
Dark matter gamma-ray signals in the Milky Way: brightest dark satellites versus diffuse galactic emission

Sara Porras Bedmar Tutor: Miguel Ángel Sánchez-Conde (IFT UAM-CSIC) 19th MultiDark Workshop, 24/05/2022

Dark matter halos and subhalos

- Filamentary structure at large scales.
- Halos are gravitationally bound structures.
- In the standard ACDM cosmology, small halos are created first and then combine to create bigger ones.
- Small halos merge constantly into larger ones, giving a configuration of many 'subhalos' inside a host.
- Halos have universal DM density profiles.
- If (sub)halos are made of WIMPs they would shine in gamma-rays.

Bolshoi simulation (*K. Riebe et al., 2013*)

$$\frac{\mathrm{d}N}{\mathrm{d}V\,\mathrm{d}m\,\mathrm{d}c}(\vec{r},m,c) \propto \frac{\mathrm{d}\mathcal{P}_v}{\mathrm{d}V}(\vec{r}) \times \frac{\mathrm{d}\mathcal{P}_m}{\mathrm{d}m}(m) \times \frac{\mathrm{d}\mathcal{P}_c}{\mathrm{d}c}(c,m)$$

- Subhalo Radial Distribution (SRD) dP/dV number of subhalos depending on the volume or distance to the galaxy center D_{GC} .
- SubHalo Mass/Velocity Function (SHMF/SHVF) dP/dm or dP/dV_{max} number of subhalos within a certain mass/V_{max} range.
 - $-V_{max}$ is the maximum circular velocity of particles inside a subhalo.
 - $-R_{max}$ is the distance to the subhalo center at which V_{max} happens.
- Velocity-concentration relation (c_v) dP/dc how concentrated the matter is inside a subhalo. Higher concentration equals steeper densities in the center for the same amount of total mass/V_{max}.

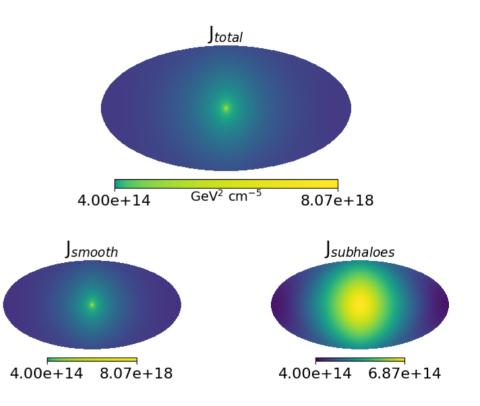
Methodology

Current simulations have mass and spatial resolution limits, which overlook small structures/subhalos. We have a code to repopulate systems below these resolution limits (*Coronado-Blázquez+19a,19b*).

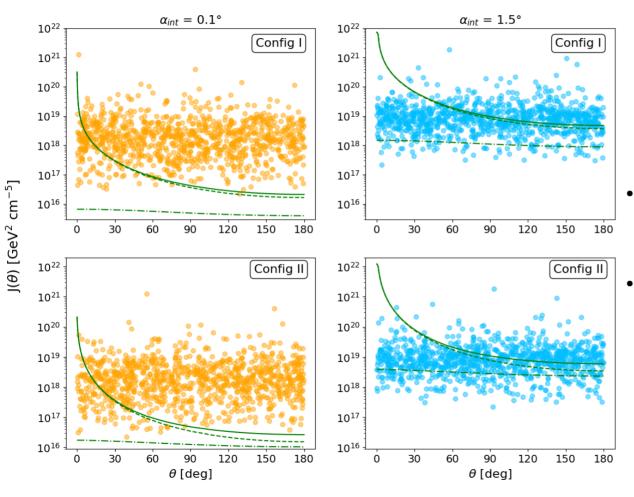
- 1) Study a repopulation of DMO subhalos using an already constructed characterization.
- 2) Calculate and compare J-factors of repopulated subhalos.
- 3) Characterize the subhalo population (abundance, distribution and internal structure) for hydrodynamical and DMO simulations (more detail later), study their differences.

$$Flux = \underbrace{\frac{1}{Dist_{Subh-Earth}^{2}} \int_{\Delta\Omega} d\Omega \int_{l.o.s.} dl \cdot [\rho_{DM}]^{2}}_{J-factor} \cdot \underbrace{\frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\chi}^{2}} \sum_{f} B_{f} \int \frac{dN_{f}}{dE} dE}_{f_{PP}}}_{f_{PP}}$$

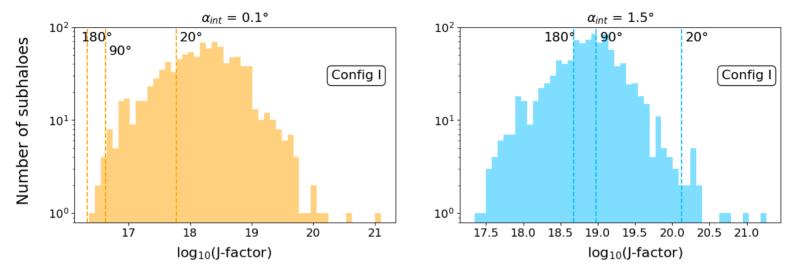
Diffuse annihilation flux in our galaxy


Two diffuse components:

- Smooth density profile of the host
- Unresolved subhalos


Ingredient	Config I	Config II	
Host DM density profile	NFW	Einasto, $\alpha = 0.17$	
Mass-concentration model of subhaloes	Moline et al.(2017)		
SRD	Anti-biased NFW	Einasto, $\alpha = 0.69$	
SHMF	Power law, $\alpha = 1.9$		

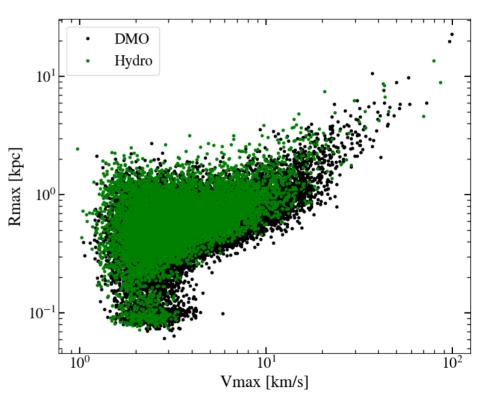
Skymaps for Config I created with CLUMPY for this project.


Diffuse flux vs resolved subhalos

Individual subhaloes
 Host Total
 Host Smooth
 Host Subhaloes

- A large fraction of bright subhalos are visible over the diffuse in all configurations.
- Angular extension point-like analysis preferred over spatiallyextended.

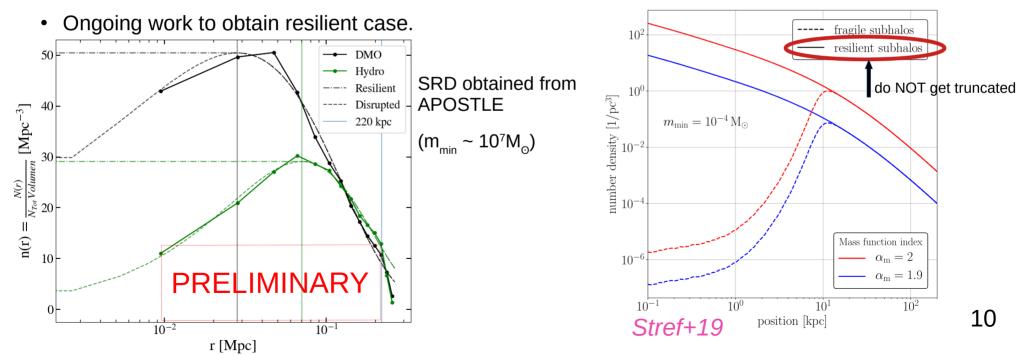
Diffuse flux vs resolved subhalos


Percentage of subhalos with		Config I		Config II		
J-factor larger than the diffuse one		$\alpha_{int} = 0.1^{\circ}$	$\alpha_{int} = 1.5^{\circ}$	$\alpha_{int} = 0.1^{\circ}$	$\alpha_{int} = 1.5^{\circ}$	
heta~[m deg]	20°	74.6	1.4	69.4	1.1	
	$\theta [{ m deg}]$	90°	99.4	41.9	98.9	37.7
	180°	100.0	70.6	99.9	62.4	

Baryon party

APOSTLE: DMO + hydrodynamical

- We use data from APOSTLE, a set of of zoom-in simulations of MW systems in AURIGA original simulations.
- We asked for APOSTLE data to the APOSTLE/AURIGA team, and currently work with it in order to characterize our systems.
- Data we have: V_{max}, R_{max}, D_{GC} (Grand&White20, Grand+21).

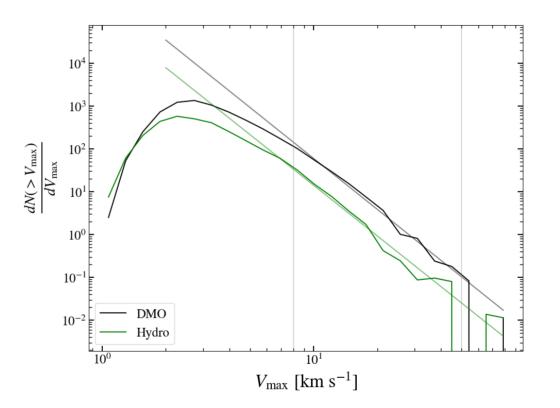


Subhalo characterization: SRD

- Ongoing debate in the literature about subhalo survival: do subhalos survive in the center of halos or get disrupted? What is the actual SRD? Is it a matter of numerical resolution? See Alejandra's
- We will keep agnostic about this debate by adopting two different scenarios: •

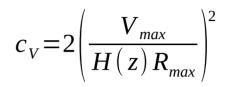
1) Disrupted subhalos, as found in our numerical APOSTLE data.

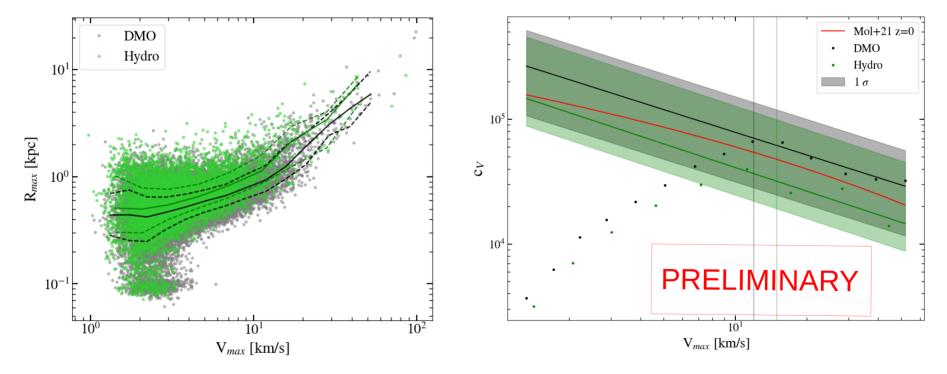
2) Resilient subhalos, just assuming that the SRD does get truncated down to the inner galaxy.


Subhalo characterization: SHVF

• Low V_{max}: resolution limit.

 $m_{DMO} = -3.96$


 $m_{hydro} = -3.93$


- These slopes are consistent with state-of-the-art DMO simulations.
- We seem to have a lower number of subhalos compared to other works (ie *Moliné+21* aka Uchuu, DMO).

Subhalo characterization: c_v

• Median data with calculated scatter.

Next steps

- Finish the ongoing work of characterizing our ingredients of hydro/DMO systems.
- Repopulate the MW-like system with subhalos with masses/V_{max} below the resolution limits with our code, compute and compare Jfactors in the DMO and hydro cases.
- Check the detection rate of these subhalos against the diffuse background of the systems.
- If we still have time left, calculate annihilation fluxes and telescope sensitivity predictions.

Thank you for your attention