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FERMI-LAT GAMMA-RAY DATA & BETA-PLOT
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FERMI-LAT GAMMA-RAY DATA & BETA-PLOT
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DARK MATTER & BETA-PLOT

Mo | ) GeV TN ¢ meS0GeV
M 1 80 GeV red - ‘.“.\ M 50 G\
me=d00 GeV o "N * me |20 GeV
me=300 GeV . g
me=500 GeV
me=J00 GeV
m=1 100 GeV
e | 100 GeV

me 1 20 GeV
me330 GeV
me 330 GeV
m=11%GeV
e | 10K GeV

109"

—
=)
&

10—10 : 10—10

—
—
-
A
«l
-~
-~
-
.
A
.
-
-~
—
S
e
=
-
e
.
«l
=

E2dNIdE [ph-em™2-s71]

1()—“ l()—“

1072 10° Tk 10° 10° 1072 TG 10 10° 10°

E[MeV] E[MeV]

—a—p-log (E/EO) J.Coronado-Blazquez et al. JCAP07(2019)020

dN E 2—«
S L N SR . E —_ E - e 2p
dE 0 EO ‘peak 0




DARK MATTER & BETA-PLOT
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DARK MATTER & BETA-PLOT

Our strategy:

1. The classification algorithm is trained on a sample of
Astrophysical (Astro) and Dark Matter (DM) sources. The
classification accuracy is tested on a subsample of data;

2. The “machine” has learned the classification problem and it is
applied to the uniDs dataset: we expect the algorithm telling us
if any uniDS could be a DM source with a given probability.
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DETECTION SIGNIFICANCE

To analyze LAT data, the collaboration tools construct the likelihood that is
applicable to the LAT data, and then use this likelihood to find the best fit
model parameters. Indeed, ones that a model of all the other sources in the
source region is provided, the Test Statistic (TS) for adding an additional
source at each gridpoint is calculated. These parameters include:

even whether it exists.
the description of a source's spectrum
its position -

’
: : X § . . .
. - . 3 e » " o z -
Lo o ” . : -

The new source is characterized by a source intensity and spectral index (the
spectrum is assumed to be a power law). The resulting significance Test

Statistic (TS)=25 equivalent to 50, Is required for- clalmmg the detection of ' : / TS >
any source. Gdet \ — S
: 4FGL catalogue:

Hereafter, we will use the so-defined detection significance ¢, as a feature of TOT ASTRO ( PSR, QSR, BCU)
our classification problem. TOT UNIDS



DETECTION SIGNIFICANCE

4FGL psr 4FGL psr
4FGLbIl - . 4FGLbll

4FGL fsrq . A 4FGL fsrq
4FGL bcu - o oo 4FGL bcu

@

10
Epcak [GCV]

4FGL psr 4FGL psr
4FGL bIl - .+ 4FGLbll
4FGL fsrq 4FGL fsrq
4FGL bcu I 4FGL bcu




DETECTION SIGNIFICANCE

Real data UnIDs
Synthetic data




UNCERTAINTY ON £
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4 FEATURES DISTRIBUTIONS




GAUSSIAN SAMPLING OF 5 UNCERTAINTY

M = 60
boec, P p+e€g

0<fp <1 Isrequiredif 5 is small and ¢, is big



GAUSSIAN SAMPLING OF 5 UNCERTAINTY
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GAUSSIAN SAMPLING OF 5 UNCERTAINTY

Related issues:

-Increasing the number of data from N (Astro+DM datasets) to
MxN makes the learning process slower;

- After the learning step and in order to classify the uniDs, the
method would also require the sample of the uniDs uncertainty,
that is useless for the classification intent itself.
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CLASSIFICATION ALGORITHMS

@

LOGISTIC REGRESSION (LR) (SCIKITS-LEARN)

ARTIFICIAL NEURAL NETWORK (NN) (SCIKITS-LEARN)

NAIVES BAYES (NB) (TENSOR FLOW)

L

GAUSSIAN PROCESS (GP) (TENSOR FLOW) nsorFlow



CLASSIFICATION ALGORITHMS

PROBABILISTIC DISCRIMINATIVE MODEL. DESPITE
ITS NAME, IS A CLASSIFICATION MODEL RATHER THAN REGRESSION MODEL.

PROBABILISTIC DISCRIMINATIVE MODEL. ARE A NON-
LINEAR STATISTICAL DATA MODELING TOOL COMPOSED OF HIGHLY
INTERCONNECTED NODES THAT CAN MODEL COMPLEX RELATIONSHIPS
BETWEEN INPUTS AND OUTPUTS.

GENERATIVE MODEL. A PROBABILISTIC CLASSIFIER BASED
ON BAYES' THEOREM, WHICH ASSUMES THAT EACH FEATURE MAKES AN
INDEPENDENT AND EQUAL CONTRIBUTION TO THE TARGET CLASS.

NON-PARAMETRIC MODEL. IT IS A STOCHASTIC
PROCESS, I.E. A COLLECTION OF RANDOM VARIABLES, SUCH THAT EVERY FINITE
LINEAR COMBINATION OF THEM IS NORMALLY DISTRIBUTED. THE DISTRIBUTION
OF A GP IS THE JOINT DISTRIBUTION OF ALL THOSE RANDOM VARIABLES.



CLASSIFICATION ALGORITHMS

LINEAR REGRESSION

1-FEATURE | P-features

h(X)=wO0+w1X

h(x)’X:{x‘I ...XN} h(x)=wO+w1X...+wpx=WTX

[X]=NxP N data-points
P features

W1
W=(wO0...wp)

w0 ,.' coefficients of the fits

1 I |
5 (h(z) — Y) = 52((“’TX)1- ~-Y?)

1=1




CLASSIFICATION ALGORITHMS
LOGISTIC REGRESSION
1

Activation function: h(x) = g(z) =
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CLASSIFICATION ALGORITHMS

ARTIFICIAL NEURAL NETWORK

Neural Network (Classification) .‘ RN o
{2z, y M), (2@ y2), o (b))}
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CLASSIFICATION ALGORITHMS

ARTIFICIAL NEURAL NETWORK

Cost function

Logistic regression:
1 [ | | ]
—— Z y D log hg(zD) + (1 — y D) log(1 — hg(zD))
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CLASSIFICATION ALGORITHMS
NAIVE BAYES

the appropriate variables. We can now interpret p(Ck) as the prior probablhty for the
class C, and p(C|x) as the corresponding posterior probability. Thus p(C;) repre-
sents the probability that a person has cancer, before we take the X-ray measurement.
Similarly, p(C;|x) is the corresponding probability, revised using Bayes’ theorem in
light of the information contained in the X-ray. If our aim is to minimize the chance
of assigning x to the wrong class, then intuitively we would choose the class having
the higher posterior probability. We now show that this intuition is correct, and we
also discuss more general criteria for making decisions.

Rl RQ

Figure 1.24 Schematic illustration of the joint probabilities p(x,Ci) for each of two classes plotted
against z, together with the decision boundary » = z. Values of x > 7 are classified as
class C2 and hence belong to decision region R, whereas points = < 7 are classified
as Ci and belong to Ri. Errors arise from the blue, green, and red regions, so that for
x < 7 the errors are due to points from class C» being misclassified as C; (represented by
the sum of the red and green regions), and conversely for points in the region z > 7 the
errors are due to points from class C; being misclassified as C» (represented by the blue
region). As we vary the location 7 of the decision boundary, the combined areas of the
blue and green regions remains constant, whereas the size of the red region varies. The
optimal choice for z is where the curves for p(z,Cy) and p(x,C2) cross, corresponding to
T = x0, because in this case the red region disappears. This is equivalent to the minimum

: : : misclassification rate decision rule, which assigns each value of z to the class having the
Christopher M. Bishop, Springer 2006. higher posterior probability p(Cx |z:).




CLASSIFICATION ALGORITHMS
NAIVE BAYES

p(x1,xB|Ck) = p(x1|Cr)p(xB|Ck ).
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Figure 1.27 Example of the class-conditional densities for two classes having a single input variable x (left
plot) together with the corresponding posterior probabilities (right plot). Note that the left-hand mode of the
class-conditional density p(x|C1), shown in blue on the left plot, has no effect on the posterior probabilities. The
vertical green line in the right plot shows the decision boundary in = that gives the minimum misclassification

rate.

Christopher M. Bishop, Springer 2006.




CLASSIFICATION ALGORITHMS
GAUSSIAN PROCESS

Multi-class Gaussian Process Classification with Noisy Inputs

Autor (es): Villacampa-Calvo, Carlos wi; Zaldivar, Bryan; Garrido-Merchan, Eduardo C.;
Hernandez Lobato, Daniel

Entidad: UAM. Departamento de Ingenieria Informatica

Editor: Microtome Publishing

Fecha de edicion: 2021-01

Cita: Journal Of Machine Learning Research 22.36 (2021): 1-52

ISSN: 1532-4435 (print); 1533-7928 (online)




SETUPS

INCLUDES THE 2-FEATURES INTRODUCED SO
FAR, INDEED (E,,_,... )

INCLUDES THE SYSTEMATICS UNCERTAINTY,
BY INCLUDING TWO MORE FEATURES, THAT ARE: (E,....., 5. 6,» fi.t) WHERE S5, = €,/

AN AUGMENTED DATASET CONTAINING THREE
FEATURES: (E,.,./,0,) INSTEAD OF INCORPORATING THE UNGERTAINTY S AS AN EXTRA

FEATURE, THE STRATEGY HERE IS TO AUGMENT THE DATASET BY THE FOLLOWING
PROCEDURE: FOR EACH OBSERVATION, WE ASSUME THAT THE VARIABLE 5 FOLLOWS A
TRUNCATED GAUSSIAN DISTRIBUTION, WHOSE MEAN IS PRECISELY THE OBSERVED VALUE,
AND THE STANDARD DEVIATION IS PRECISELY THE OBSERVED UNCERTAINTY ¢;, BUT

TRUNCATED SUCHTHAT O < g < 1.

A DATASET CONTAINING THE THREE SAME FEATURES AS ABOVE, L.E. (E,. . 5. 0,) -
HOWEVER, NOW THE UNCERTAINTIES ¢, ARE INCLUDED IN THE STATISTICAL MODEL.

CONCRETELY, THIS SETUP WILL CONCERN EXCLUSIVELY THE NIMGP MODEL MENTIONED
ABOVE.
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DATA PRE-PROCESSING

1. 10/ (-3)GeV < E_peak < 1076 GeV , reliable range of the Fermi-LAT sensitivity in energy
2. Balanced data: same number of DM and Astro

3. Log scale classification

4. Standardised data: each feature is normalised with respect to their medium values.

5.Training/Testing data set split:

RepeatedStratifiedKFold(n_splits=N_splits, n_repeats=N_Repeats)
Number of folds, N_splits=5 -> Train set = 4530 (80%) data Test set=1132 (20%)
Number of times cross-validator needs to be repeated, N_Repeats=20
N_class=N_gsplits x N_Repeats= 100

RepeatedStratifiedKFold

Testing set
Taining set

Stratified: The split into N_folds preserve the
percentage of samples for each class

and without repeated data

in different folds.

(=
=
.
o
-~
L
=
>
o

Repeated: the cross-validation is repeated
a number of times with different random seed

1000 2000 3000 4000 5000
Sample index




DATA PRE-PROCGESSING: CHECK

RepeatedStratifiedKFold(n_splits=N_splits, n_repeats=N_Repeats)
Number of folds, N_splits=3 -> Train set = 3774 (80%) data Test set=1888 (33%)

Number of times cross-validator needs to be repeated, N_Repeats=2
N class=N splits x N _Hepeats= 6

Stratified: The split into N_folds preserve the percentage of samples for each class and without
repeated data in different folds.

Repeated: the cross-validation is repeated a number of times with different random seed

RepeatedStratifiedKFold

Testing set
Taining set

@\

CV iteration

4000
ample index




CLASSIFICATION RESULTS

"samples™!

Overall accuracy (0A)(y, §) = >y g - OA(%) TN (%) TP (%)
"lsamples i—0

LR

2F 849+0.6 854+13 84.4+1.0
4F 86.0+0.5 86.8+1.2 85.6+0.7

PERCENTAGE OF WELL 3F-A  829+0.1 849+0.2 80.9+.0.1

CLASSIFIED ASTRO SOURCES (NORMALISED ~ _ PRELIMINARY

TO THE TOTAL NUMBER OF ASTRO SOURCES) 5F  868:03 864204 8.2:23

4F 93.1+04 947+11 914+1.0

PERCENTAGE OF WELL

CLASSIFIED DARK MATTER SOURCES OFA 850+01 88.7+08  8lx11
(NORMALISED TO THE TOTAL NUMBER OF DM
SOURCES) 82.0+1.3 80.4 +2.7 83.8 +2.1

83.7+0.9 81.1+1.9 86.4+0.5
82.6£0.1 83.4+0.2 81.3+0.1

87.0+0.1 84.5+0.2 89.4+0.2




UNIDS CLASSIFICATION WITH NN

0.6 : 0.6
p(DM)(%) A p(DM)(%)

6+10 UNIDS CLASSIFIED AS DM WITH{ - 36+26 UNIDS CLASSIFIED AS DM WITH
p.>90% (ERROR DEFINED ON 100§ p.>90% (ERROR DEFINED ON 100
CLASSIFICATION) i CLASSIFICATION)
0 UNIDS WITH 5 > 90 % (50%)(40%) t ~ 0 UNIDS WITH 5 > 90 % (50%)

| ~ FEW UNIDS WITH 5 > 40 %



UNIDS CLASSIFICATION WITH NN
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PRELIMINARY CONCLUSIONS

WE TRAINED FOUR DIFFERENT MACHINES ON A SAMPLE OF BOTH EXPERIMENTAL AND
THEORETICAL DATA

WE INTRODUCED THE SYNTHETIC FEATURES AND FOUR DIFFERENT SET-UPS

WE PROPOSED A METHODOLOGY TO INCLUDE SYSTEMATIC UNCERTAINTY IN CLASSIFICATION
PROBLEMS, IMPROVING THE OVERALL CLASSIFICATION ACCURACY FOR ALL THE TRAINED
ALGORITHMS.

THE NN IS THE BEST CLASSIFIER AMONG OUR SELECTION OF DIFFERENT ML ALGORITHMS.

THE NN IN THE 4-FEATURES SETUP IMPROVES THE DEGENERACY OF PULSARS AND DM
SIGNAL

THE RESULTS ARE IN STATISTICAL AGREEMENT WITHIN DIFFERENT RANDOM SEEDS
NO UNIDS ARE CLASSIFIED AS DM IN AGREEMENT WITH PREVIOUS WORKS.

THE PROPOSED METHODOLOGY COULD BE APPLIED TO DIFFERENT SCIENTIFIC CASES
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