(f_{\mathsf{PBH}} | \mathcal{D}) \propto \mathcal{L}(f_{\mathsf{PBH}} | \mathcal{D}) \mathsf{Pr}(f_{\mathsf{PBH}})$

Posterior on f_{PBH}

Posterior on $f_{\rm PBH}$

Conclusions

- Future observatories powerful tool to for identify PBH signal over astrophysical background
- Identify PBHs in *abundance as small as* $f_{\rm PBH} \approx 10^{-5}$

- Signal modelling
 - Initial clustering

- Astrophysical background
 - Population III stars
- Broad / multi peaked mass function

Thankyour

Impact of late-time *clustering* on merger rate : Jedamzik 2006.11172

- early formation of structures Inman et al. 1907.08129
- gravo-thermal instability Vaskone

Vaskonen et al. 1908.09752 De Luca et al. 2009.04731

• negligible for $f_{\rm PBH} \lesssim 10^{-3}$

MULTIDARK 24TH MAY 2022

Black hole observations

X-ray binaries

Gravitational waves

Quasars

Event Horizon

Telescope

Accretion: textbook approach

- Simple textbook model for accretion onto a moving compact object
- Ruled out by observations
- suppression factor

 $\lambda \sim 10^{-2} - 10^{-3}$

• Does not take into account radiative feedback

Accretion: analytical model - I

 BHL accretion within the ionized region

$$\dot{M}_{\rm BHL} = 4\pi \frac{(GM)^2 \rho}{(v_{\rm BH}^2 + c_{\rm s}^2)^{3/2}} ,$$

 Euler's equations at ionization front:

$$egin{aligned} &
ho_{\mathrm{in}} \, \mathrm{V}_{\mathrm{in}} \, =
ho \mathrm{V}_{\mathrm{BH}} \ &
ho_{\mathrm{in}} \left(\mathrm{v}_{\mathrm{in}}^2 + c_{\mathrm{s,\,in}}^2
ight) =
ho ig(\mathrm{v}_{\mathrm{BH}}^2 + c_{\mathrm{s}}^2 ig) \end{aligned}$$

At low velocities, a bow shock is formed in front of the ionization

/

Flux is deflected and accretion rate lowers

ancesca Scarcella (IFT UAM/CSIC)

MultiDark - 27th Jan 2020

Accretion: analytical model -II

Solving Euler's equations at the ionization front:

Valid for $V_{BH} \leq V_D$ or $V_{BH} \geq V_R$, where:

$$\begin{split} \rho_{\rm in} &= \rho_{\rm in}^{\pm} \equiv \rho \frac{\mathrm{v}_{\rm BH}^2 + c_{\rm s}^2 \pm \sqrt{\Delta}}{2 \, c_{\rm s,in}^2} , \qquad \Delta \equiv (\mathrm{v}_{\rm BH}^2 + c_{\rm s}^2)^2 - 4 \, \mathrm{v}_{\rm BH}^2 \, c_{\rm s,in}^2 \\ \mathrm{v}_{\rm in} &= \frac{\rho}{\rho_{\rm in}} \mathrm{v}_{\rm BH} \end{split}$$

$$egin{aligned}
ho_{\mathrm{in}} \, \mathrm{V}_{\mathrm{in}} &=
ho \mathrm{V}_{\mathrm{BH}} \
ho_{\mathrm{in}} \left(\mathrm{v}_{\mathrm{in}}^2 + c_{\mathrm{s,\,in}}^2
ight) &=
ho ig(\mathrm{v}_{\mathrm{BH}}^2 + c_{\mathrm{s}}^2 ig) \end{aligned}$$

$$\begin{split} \mathbf{v}_{\mathrm{R}} &= c_{\mathrm{s,in}} + \sqrt{c_{\mathrm{s,in}}^2 - c_{\mathrm{s}}^2} \ \approx 2 c_{\mathrm{s,in}} \,, \\ \mathbf{v}_{\mathrm{D}} &= c_{\mathrm{s,in}} - \sqrt{c_{\mathrm{s,in}}^2 - c_{\mathrm{s}}^2} \ \approx \frac{c_{\mathrm{s}}^2}{2 c_{\mathrm{s,in}}} \ \ll 1 \, \mathrm{km/s} \,. \end{split}$$

In the intermediate velocity regime eq. A not valid (shock). We have instead:

$$v_{in} \approx c_{s,in}$$
 (observed from simulations) \rightarrow $\rho_{in} = \rho_{in}^0 \equiv \rho \frac{v_{BH}^2 + c_s^2}{2 c_{s,in}^2}$
From eq. B
ancesca Scarcella (IFT UAM/CSIC) MultiDark - 27th Jan 2020

X-ray and radio fluxes: CMZ

Detectable sources -> different in the two scenarios Large population could be unveiled by SKA

ancesca Scarcella (IFT UAM/CSIC)

MultiDark - 27th Jan 2020

$$\mathscr{R}_{ABH}(z[t], M) = \mathscr{N} \int_{t-\Delta t_{\min}}^{t-\Delta t_{\max}} dt_{f} P(t-t_{f}) \mathscr{R}_{SF}(t_{f})$$

Einstein telescope

Observed merger rate

Mock data generation

$$F_{+} = \frac{\sqrt{3}}{2} \left[\frac{1}{2} (1 + \cos^{2}\theta) \cos(2\phi) \cos(2\psi) - \cos\theta \sin(2\phi) \sin(2\psi) \right],$$

$$F_{\times} = \frac{\sqrt{3}}{2} \left[\frac{1}{2} (1 + \cos^{2}\theta) \cos(2\phi) \sin(2\psi) + \cos\theta \sin(2\phi) \cos(2\psi) \right].$$

 $h(t) = F_{+}(\theta, \phi) h_{+}(t) + F_{\times}(\theta, \phi) h_{\times}(t)$

$$\rho_i = \left[4 \int_{f_{\text{lower}}}^{f_{\text{upper}}} \mathrm{d}f \, \frac{h_i(f)h_i^*(f)}{S_n(f)}\right]^{\frac{1}{2}}$$

$$\sigma_i^{\rm inst} = 2\tilde{D}_i/\rho_i$$

$$p(\bar{D} \mid D_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left[-\frac{(\bar{D} - D_i)^2}{2\sigma_i^2}\right]$$

$$\sigma_i^2 = \left(\sigma_i^{\text{inst}}\right)^2 + \left(\sigma_i^{\text{lens}}\right)^2$$

Cut and count

$$\mathcal{S}(\mathcal{D}_{f_{\text{PBH}}}, z_*) \equiv \frac{\left| N_{>}(\mathcal{D}_{f_{\text{PBH}}}, z_*) - N_{>}(\mathcal{D}_{0}, z_*) \right|}{\sqrt{\sigma_{>}^2(\mathcal{D}_{f_{\text{PBH}}}, z_*) + \sigma_{>}^2(\mathcal{D}_{0}, z_*)}}$$

Cut and count

Likelihood analysis

 $p(f_{\text{PBH}} | \mathcal{D}) \propto \mathcal{L}(f_{\text{PBH}} | \mathcal{D}) \text{Pr}(f_{\text{PBH}})$

Probability of a set of observed events

$$\mathscr{L}(f_{\text{PBH}}|\mathscr{D}) = \frac{\bar{N}_{\text{obs}}(f_{\text{PBH}})^{N_{\text{obs}}}e^{-\bar{N}_{\text{obs}}(f_{\text{PBH}})}}{N_{\text{obs}}!} \times \prod_{i=1,N_{\text{obs}}} p(D_i|f_{\text{PBH}})$$

 $p(D_i | f_{\text{PBH}}) \propto \int \frac{p(\bar{D}_i | D_i)}{\tilde{p}(\bar{D}_i)} p(\bar{D}_i | f_{\text{PBH}}) \, \mathrm{d}\bar{D}_i$

$$p(\bar{D} \mid f_{\text{PBH}}) \,\mathrm{d}\bar{D} = \frac{N_{\text{ABH}}}{\bar{N}_{\text{obs}}} \, p_{\text{ABH}}(\bar{D}) \,\mathrm{d}\bar{D} + \frac{N_{\text{PBH}}}{\bar{N}_{\text{obs}}} \, p_{\text{PBH}}(\bar{D} \mid f_{\text{PBH}}) \,\mathrm{d}\bar{D}$$

$$p(D \,|\, \bar{D}) = \frac{p(\bar{D} \,|\, D)}{\tilde{p}(\bar{D})} \,\tilde{p}(D)$$

Merger rate

MULTIDARK 24TH MAY 2022