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Goodness of Fit

Statisticians formulate an interesting problem: g.o.f.*
Be Da set of data, and R a stat. hyp. for their distribution
Does R provide the right description of D ?

*often question emerges after optimising distribution free parameters on the data, as

a way to assess fit quality. But the problem 1s more general 5
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Goodness of Fit

Statisticians formulate an interesting problem: g.o.f.

Be D a set of data, and R a stat. hyp. for their distribution
Does R provide the right description of D ?

Answering 1s more easy the more restrictive assumptions we

make on how the true distribution, if not R, can look like

But, more partial as well.

Simple vs Simple QH]‘ R Simple vs Composite HW

hypothesis test Y test

* Optimal approach provided by * No Optimal solution. But, Likelihood
Neyman—Pearson Lemma Ratio 1s Good solution

« Optimal answer to very specific * Answers a more general question:
question: test has no or very some power if truth is in Hy.

limited power if truth # H; Generically, larger Hy = less power



The LHC g.o.1. challenge

By analysing the LHC data, we would like to find evidence of
failure of the SM theory, suggesting need of BSM.

This is a tremendously hard gof problem!

BSM is tiny departure from SM, or large in tiny prob. region
Affecting few (unknown) observables over co many we can measure



The LHC g.o.1. challenge

By analysing the LHC data, we would like to find evidence of
failure of the SM theory, suggesting need of BSM.

This is a tremendously hard gof problem!

BSM is tiny departure from SM, or large in tiny prob. region
Affecting few (unknown) observables over co many we can measure

Model-dependent ‘H 1 R Model-independent HW

BSM searches P searches

* Optimise sensitivity to one * Could reveal truly unexpected new
specific BSM model physical laws.

e Fail to discover other models. * No hopes to find Optimal strategy.
What if the right theoretical For a Good strategy, we need a good

model is not yet formulated? choice of Hy.



New Physics Learning Machine (NPLM)

a )
Data:. D= {x;},i=1,...,Np n(x) = N P(x)
1.d meas.uremen.ts of, e.g., reconstructed particle N = [don(z)
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——
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New Physics Learning Machine (NPLM)

Data: D=A{x;},i=1,...,Np
[.1.d. measurements of, e.g., reconstructed particle
momenta in a region of interest

n(x|w)

s n(x) = N P(x) A
N = [dxn(x)
~— -

n(z|w) = n(z|R) e/ W)
f(x;w)is a neural network, or other flexible

functional approximant with good properties in
T (CB ‘ R) many dimensions, like kernels

Strategy 1s to evaluate the classical Likelithood Ratio test statistic

max|L(Hw|D)]

t(D) = 2 log — = 2 max

L(R|D)

W

—N(w) Np
log o—N(R) H

by supervised training Data vs Reference (background) sample.
Reference = artificial data distributed as predicted by the SM
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a )
Data:. D= {x;},i=1,...,Np n(x) = N P(x)
[.1.d. measurements of, c.g., reconstructed particle N = [dzn(z)
momenta in a region of interest

——

n(x|w)

n(z|w) = n(z|R) e/ W)
f(x;w)is a neural network, or other flexible

functional approximant with good properties in
T (CB ‘ R) many dimensions, like kernels

Strategy 1s to evaluate the classical Likelithood Ratio test statistic

max|L(Hw|D)]

—N(w) Np
t(D) = 2 log — CORID) = 2 max q log N H

by supervised training Data vs Reference (background) sample.

Reference = artificial data distributed as predicted by the SM

By using a special loss function:

LA = 3 |- ) @~ 1) -y (o) (D) =—2Min L[S, W)

1w}

(z,y)
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New Physics Learning Machine (NPLM)

Data: D= {x;}, i=1,...

7ND

[.1.d. measurements of, e.g., reconstructed particle

momenta in a region of interest

n(x|w)

Three-lines derivatiorr

t(D) = 2 Max < log

\

n(z|R)
o—N(w) Np x ‘W
W H A R)

s n(x) = N P(x) B
N = [dxn(x)
—

n(z|w) = n(z|R) e/ @W)

f(z;w)is a neut#® network, or other flexible

functional apgroximant with good properties in
many dimengions, like kernels

1))

/

Approximate integral as Monte Carlo sum:

. N(R
N(W):/dxn(:z’;]R)ef(x’W) NR Z fl@iw)

t(D) = —2 Min

wh |

Nr

TER

@Z( f(z;w) —1)

4
L 4
4

—2 Min

-2 f@

xeD

Np
N(W)—N(R)—Zf(a:i;w

TER

w)| = —21}@?L[f( W)
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New Physics Learning Machine (NPLM)

4 )
Data:. D= {x;},i=1,...,Np n(x) = N P(x)
[.1.d. meas.uremen.ts of, c.g., reconstructed particle N = [dzn(z)
momenta 1n a region of interest

~—

n(x|w)

n(z|lw) = n(z|R) e/ @W)

n(x|R)

Three-lines derivation'
( o—N(w) Np

t(D) = 2M“z}x< log T N@®) H n(z, |R

\ 1=1

Approximate integral as Monte Carlo sum:

. N(R
N(w) = /d:cn(le)ef(“"W) NR Z f (aiw)

t(D) = —2Min %z)z el [TW) _ 1) — Zfa:w = —2Min L[f(-,w)]

tw} _ TER xeD tw} 12




INPUT

Reference sample (R)
label=0

Data sample (D)
label=1

Unbinned training samples!

BSM network

M\
- > ' Wi
.\’\Qf'! WH\'W ‘
MA A A

v“ “V w
/ \\ ‘
ok
Q Ao

NN training
W »W

OUTPUT

Single training

H(D) = — 2L [f(x; W)]

n(x|Hg)

fx; w) = log

n(x|Ry) ]

fe; W) T

__J

L

Many trainings
(with pseudo-data)

Empirical distribution of t

— p-value for new datasets

P(t) |
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[llustrating Performances

(Simple 1d example with exponential Reference)

Distribution of the test statistic “t” in Reference Hypothesis

L 0.10} 4 Neurons
=== ===p P(tR) Peak in the Tail |
0.08} No cut
< 0.06} ]
Ay= === = === »P(NP) |
0.04} -
co | e ++ :
0 ' .
0% 20 40 60 30
i
t
i

Distribution of “t” 1n one New Physics Model Hypothesis

t — p — Z-Score (weuse Z = d7(1 — p))
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[llustrating Performances

(Simple 1d example with exponential Reference)

Distribution of the test statistic “t” in Reference Hypothesis

L 0.10} S 4 Neurons
=== ===p P(tR) Peak in the Tail |
0.08} No cut

— 0.0l Notice agreement with Wilks’
ﬁ- - _E_ e = - "P(thP1) Formula:

1 0.04¢ Xi3g + ______________ ] _ Sufficiently regularised networks found to

L | j behave as if their number of d.o.f. was

I 0.02l '{' _- equal to number of parameters.

(Bl | . . :

. | M Theoretical reason mysterious

i O'OOO 20 40 60 80

0

t
0

Distribution of “t” 1n one New Physics Model Hypothesis

t — p — Z-Score (weuse Z = d7(1 — p))
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n(x)

[llustrating Performances

(Simple 1d example with exponential Reference)

6 ————————————————————r—
S| Peak in the Tail, 4 Neurons, No cut
104l NI;’1: Peak iln the Taill— 4 _ :4 .
Reference 3 Z_.M_eg.l_a_n__NN.___---___---___--____._..._,‘:..’_?._.a.:i:_i_ ________
1000} f i o eqtes :-‘.'
N 2 e . :. ..’.:-. .0.‘! .
100} , | . e en e ERR I
1 : .° . o°° .o . :
10} S=10 O .... i .
0.0 0.2 0.4 0.6 0.8 1.0 ! T E
X -1 Median Ideal
) 1 2 3 4 5 6

“Ideal Z-score”: Z;

A “measure of dataset discrepancy”
(the Z-score of optimal test for NP1 model)
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n(x)

[llustrating Performances

(Simple 1d example with exponential Reference)

6 —m™—m—m————————————————————
Excess in the Tail, 4 Neurons i
5iNo cut !
104} NPg:l Excess iln the Taill— e . i"" s
- F Median NN T
eference ] S RLIT Uy R 5, 00 SR,
1000} | ! . AN :"-:f'.,'i::"-
»N | I PR
100} B=2000 - 1 - . .- .: oY, :.::-.. o, i
107 S=90 OE- ° o :. ° i
0.0 0.2 0.4 0.6 0.8 1.0 : i
X -1 Median Ideal i
0 1 2 3 4 5 6

“Ideal Z-score”: Z;

A “measure of dataset discrepancy”
(the Z-score of optimal test for NP2 model)
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n(x)

[llustrating Performances

(Simple 1d example with exponential Reference)

T —
 Peak in the Bulk, 4 Neurons i
'No cut i
o 4 g
10*} NP3: Peak in the Bulk - . . . :t.: - e
Reference  Median NN . . ,-,_. -.:2*;;,::}!,:'.3": '
1000| f ] S T R A R
N SRR - LA
100} | . . :-..“‘ o i .
O B . ° .o o i.
10l S=70 | L e o° o :
* I
0.0 02 0.4 0.6 0.8 1.0 ) [ i
. Median Ideal |
0 1 2 3 4 5 6

“Ideal Z-score”: Z;

A “measure of dataset discrepancy”
(the Z-score of optimal test for NP3 model)
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[llustrating Performances

(Simple 1d example with exponential Reference)

 Peak in the Bulk, 4 Neurons
' No cut

[ Median NN

“Ideal Z-score”: Z;

A “measure of dataset discrepancy”
(the Z-score of optimal test for NP3 model)
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Impertect Machine

Reference Sample 1s an imperfect representation of SM
¢.g., PDF/Lumi/Detector Modeling ...

Imperfections are Nuisance Parameters

Constrained by Auxiliary Measurements
Define a composite Reference hypothesis

R Central-Value Reference:
O Nuisance set to their C-V

n(z|Hwo) = e/ @Vn(z|R,)

max [L(Hw |D) - L(v]A)]

Strategy conceptually unchanged. t(D,A) =2 log VE;X L(R,|D) - L(v]A)]

B L(Hwo,|D) L(v]A) L(R,|D) Lw]A] B
= 2 maxlog | =R D) 'L(O|A)]QmBXIOglﬁ(Rom)'c(mA) =7(D,A4) - AD,A)

Implementation slightly more complex
20



Impertect Machine

-
New Physics Learning Machine (NPLM)

Including systematic uncertainties

fw)

~

7(;v) = exp [gl() V40 2+ o+ 0n() u”}

v

T term
Auxiliary
Reference sample Data sample A TE
R D v(A)
Pre-trained networks
BSM network r layer

eeR
Trainable parameters: v, W

L[f(';w)a Vag()] = Z We |:€f(a:e,w)+log?(ace;u) - 1] - Z [f(:l?,W) +10g?(37; V)] — log [

x€D

L(v]|A)
L(0].A)

|

7(D, A) = —2min L [f(-,w), v; A()]

August 23, 2022

W,V

INPUT

Model

Loss
function

OUTPUT

A term

Data sample

D
!

Auxiliary

measurements
v(A)

Pre-trained networks

}

r layer

~

() = exp [51(-) Ut 00 )12 et () y"]

\4

LIf(5w), ,30)] = N(Ry) = N{Ro) — 3 log(z: »)] - log |

z€D
Trainable parameters: v

A(D, A) = —2min L

v

| {D, A) = 7(D, A) = A(D, A)

37

{V; 3(')]

Gaia Grosso

Courtesy of Gaia Grosso
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An Imperfect Machine at Work

(Simple 1d example with exponential Reference)

Tau distribution distorted by non-central value nuisance
if not corrected, produces false positives

0-10] NN CORRECTION
BE os=0.15, o =0.15
0.08| AT BN 0,0
X13 RA ?¢¢ T
— 0.06| T | TLh bee ¢
: +
E:0.04- -ﬁ+
X 15
0.02| _+_ _+_
0007 5 10 15 20 25 30 35 40 45 000

I [/S [/_\' .
* rooy — 0y +1

WY

I Vs Ux
ﬂ sy — 0 — 1

20 40 60 80 100 0 20 40 60 80 100
t t

t = Tau-Delta independent of true nuisance value

this is essential for a feasible test
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Towards LHC

Our proposed strategy 1s fully defined, including:

* Hyperparameters and regularisation selection
 Systematic approach to Reference mis-modelling

Validated on problems of realistic scale of complexity:

 2-body final state with uncertainties (5D)
« I+MET “SUSY” (8D)
* Heavy Higgs to WWbb (21D)
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Towards LHC

Our proposed strategy 1s fully defined, including:

* Hyperparameters and regularisation selection
 Systematic approach to Reference mis-modelling

Validated on problems of realistic scale of complexity:
* 2-body final state with uncertainties (5D)

o [I+M]

2T “SUSY” (8D)

* Heavy Higgs to WWbb (21D)

Results in summary:

* model-selection strategy converges

* sensitivity to resonant or non-resonant NP

* “uniform” response to NP of different nature
e trained network reconstruct NP

redi 7' scenario
o1 EFT scenario

tau-like

0,=0.03 | F———p- o
L=11fb""1 !
negligible !

o, =0.0001 |} F— © —
L=11fb"1

lectron-like

0y =0.003 | o o
L=035fb"! ‘
muon-like !
s =0.0005 | F—e—++-
L=0.35fb! w
L avg. = 0.37
0.34 0.36 0.38 0.40 0.42
Z/Zref
4| ' ' ‘ ‘ |
10%F (D, 4)=463.7, A(D, A)=247.15, #(D, A)=216.55, Z=6.56
105t [le [ DATA 000 rRECO
.g [ REFERENCE eee A RECO
S 10
O
O
10t}
10°
56l r RECO/REF. |
© 77| == ARECO/REF. 9
T 190 ¢ ¢ DATA/REF. $ nf} { H } I 1
“ P s T
12} Seqepqutogsg=-td------J-$4-1i¢ g5 =l T-_I-_I-_}
s A P

181 263 345 426 508

M

24



Outlook

Next step 1s implementation with true LHC data.

Open theoretical questions

 Why exactly we get chi-squared distributed “t”?
» Regularisation selects space of alternatives, where we are looking for NP
A principled approach to regularisation and “reasonable” alternatives?
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Outlook

Next step 1s implementation with true LHC data.

Open theoretical questions

 Why exactly we get chi-squared distributed “t”?
» Regularisation selects space of alternatives, where we are looking for NP
A principled approach to regularisation and “reasonable” alternatives?

Model-Independent search algorithms also good for:

* Comparison between Monte Carlo Generators
 Data Validation/DQM

* Other GoF problems
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First Real-Life Application?

[Grosso, Lai, Letizia, Pazzini, Rando, Wulzer, Zanetti, to appear]

nD DOQM

Online monitoring of a DT chamber:

Setup (Legnaro INFN national laboratory):

® 2 scintillators as signal trigger

® 1 drift tube chamber: 4 layers 16 wires each (16x4=64 wires)
® Source of signals: cosmic muons (triggered rate ~3 MHz)

e Event: muon track reconstructed interpolating 3/4 hits (one per
layer)

Observables (6D problem):

Layer 1 I X o X Ix//o xI 0 I
e 4 drift times [tdrift, 1 tdrift, 2 tdl‘ift, 39 tdrift, 4]: time for the ionised Layer 2 I e I %A x I ® J
electrons to reach the wire from the interaction point Layer3 xoxl] - K - X
_ Layer 4 l ° /{"“"’x l ° I
(vdrift = Cm/S) . ~
e 0: reconstructed track angle Sketch of a single
. i . . chamber Anode wire  Electrode strips
e N, average number of hits per time window (“orbit”)

——— \3.7 [R5
3 mm E== S AF ==
Dipartimento e
di Fisica . o —/— 42mm
e Astronomia  UniGe ‘ Mﬂgz&a Drift lines
Galileo Galilei ooy

Isochrones Muon
UNIVERSITA DEGLI STUDI DI PADOVA

August 23, 2022 11 Gaia Grosso
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First Real-Life Application?

[Grosso, Lai, Letizia, Pazzini, Rando, Wulzer, Zanetti, to appear]

nD DOQM

Online monitoring of a DT chamber:

Setup (Legnaro INFN national laboratory):

® 2 scintillators as signal trigger
® 1 drift tube chamber: 4 layers 16 wires each (16x4=64 wires)
® Source of signals: cosmic muons (triggered rate ~3 MHz)

e Event: muon track reconstructed interpolating 3/4 hits (one per
layer)

Observables (6D problem): D D M
o 4 drift times [Zgif 15 farife, 20 arife, n Q

electrons to reach the wire fror  Online monitoring of a DT chamber:

S

THRESHOLDS ANOMALIES
(Variee = cm/s) . 2107
® Reference sample: long run in optimal conditions i S
e 0: reconstructed track angle p & P 3 E ;
e N,..: average number of hits p ® Anomalous samples: short runs acquired in presence £, ik
hits* of a controlled anomaly in the value of the threshold ~ | Y
tension of the DT chamber
dD.i;'):e_xrf(imento : 0 100 200 300 400 OT0 1o 200 300 400
i Fisica . A layer 1 : tasr (nS) layer 2 : tgir (nS)
Ast ia UniGe 1 .. P 15
Gallleo Galle | Mak \E" ® Result of the test statistics X0 e
UNIVERSITA DEGLI STUDI DI PADOVA C 1 t t' fth d‘ t 'b t' | 34 =t H ;Et :E 3 ref: 100mV
omplete separaton o e distributons. 1 E 3l 1074 1 75mV
AugUSt 23, 2022 P P NPLM TEST STATISTIC 2o ) 2 02 g 22“‘&
ref: 100 m 5 g 2] g m
0 g 7521\?0 v = i = . = 102
1 50 mV 1
3 25mv 10-4]
070 100 200 300 400 7% 100 200 300 400 10 20 30
layer 3 : tysr (nS) layer4 : tgsz (nS) Dhits
< . Distribution of the observables at different values of the threshold tension
& NPLM with Falkon
M =50,06 =4.84,4 =107
- N(D) = 5000
N,s = 200000
|| I - Execution time: ~ 1.5 — more about this in Marco’s talk tomorrow!
3|?:art]ment0 5 2(:00 2500 3000 3500 4000
i Fisica . X
f e Astronomia  UniGe ng.?ia
Gallileo Galilei S
UNIVERSITA DEGLI STUDI DI PADOVA
August 23, 2022 12 Gaia Grosso
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Outlook

Next step 1s implementation with true LHC data.

Open theoretical questions

 Why exactly we get chi-squared distributed “t”?
» Regularisation selects space of alternatives, where we are looking for NP
A principled approach to regularisation and “reasonable” alternatives?

Model-Independent search algorithms also good for:

* Comparison between Monte Carlo Generators
 Data Validation/DQM

* Other GoF problems

When these techniques applied to real analyses, 1f truly
powerful, we will discover mis-modelled backgrounds.
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Outlook

Next step 1s implementation with true LHC data.

Open theoretical questions

 Why exactly we get chi-squared distributed “t”?
» Regularisation selects space of alternatives, where we are looking for NP
A principled approach to regularisation and “reasonable” alternatives?

Model-Independent search algorithms also good for:

* Comparison between Monte Carlo Generators
 Data Validation/DQM

* Other GoF problems
When these techniques applied to real analyses, 1f truly
powerful, we will discover mis-modelled backgrounds.

But, maybe, New Physics as well !!
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Thank You
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Backup
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The LHC g.o.1. challenge

From a theorists’ perspective:

Non-discovering model-dependent searches can be turned into exclusions of the
targeted BSM. They are still informative as tell us what has not been discovered.

Notice however that they would not tell us what has been discovered any better
than model-independent search, in general. Jet plus MET could have been anything.

How probable that reality 1s so much different from theory that we cannot envisage
it before experiments? This would be great! (... right?)

H

Model-dependent @

Hy

R Model-independent

BSM searches P searches

* Optimise sensitivity to one * Could reveal truly unexpected new
specific BSM model physical laws.

e Fail to discover other models. * No hopes to find Optimal strategy.
What if the right theoretical For a Good strategy, we need a good
model is not yet formulated? choice of Hy.
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Goodness of Fit

The major concern of any scientist:
Am I doing everything right?

Being unable to answer, we turn to an easier question:

What could be wrong?
and we check that

Cross-checks are more easy the more specifically we characterise
the possible failure. But also less powertul

easy/partial o 4id I turn QED showering on, in my PYTHIA simulation?
* 1s the power plug of my detector connected?

* 1s my detector system working “normally”?
* 1s my state-of-the-art knowledge of fundamental interactions
hard/complete ~ (the SM) correct, or it fails to describe the LHC data?

34
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[llustrating Performances

'B=2000

NP;: Peak in the Tail-
Reference

Events

(Simple 1d example with exponential Reference)

X
£ 4 Neurons H(D)=43 ]
— NN ]
| ---- True ‘
' NP-Distributed
0.0 0.2 0.4 0.6 0.8 1.0
X

Bins: Non-discrepant data
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NN: Smooth curve. Can
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[llustrating Performances

(Simple 1d example with exponential Reference)

Probability to find evidence of R being wrong at some level of confidence.

1.0}

H;, N(S) =10, N(B) = 2000

We are better than binned ¥2 because our
model has less parameters but same
effective expressive power.

Same reason why bins are outdated as
statistical models.

Gap to bins grows (exponentially) with
(the curse of) dimensionality.
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m \\\\\
1 E
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Model Selection Hﬁi’*

Which hypotheses (distributions) our (statistical) model contains?
*Not “all of them”, otherwise it would fail (overfitting) v 4

It should contain approximations of all the reasonable ones
*No Statistical Learning notion of model capacity seems g
reasonable physics measure of volume or boundaries of Hw | ¥ »

*Minimal allowed variation scale would sound reasonable,
—_—

but no theory developed | X
Overfitting

Waiting for principled approach, solution 1s y2-compatibility:

*Naive Wilks Theorem application:

P(t|R) is ¥2, with as many d.o.f. as fit parameters (for us, num. of NN par.s)

Provided statistics 1s large relative to fitted model “complexity”
... or, which 1s the same ...
Provided model 1s “simple enough”, for given data statistics

*Asy. For. violation = sensitivity to low-statistics portion of dataset = overfitting
*Regularisation by Weight Clipping, that forbids sharp variations

NN with too many parameters cannot be made y2-compatible. Take largest allowed -



Weight Clipping Selection

0.09
Weight clipping: 9 wem  Tarqget v2
— — x}; percentiles 0.08 get Xis
0.07
.y | S °
95 % 0.06
; ~= 0.05
16.0] = e o e 75% | =
& 0.04
12.3 50 %
0.03
9.3 25 %
0.02
5.9} 5 %
0.01
0.00
50k 100k 150k 200k 250k 300k 0 10 20 30 40 50
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