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Dynamics of topological defects
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Restoration of symmetry
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Pairs of topological defects form [FANG ET AL19]

Symmetry spontaneously broken
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T > T.: Low energy dynamics in the normal phase

@ Resolving molecular dynamics not efficient or needed for low energy
dynamics A > {y: Effective Field Theory (EFT) approach =
hydrodynamics.

BKT
@ Also describes e.g. Quark-Gluon Plasma or electron flows in
Graphene.
@ Systematic construction from global symmetries (translations,
0 rotations, U(1), etc.)

= conserved currents: oJ" =0, n=tx.



T < T, Low energy dynamics in the broken symmetry

phase

BKT

Include gapless Goldstone field in the EFT.

In the absence of defects, well-known: e.g. superfluid/crystal
hydrodynamics, pion hydrodynamics (chiral limit of QCD).

Defects: non-trivial winding

/% - dl = 27N, 7
‘ |

= Goldstone field multi-valued ‘ }

Bad starting point for EFTs.

Tracking motion of many defects: goes contrary to EFT spirit.



Zero temperature superfluids

@ T =0 low-energy EFT [sovo2:

L,=—

Xnn n i
(000 + 2 (D)

Xnn = On/0p: charge static

susceptibility,

ns = 0%f /0|0'p|?: superfluid density.

@ Linear dispersion relation:
P Re[w]

n
2 s
wy = *cq, &=

Xnn w=Csq

@ Higher energies: outside of regime of
validity of EFT, extra gapped dofs
(rotons, vortices...).




Zero temperature superfluids

@ The Goldstone shifts under U(1) gauge transformations:

=+ A

@ Noether: U(1) charge conservation

V=0, ()= (—xXmOep,nsd'p)

@ Constitutive relations + Josephson relation

Ji=—XmOp & Orp=—p

@ No vortices: conserved winding number

1

T o

N, dp = 00,9 =0 (Stokes’ theorem)



Emergent higher-form symmetry

@ External gauge field = covariant derivative (gauge invariance)
Lo—= Ly =A== Oup—=Dup=0,p— aA,
a : charge of the condensed operator.
@ Hodge dualize, [peiacrinz, Horvay & Marivs'19)
(*K) = Duep
*K: d-form in d 4+ 1 dimensions.

@ No vortices:

ddye—0 ~ [dK=—3F]. F=da

o U(l)‘(//v_l symmetry [Gaorro gt an14]
Conservation equation for the number of
winding hyperplanes.




0-form symmetry in D=3+1
1-form current J#

V,Jr=0

counts particles (J*) = n

Ordinary symmetries vs higher-form symmetries

2-form symmetry in D=3+1
3-form current (xK)* = Dt

Anomalous conservation law
VHK/,LVH — gem)\;u/,:ﬁ)‘

~i

counts planes ((xK)') = p



Maxwell E&M

Maxwell equations + Bianchi identity

VuF* = jg, 6/\WV/\FW =0

@ Define two 2-form currents: J|” = F*, Jii = (xF)",
mag

corresponding to U‘fl(l) and Ul (1), [GAIOTTO ET AL'14].
@ If (j&) = 0: both are conserved
V5 =0 Vudhag =0

Conservation of electric and magnetic field lines.

@ Couple to charged matter (j&) # 0: U$/(1)
broken, electric field lines end on charges. <\ /
—— (+
@ MHD: conservation of T#” + magnetic K/ S
higher form symmetry JL., = (xF)"*",

[GrozpANOV, HOFMAN & IQBAL'16, ARMAS & JAIN'18].
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Superfluids as emergent anomalous higher-form symmetries

dxK=—-—a F .

@ The source for the 0-form U(1) appears on the rhs of the

conservation equation of the d — 1-form density: mixed ‘t Hooft
anomaly, [DELACRETAZ ET AL'19].

@ Anomaly coefficient fixed in the UV (UV-IR mixing).

@ Anomalies

o Well-known from QED (axial anomaly)

e Source hydrodynamic terms at first order in gradients [sox &
surowxa09]: chiral magnetic/vortical effect.

o Mixed axial-gravitational anomalies (review [Laxosteneric]),
measured in Weyl semi-metals [GoorH ET AL'17].
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Hydrodynamics with anomalous higher-form symmetries

@ Here, the anomaly sources ideal, zeroth-order terms:

(K)t = ap, S = afi

@ Anomaly implies gapless superfluid Re (=)
sound modes 0"

N

1 s
wi:j:a\/n»Squ..., ns = — =3[
Xnn X P
@ Divergent dc conductivity:
i a®ns >

i i
o(w)E;Gﬁjx(w,q:O)za at O )
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T > Tpgkr: Broken anomalous higher-form symmetries

@ At T > Tk, vortices condense: (J!) # 0

O KM = —ae™ Fy,, + JI

Explicitly breaks winding conservation

@ Constitutive relation:

(Y = — T u KM ..

@ Gaps one of the sound modes:
we =—iT +0(¢%), w- = O(q?).

@ Finite conductivity:

ns 1

o(w) ==
() T —jw
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Conclusion and outlook part |

@ Higher-form symmetries are useful to avoid using multi-valued fields
in phases with SSB.

@ The anomaly plays a crucial role. What about other SSB phases
(translations, etc.)?

@ When vortices condense, treat breaking of symmetry more
systematically within hydro (similar to momentum relaxing hydro):
analogous to formulating Navier-Stokes equations.

@ Use it to simulate fluids of defects: BECs in cold atom systems, etc.
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Quantum critical points

T

>, Quantum 7
\

\ critical 7

Insulator

N
>

g

[SAcHDEV'08]

@ QCPs: Mediate phase transition at fixed (zero) temperature as a
function of external parameter (magnetic field, pressure, doping...).

@ Temperature is the only scale = scale-invariant physics

15
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Quantum criticality and strange metals
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[COOPER ET AL'09]

Conondrum: strange metals reminiscent of QCPs, but

@ No order parameter clearly associated to strange metal phase.

@ pic =1/04c ~ 1/ T incompatible with scale invariance.

Outside Landau paradigm? Unconventional quantum criticality?

19
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Deconfined Quantum criticality

@ DQCPs: different order parameters on either side of the QCP

@ Emergent dofs at the QCP (typically emergent gauge fields):
emergent topological conservation law

1
Sleval = [ dx [[(0 = el ri + (ulef) + 57

@ z: spinon; a emergent gauge field;
@ Maps back to Wilson-Fisher type action through ¢ = zaaaﬁz[3

@ In the DQCP scenario, the a's become dynamical at the QCP and
gauge the U(1) redundancy of the spinon description.
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Deconfined Quantum criticality

@ Scenarii with deconfined gauge fields put forward to describe the
pseudogap phase of high T, superconductors (review [sacinev &

CHOWDHURY 16 ) .

@ AdS/CFT allows to construct whole families of QCPs with
unconventional scaling properties:

Emergent dofs and symmetries?

New effective actions?

Relation to nature of charged black hole horizons?
Relevance for strange metals?
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Holographic duality primer

Anti de Sitter

ZQFT [g¢7 ’_4/u g;w] = Zgravity [g(ba ’_A/M guz/]
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Holographic quantum critical phases

@ Consider deforming holographic CFT by relevant scalar operator

L= R—%8¢2—%Z(¢)F2—V(¢), V(p—0)— =2\, Z(¢p—0)—1

@ In the IR, ¢ — oco. Pick scalar couplings such that
V(¢ — +o0) = Voe 9%, Z(¢ — 00) — Z,e"?

holographic quantum critical phases [CuARMOUSIS, B.G., Kim, KIRITSIS &
vever10] (@ story similar to what follows applies to probe branes).

@ Hyperscaling-violating scaling solutions in the IR

dsie = (P72 (—dt? + dC + dx®),  ¢ir = K(0) log (.

@ Vanishing ground state entropy s ~ T?=9).
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Holographic quantum critical phases

@ Zero density: Maxwell field in background with UV AdS, and IR
0#0

1
Sy = — / d3+1x«/7—g12(¢)FABFAB
o Low temperatures, assume

Z(P(Q) ~ ¢, AL<O0 = gge~ TATL £ TI20

- Re (=)
@ Compute ac conductivity: A
OS
i Odc -f_‘
= —GR = O = T\
o(w) w J(w, q ) 1—jor’
e—>
Tr~T2 > 1 r
@ Sharp Drude-like peak, similar to

superfluids with condensed vortices. 0] hnd
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Spatially resolved transport

—Im(w)/T (thick, circles)
|Re(w)|/T (dashed, squares)

1071010-*10-*10*10"210"" 10" 10" 10?
KT

@ Pole collision between gapped and diffusion pole
w=—iDg*+..., + w=—i/T+iD,g*+...
U

w::l:csqfi+...

2T
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Effective action at T # 0

@ Split bulk action into UV (0 < r < r,) and IR pieces (r, < r < rp),

[NICKEL & Son’10]:

_ 1 _ _
5[903 A,uy au] = 2 / d*lx |:7Xnn (atﬁa — At + at)2 + X4 (axSD - A+ ax)ﬂ

@ Looks like the action for an ideal superfluid, up to a,,.

@ Emergent gauge field a,,, with a nonlocal kinetic term .
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Effective theory at T # 0

@ Now integrate out a, in Syy + Sir:

.t t At . 04Ot i A
J° =X (070 =A%) = Xnnpt, J =< (0'p-A
( ) (1+XJJ10dCat) )

0 w < xyos < T: diffusive =
hydro o ke s

i i i 8 §

J'= =04 (61” - El) J CRl d

- 5 102 3

p=0¢—A £ 107 g

3 E

3 3

' g

_L_._._L
3523
e e

] XJJO’d_Cl <Kw<KT:
‘superfluid’

1078

. ; - 10710-%10-*10-*10-*10-210"" 10° 10" 10?
J'=xu (09 =AY, T

24



Emergent higher-form symmetry

_ . 9 o
it =y (0t — A =T (i A
P @A) T G oy )

I

O +xud'=xu E" =1, T=04xy >1/T
@ 't Hooft anomaly .

@ Define _
(K)o = 0pp — Ay + ay

K obeys the equation
dxK=—F+ f

The emergent, dynamical gauge field a is responsible for the
relaxation of K (# from a superfluid).
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Effective action at T =0

@ Does the symmetry persist at T = 07 Repeat the calculation:

1 - _
Serr = 5 / AP [ =X (909 — Ac + 20)” + w0y (e — Ac + )’

1 ft,'fti - CIZRf;'jfij
2 / dwdq i(w? — cg?)t=Ax/27

@ Collective mode
W= Csq— iFqt A ..

Different attenuation from a T = 0 superfluid. Holographic ‘zero
sound’ [KARCH, SON & STARINETS'08].

2



Summary zero density

Su =~ / /B ZOFsFE, Z(0(0) ~ (P, A <0,

@ Effective action in terms of a superfluid-like scalar coupled to an
emergent gauge field a,, with nonlocal action: evades scale

invariance.
Ode ~ TAxfl

@ T =0: ‘zero sound’ mode with anomalous attenuation.

@ T #0: crossover from diffusive+gapped mode to propagating
modes.

@ Can be reformulated in terms of relaxed higher-form symmetry
dxK=-F+f, f=da
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Outlook zero density

S = [ /g ZOFF R Z@(O) ~ ¢ B <0,

@ Does the symmetry survive at nonlinear level?

@ The same physics underlies probe brane models and the zero sound
mode there [KARCH ET AL'08; NICKEL & SON’10; Hovos, O'BANNON & WU'10; DAVISON &
STARINETS 11; CHEN & Lucas’17; GUSHTEROV, O’BANNON & RODGERS’18], AS well as
higher—derivative Maxwell theories [wirczak-Krenpa & Sacupev'i2,

Wirczak-KREMPA'13], [GROzZDANOV, Lucas & POOVUTTIKUL'18].

@ (Some version of it) plausibly also underlies higher-derivative gravity
theories [KAPLIS, GROZDANOV & STARINETS’16]
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Finite density in a nutshell

20

@ T # 0, states with emergent z =1 and 6 # 0 contain collective
excitation similar to zero density.

@ Reflects dynamics of the incoherent current

5./|)|(1c = 5./X - p(sux ) XJincP = 0.

@ Different from phase-relaxed superfluid: long-lived mode affects all
thermoelectric conductivities.

e T =0
XJinc ine ™ Xninc”inc - 0

@ = Collective mode dissolves into branch cut at T = 0. Fate of the
emergent higher-form symmetry?



Final comments

@ In these holographic states, the effective gauge coupling in the bulk
vanishes in the IR: higher-derivative terms might be important
[GOLDSTEIN, KACHRU, PRAKASH & TRIVEDI'09]. Restore holographic zero sound?

@ Effective holographic action? Emergent gauge field, metric?
Complicated due to need to integrate out metric dofs.

@ Scaling theories with large anomalous dimensions were constructed
[GOUTERAUX’13,"14; KARCH14; DAVISON, HARTNOLL & GOUTERAUX’15; DAVISON, GOUTERAUX &

cenrie1s] to reproduce the low T scalings of currents
[S]:d—e, [n]/R:d—0+¢

0: effective spatial dimensionality [KANITSCHEIDER & SKENDERIS’09; GOUTERAUX &
KirITsIs’11; GOUTERAUX, SKENDERIS, SMOLIC, SMOLIC & TAYLOR'12].

®: Anomalous charge dimension?

@ Reflects presence of emergent dofs coupling to J#7
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Final comments

@ In DQCPs, emergent gauge fields lead to large anomalous
dimensions, [SENTHIL, VISHWANATH, BALENTS, SACHDEV & FISHER'03].

@ Emergent gauge fields often associated with emergent higher-form
symmetries, anomalies and fractionalized dofs [sicuev'1s], [Fise, Sextam &
Trornaren'20], Which affect Luttinger theorem

J' = Voles + negr

@ In holography, charged horizons dubbed fractionalized since no FS in
correlators, [Huuse & Sacupev'il, Harmvorr11,..]. Make this more precise?
Deconfined nature of horizon dofs?

@ Use holographically-derived EFTs to study unconventional quantum
critical phases in cond mat?
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