

Outline

Introduction

□ The Role of the Higgs Boson Mass

□ Trilinear Higgs-Self-Coupling and HH Production

- Exp., theor. & HH constraints on BSM
- Scan results
- Benchmark C2HDM

Dark Matter from the Higgs Sector

- Higgs Portal, Higgs->DMDM at NLO EW
- Scalar and Vector DM models: NLO EW to indirect DM detection

Baryogenesis in BSM Models

- CP in the Dark
- Impact EFT contributions
- Size of Baroygenesis

The The Gradar & Marsed fist ber Sitchada Hyd Woodpellete

The Standard Model is Structurally Complete - But

Status

M. Mühlleitner (KIT), 14 December

*Experimental reality: No Beyond the Standard Model Physics discovered so far! Guido Altarelli, 16/1/12, KIT: "The situation is depressing, but not desperate."

We have the SM-like Higgs boson
What can we learn from Higgs physics?

Higgs 10th Birthday!

The Role of the Híggs Boson Mass

+ Present Accuracy:

[ATLAS,CMS]

M_H = 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV

- + Why precision?
- * Self-consistency test of SM at quantum level
 (e.g.: Higgs loop corrections to W boson mass)
- $* MH \leftrightarrow stability of the electroweak vacuum$

[Degrassi eal;Bednyakov eal]

- * Higgs mass uncertainty feeds back in uncertainty on Higgs observables
- ★ Test parameter relations in beyond-SM theories
 ⇒ indirect constraint of viable BSM parameter space!

+ Present Accuracy:

[ATLAS,CMS]

M_H = 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV

+ Why precision?

Self-consistency test of SM at quantum level
 (e.g.: Higgs loop corrections to W boson mass)

* $MH \leftrightarrow stability$ of the electroweak vacuum

[Degrassi eal;Bednyakov eal]

- * Higgs mass uncertainty feeds back in uncertainty on Higgs observables
- * Test parameter relations in beyond-SM theories
 - ⇒ indirect constraint of viable BSM parameter space!

The W Boson Mass

Higgs boson mass:

- * SM: fundamental parameter, not predicted by the theory
- * Supersymmetry: calculable from input parameters; quantum corrections Δm^2_H are important!

NMSSM:

- * less important loop corrections needed compared to the MSSM
- * solves little hierarchy problem

[Kim, Nilles, '84]

SUSY Higgs Masses

- Supersymmetry: requires at least 2 complex Higgs doublets
- + Minimal Supersymmetric extension (MSSM): 2 complex Higgs doublets

5 Higgs bosons: *h, H, A, H*+, *H*– 4 neutralinos: $ilde{\chi}^0_i \ (i=1,...,4)$

- * Next-to-MSSM (NMSSM): 2 complex Higgs doublets plus complex singlet field
- + Enlarged Higgs and neutralino sector:

$\mathcal{O}(\alpha_{\text{new}}^2) = \mathcal{O}((\alpha_{\lambda} + \alpha_{\kappa} + \alpha_{\dagger})^2)$ Mass Corrections in the CP-Violating NMSSM

Corrections to h_u -like Higgs (\triangleq SM-like Higgs)

[Dao,Gabelmann,MM,Rzehak,'21]

Remaining theoretical error: $\mathcal{O}(\text{few}\%)$

- + Higgs Discovery \rightarrow New Era of Particle Physics: structurally completes the SM
 - self-consistent framework to describe physics up to cosmologically relevant scales
 - extended Higgs sectors: answers to generation of baryon asymmetry, nature of DM
- + SM Higgs couplings:
 - proportional to masses/masses² of the corresponding SM particle g_{hff} ~ m_f/v, g_{hvv} ~ m_v²/v²
- + Higgs self-coupling strength:
 - still unknown

Experimental Results - Limits on Trilinear Higgs Self-Coupling

Ultimate Test of the Higgs Mechanism

Double Higgs Production Processes

Double Higgs Production Processes

+Loop mediated at leading order - SM: third generation dominant

+ Threshold region sensitive to λ ; large M_{HH}: sensitive to c_{tt}/c_{bb} [e.g. boosted Higgs pairs]

[Baglio,Djouadi,Gröber,MM,Quévillon,Spira]

$$gg \rightarrow HH: rac{\Delta\sigma}{\sigma} \sim -rac{\Delta\lambda}{\lambda}$$

decreasing with $M_{\mbox{\scriptsize HH}}$

Higgs Pair Production through Gluon Fusion

+ Threshold region sensitive to λ ; large M_{HH}: sensitive to c_{tt}/c_{bb} [e.g. boosted Higgs pairs]

[Baglio,Djouadi,Gröber,MM,Quévillon,Spira]

$$gg \rightarrow HH: rac{\Delta\sigma}{\sigma} \sim -rac{\Delta\lambda}{\lambda}$$

decreasing with $M_{\rm HH}$

New Physics Effects in Higgs Pair Production

Cross section: - different trilinear couplings - different Yukawa couplings
 novel particles in the loops - resonant enhancement - novel couplings

+Example NMSSM:

[taken from Dao,MM,Streicher,Walz, 13]

New Physics Effects in Higgs Pair Production

Cross section: - different trilinear couplings - different Yukawa couplings
 novel particles in the loops - resonant enhancement - novel couplings

+Example extension w/ strange Dark sector:

[thanks to D. Neascu]

2 Higgs doublets	CP-violating	Singlet extension	Supersymmetry
h,H,A,H⁺,H⁻	H1,H2,H3 ,H⁺,H -	H1,H2,H3,H+,H-	H1,H2,H3,A,H+,H-
SFOEWPT, DM , plus charged Higgs	plus CP violation baryogenesis	rich pheno, DM	a lot (DM, <u>CPviol,</u> Hierarychy,)

Resonant Enhancement

+ Following results based on:

Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MMM, Santos, "Benchmarking Di-Higgs Production in Extended Higgs Sectors", JHEP 09 (2022) 011

+ Scans in parameter spaces of the models w/ ScannerS:

take into account all relevant theoretical and experimental constraints

+ limits from di-Higgs searches

4b: [ATLAS-CONF-Note-2021-030, ATLAS,1804.06174], WWγγ: [ATLAS,1807.08567] bbγγ: [ATLAS,1807.04873]; bbWW: [ATLAS,1811.04671, bbZZ: [CMS,2006.06391] bbττ: [ATLAS,1808.00336; ATLAS-CONF-Note-2021-035; ATLAS,2007.14811], 4W: [ATLAS,1811.11028]

+ Computation of Higgs pair production cxn:

HPAIR [Spira] for C2HDM [Gröber,MM,Spira,'17], NMSSM [Dao,MM,Streicher,Walz,'13], 2HDM [MM], N2HDM [MM]: Born-improved HTL cxn; K-factors 1.4-2.1

+ Scatter plots:

LO cxn times factor 2 (to approx. account for NLO QCD), benchmark points include NLO QCD calculated w/ HPAIR

----- ATLAS-CONF-NOTE-2021-030 bbr 7

- - ATLAS-CONF-NOTE-2021-035 bbb

+ Our definition:

take into account all relevant theoretical and experimental constraints

+ limits from di-Higgs searches

 $\sigma_{res}^{HH} < 0.1 * \sigma_{full} \rightarrow non-resonant production$

Required: combination Non-resonant and Resonant Searches

- full/dashed lines: top-Yukawa coupling = SM value/+-10%
- Combination of resonant and resonant searches required to constraint trilinear coupling

Required: combination Non-resonant and Resonant Searches

- full/dashed lines: top-Yukawa coupling = SM value/+-10%
- Combination of resonant and resonant searches required to constraint trilinear coupling

Parameter dependence - Ex. R2HDM T1

Parameter dependence - Ex. R2HDM T1

Parameter dependence - Ex. R2HDM T1

*: even more in models with several resonant Higgs bosons

Impact of Single- & Di-Higgs Constraints on trilinear Higgs couplings

	R2H	IDM	C2HDM		
	$y_{t,H_{ m SM}}^{ m R2HDM}/y_{t,H}$ $\lambda_{3H_{ m SM}}^{ m R2HDM}/\lambda_{3H}$		$y_{t,H_{ m SM}}^{ m C2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m C2HDM}/\lambda_{3H}$	
light I	0.8931.069	-0.0961.076	0.8981.035	-0.0351.227	
medium I	n.a.	n.a.	0.8891.028	0.2511.172	
heavy I	0.9461.054	0.4811.026	0.8931.019	0.6711.229	
light II	0.9511.040	0.6920.999	0.9561.040	0.0960.999	
medium II	n.a.	n.a.	_	_	
heavy II			_	_	
	N2H	IDM	NM	SSM	
	$N2H$ $y_{t,H_{ m SM}}^{ m N2HDM}/y_{t,H}$	$\mathrm{IDM} \ \lambda_{3H_{\mathrm{SM}}}^{\mathrm{N2HDM}}/\lambda_{3H}$	$\frac{\text{NMS}}{y_{t,H_{\text{SM}}}^{\text{NMSSM}}/y_{t,H}}$	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H}$	
light I	N2H $y_{t,H_{\rm SM}}^{ m N2HDM}/y_{t,H}$ 0.8951.079	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004	$NM_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}$ n.a.	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H} \ { m n.a.}$	
light I medium I	N2H $y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}$ 0.8951.079 0.8741.049	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004 -1.2471.168	$NM_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}$ n.a. n.a.	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H} \ { m n.a.} \ { m n.a.}$	
light I medium I heavy I	N2H $y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}$ 0.8951.079 0.8741.049 0.8931.030	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004 -1.2471.168 0.7701.112	$\begin{array}{ c c c c } & \text{NM}_{t} \\ & y_{t,H_{\text{SM}}}^{\text{NMSSM}} / y_{t,H} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \end{array}$	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H} \ { m n.a.} \ { m n.a.} \ { m n.a.} \ { m n.a.} \ { m n.a.}$	
light I medium I heavy I light II	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\\ 0.9421.038\end{array}$	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\text{SM}}}^{\text{N2HDM}}/\lambda_{3H} \\ \text{-}1.1601.004 \\ \text{-}1.2471.168 \\ 0.7701.112 \\ \text{-}0.6080.999 \end{array}$	$\begin{tabular}{ c c c c c } & NM \\ & y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H} \\ & {\rm n.a.} \\ & {\rm n.a.} \\ & {\rm n.a.} \\ & {\rm n.a.} \\ & {\rm 0.8261.003} \\ \end{tabular}$	$\begin{array}{c} \mathrm{SSM}\\ & \lambda_{3H_{\mathrm{SM}}}^{\mathrm{NMSSM}}/\lambda_{3H}\\ & \mathrm{n.a.}\\ & \mathrm{n.a.}\\ & \mathrm{n.a.}\\ & \mathrm{n.a.}\\ & \mathrm{0.0240.747} \end{array}$	
light I medium I heavy I light II medium II	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\\ 0.9421.038\\ 0.9421.029\end{array}$	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\text{SM}}}^{\text{N2HDM}}/\lambda_{3H} \\ \text{-}1.1601.004 \\ \text{-}1.2471.168 \\ 0.7701.112 \\ \text{-}0.6080.999 \\ 0.6130.994 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} {\rm SSM} \\ & \lambda_{3H_{\rm SM}}^{\rm NMSSM}/\lambda_{3H} \\ & {\rm n.a.} \\ & {\rm n.a.} \\ & {\rm n.a.} \\ & {\rm 0.0240.747} \\ -0.5020.666 \end{array}$	

	R2H	IDM	C2H	C2HDM		
	$y_{t,H_{ m SM}}^{ m R2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m R2HDM}/\lambda_{3H}$	$y_{t,H_{ m SM}}^{ m C2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m C2HDM}/\lambda_{3H}$		
light I	0.8931.069	-0.0961.076	0.8981.035	-0.0351.227		
medium I	n.a.	n.a.	0.8891.028	0.2511.172		
heavy I	0.9461.054	0.4811.026	0.8931.019	0.6711.229		
light II	0.9511.040	0.6920.999	0.9561.040	0.0960.999		
medium II	n.a.	n.a.	—			
heavy II	—	_	_			
	N2H	IDM	NM	SSM		
	$N2H$ $y_{t,H_{ m SM}}^{ m N2HDM}/y_{t,H}$	$\mathrm{IDM} \ \lambda^{\mathrm{N2HDM}}_{3H_{\mathrm{SM}}}/\lambda_{3H}$	$\frac{\rm NMS}{y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}}$	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H}$		
light I	N2H $y_{t,H_{\rm SM}}^{ m N2HDM}/y_{t,H}$ 0.8951.079	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\text{SM}}}^{\text{N2HDM}} / \lambda_{3H} \\ \text{-1.1601.004} \end{array}$	$\frac{\text{NMS}}{y_{t,H_{\text{SM}}}^{\text{NMSSM}}/y_{t,H}}$ n.a.	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H} \ { m n.a.}$		
light I medium I	N2H $y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}$ 0.8951.079 0.8741.049	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\text{SM}}}^{\text{N2HDM}}/\lambda_{3H} \\ \text{-}1.1601.004 \\ \text{-}1.2471.168 \end{array}$	$NMS y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}$ n.a. n.a.	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H} \ { m n.a.} \ { m n.a.}$		
light I medium I heavy I	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\end{array}$	$\begin{array}{c c} \text{IDM} \\ & \lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H} \\ \hline & -1.1601.004 \\ & -1.2471.168 \\ & 0.7701.112 \end{array}$	$\begin{array}{c c} & \text{NMS} \\ & y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \end{array}$	$\begin{array}{c} \mathrm{SSM} \\ \lambda_{3H_{\mathrm{SM}}}^{\mathrm{NMSSM}}/\lambda_{3H} \\ \mathrm{n.a.} \\ \mathrm{n.a.} \\ \mathrm{n.a.} \\ \mathrm{n.a.} \end{array}$		
light I medium I heavy I light II	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\\ 0.9421.038\end{array}$	$\begin{array}{c c} \text{IDM} \\ & \lambda_{3H_{\text{SM}}}^{\text{N2HDM}}/\lambda_{3H} \\ \hline & -1.1601.004 \\ & -1.2471.168 \\ & 0.7701.112 \\ & -0.6080.999 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \mathrm{SSM}\\ & \lambda_{3H_{\mathrm{SM}}}^{\mathrm{NMSSM}}/\lambda_{3H}\\ & \mathrm{n.a.}\\ & \mathrm{n.a.}\\ & \mathrm{n.a.}\\ & \mathrm{n.a.}\\ & \mathrm{0.0240.747} \end{array}$		
light I medium I heavy I light II medium II	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\\ 0.9421.038\\ 0.9421.029\end{array}$	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\text{SM}}}^{\text{N2HDM}}/\lambda_{3H} \\ \text{-}1.1601.004 \\ \text{-}1.2471.168 \\ 0.7701.112 \\ \text{-}0.6080.999 \\ 0.6130.994 \end{array}$	$\begin{array}{c c} & \text{NMS} \\ & y_{t,H_{\text{SM}}}^{\text{NMSSM}} / y_{t,H} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \\ & 0.8261.003 \\ & 0.9161.000 \end{array}$	SSM $\lambda_{3H_{\rm SM}}^{\rm NMSSM}/\lambda_{3H}$ n.a. n.a. n.a. 0.0240.747 -0.5020.666		

no parameter points compatible

w/ constraints found

M. Mühlleitner (KIT), 14 December

	R2H	IDM	C2HDM		
	$y_{t,H_{\mathrm{SM}}}^{\mathrm{R2HDM}}/y_{t,H}$ $\lambda_{3H_{\mathrm{SM}}}^{\mathrm{R2HDM}}/\lambda_{3H}$		$y_{t,H_{ m SM}}^{ m C2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m C2HDM}/\lambda_{3H}$	
light I	0.8931.069	-0.0961.076	0.8981.035	-0.0351.227	
medium I	n.a.	n.a.	0.8891.028	0.2511.172	
heavy I	0.9461.054	0.4811.026	0.8931.019	0.6711.229	
light II	0.9511.040	0.6920.999	0.9561.040	0.0960.999	
medium II	n.a.	n.a.	_	—	
heavy II			_	_	
	N2H	IDM	NM	SSM	
	$N2H$ $y_{t,H_{ m SM}}^{ m N2HDM}/y_{t,H}$	IDM $\lambda^{\mathrm{N2HDM}}_{3H_{\mathrm{SM}}}/\lambda_{3H}$	$\frac{\rm NM}{y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}}$	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H}$	
light I	N2H $y_{t,H_{\rm SM}}^{ m N2HDM}/y_{t,H}$ 0.8951.079	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004	$NM_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}$ n.a.	$\begin{array}{c} \text{SSM} \\ \lambda_{3H_{\text{SM}}}^{\text{NMSSM}}/\lambda_{3H} \\ \text{n.a.} \end{array}$	
light I medium I	N2H $y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}$ 0.8951.079 0.8741.049	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004 -1.2471.168	$\begin{array}{c c} & \text{NM}_{t} \\ y_{t,H_{\text{SM}}}^{\text{NMSSM}} / y_{t,H} \\ & \text{n.a.} \\ & \text{n.a.} \end{array}$	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H} \ { m n.a.} \ { m n.a.}$	
light I medium I heavy I	N2H $y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}$ 0.8951.079 0.8741.049 0.8931.030	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004 -1.2471.168 0.7701.112	$\begin{array}{ c c c c } & \text{NM}_{t} \\ & y_{t,H_{\text{SM}}}^{\text{NMSSM}} / y_{t,H} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \end{array}$	$\begin{array}{c} \mathrm{SSM} \\ \lambda_{3H_{\mathrm{SM}}}^{\mathrm{NMSSM}}/\lambda_{3H} \\ \mathrm{n.a.} \\ \mathrm{n.a.} \\ \mathrm{n.a.} \\ \mathrm{n.a.} \end{array}$	
light I medium I heavy I light II	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\\ 0.9421.038\end{array}$	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\text{SM}}}^{\text{N2HDM}}/\lambda_{3H} \\ \text{-}1.1601.004 \\ \text{-}1.2471.168 \\ 0.7701.112 \\ \text{-}0.6080.999 \end{array}$	$\begin{tabular}{ c c c c c } & NM \\ & y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H} \\ & {\rm n.a.} \\ & {\rm n.a.} \\ & {\rm n.a.} \\ & {\rm n.a.} \\ & {\rm 0.8261.003} \\ \end{tabular}$	$\begin{array}{c} \mathrm{SSM}\\ & \lambda_{3H_{\mathrm{SM}}}^{\mathrm{NMSSM}}/\lambda_{3H}\\ & \mathrm{n.a.}\\ & \mathrm{n.a.}\\ & \mathrm{n.a.}\\ & \mathrm{n.a.}\\ & \mathrm{0.0240.747} \end{array}$	
light I medium I heavy I light II medium II	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\\ 0.9421.038\\ 0.9421.029\end{array}$	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\text{SM}}}^{\text{N2HDM}}/\lambda_{3H} \\ \text{-}1.1601.004 \\ \text{-}1.2471.168 \\ 0.7701.112 \\ \text{-}0.6080.999 \\ 0.6130.994 \end{array}$	$\begin{array}{c c} & \text{NM}_{t} \\ y_{t,H_{\text{SM}}}^{\text{NMSSM}} / y_{t,H} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \\ & 0.8261.003 \\ & 0.9161.000 \end{array}$	SSM $\lambda_{3H_{\rm SM}}^{\rm NMSSM}/\lambda_{3H}$ n.a. n.a. 0.0240.747 -0.5020.666	

Experimental results cut on λ_{HHH} and hence on the parameter space

ATLAS; -0.4 $\leq \kappa_{\lambda} \leq 6.3$

M. Mühlleitner (KIT), 14 December

28th IFT Xmas Workshop

	R2H	IDM	C2HDM		
	$y_{t,H_{\rm SM}}^{\rm R2HDM}/y_{t,H}$ $\lambda_{3H_{\rm SM}}^{\rm R2HDM}/\lambda_{3H}$		$y_{t,H_{ m SM}}^{ m C2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m C2HDM}/\lambda_{3H}$	
light I	0.8931.069	-0.0961.076	0.8981.035	-0.0351.227	
medium I	n.a.	n.a.	0.8891.028	0.2511.172	
heavy I	0.9461.054	0.4811.026	0.8931.019	0.6711.229	
light II	0.9511.040	0.6920.999	0.9561.040	0.0960.999	
medium II	n.a.	n.a.	_	_	
heavy II			_	_	
5					
	N2H	IDM	NM	SSM	
	$N2H$ $y_{t,H_{ m SM}}^{ m N2HDM}/y_{t,H}$	$\mathrm{IDM} \ \lambda_{3H_{\mathrm{SM}}}^{\mathrm{N2HDM}}/\lambda_{3H}$	$\frac{\text{NMS}}{y_{t,H_{\text{SM}}}^{\text{NMSSM}}/y_{t,H}}$	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H}$	
light I	N2H $y_{t,H_{\rm SM}}^{ m N2HDM}/y_{t,H}$ 0.8951.079	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004	$NMt y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}$ n.a.	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H} \ { m n.a.}$	
light I medium I	N2H $y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}$ 0.8951.079 0.8741.049	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004 -1.2471.168	$NM_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}$ n.a. n.a.	${ m SSM} \ \lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H} \ { m n.a.} \ { m n.a.}$	
light I medium I heavy I	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\end{array}$	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004 -1.2471.168 0.7701.112	$\begin{array}{ c c c c } & \text{NMS} \\ & y_{t,H_{\text{SM}}}^{\text{NMSSM}} / y_{t,H} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \end{array}$	$\begin{array}{c} \mathrm{SSM} & & \ \lambda_{3H_{\mathrm{SM}}}^{\mathrm{NMSSM}}/\lambda_{3H} & \ & \mathrm{n.a.} & \ & \ & \ & \mathrm{n.a.} & \ & \ & \ & \ & \ & \ & \ & \ & \ & $	
light I medium I heavy I light II	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\\ 0.9421.038\end{array}$	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\text{SM}}}^{\text{N2HDM}}/\lambda_{3H} \\ \text{-}1.1601.004 \\ \text{-}1.2471.168 \\ 0.7701.112 \\ \text{-}0.6080.999 \end{array}$	$\begin{tabular}{ c c c c c } & NMt \\ & y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H} \\ & {\rm n.a.} \\ & {\rm n.a.} \\ & {\rm n.a.} \\ & {\rm n.a.} \\ & {\rm 0.8261.003} \\ \end{tabular}$	$\begin{array}{c} \mathrm{SSM}\\ &\lambda_{3H_{\mathrm{SM}}}^{\mathrm{NMSSM}}/\lambda_{3H}\\ &\mathrm{n.a.}\\ &\mathrm{n.a.}\\ &\mathrm{n.a.}\\ &\mathrm{n.a.}\\ &\mathrm{0.0240.747} \end{array}$	
light I medium I heavy I light II medium II	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\\ 0.9421.038\\ 0.9421.029\end{array}$	$\begin{array}{c} \text{IDM} \\ \lambda_{3H_{\text{SM}}}^{\text{N2HDM}}/\lambda_{3H} \\ \text{-}1.1601.004 \\ \text{-}1.2471.168 \\ 0.7701.112 \\ \text{-}0.6080.999 \\ 0.6130.994 \end{array}$	$\begin{array}{c c} & \text{NM}_{t} \\ y_{t,H_{\text{SM}}}^{\text{NMSSM}} / y_{t,H} \\ & \text{n.a.} \\ & \text{n.a.} \\ & \text{n.a.} \\ & 0.8261.003 \\ & 0.9161.000 \end{array}$	SSM $\lambda_{3H_{\rm SM}}^{\rm NMSSM}/\lambda_{3H}$ n.a. n.a. n.a. 0.0240.747 -0.5020.666	

Experimental results cut on λ_{HHH} and hence on the parameter space

CMS; -1.24 $\leq \kappa_{\lambda} \leq 6.49$

M. Mühlleitner (KIT), 14 December

28th IFT Xmas Workshop

	R2H	IDM	C2H	C2HDM		
	$y_{t,H_{ m SM}}^{ m R2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m R2HDM}/\lambda_{3H}$	$y_{t,H_{ m SM}}^{ m C2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m C2HDM}/\lambda_{3H}$		
light I	0.8931.069	-0.0961.076	0.8981.035	-0.0351.227		
medium I	n.a.	n.a.	0.8891.028	0.2511.172		
heavy I	0.9461.054	0.4811.026	0.8931.019	0.6711.229		
light II	0.9511.040	0.6920.999	0.9561.040	0.0960.999		
medium II	n.a.	n.a.	_			
heavy II			_	_		
	N2H	IDM	NM	SSM		
	$N2H$ $y_{t,H_{ m SM}}^{ m N2HDM}/y_{t,H}$	IDM $\lambda_{3H_{\mathrm{SM}}}^{\mathrm{N2HDM}}/\lambda_{3H}$	$\frac{\text{NMS}}{y_{t,H_{\text{SM}}}^{\text{NMSSM}}/y_{t,H}}$	SSM $\lambda_{3H_{\mathrm{SM}}}^{\mathrm{NMSSM}}/\lambda_{3H}$		
light I	N2H $y_{t,H_{\rm SM}}^{ m N2HDM}/y_{t,H}$ 0.8951.079	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004	$NM_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}$ n.a.	$\begin{array}{c} \text{SSM} \\ \lambda_{3H_{\text{SM}}}^{\text{NMSSM}}/\lambda_{3H} \\ \text{n.a.} \end{array}$		
light I medium I	N2H $y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}$ 0.8951.079 0.8741.049	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004 -1.2471.168	$NM_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}$ n.a. n.a.	$\begin{array}{c} \mathrm{SSM} & & \ \lambda_{3H_{\mathrm{SM}}}^{\mathrm{NMSSM}}/\lambda_{3H} & \ & \mathrm{n.a.} & \ & \mathrm{n.a.} & \ & \mathrm{n.a.} & \end{array}$		
light I medium I heavy I	N2H $y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}$ 0.8951.079 0.8741.049 0.8931.030	IDM $\lambda_{3H_{\rm SM}}^{\rm N2HDM}/\lambda_{3H}$ -1.1601.004 -1.2471.168 0.7701.112	$NM3 \\ y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H} \\ {\rm n.a.} \\ $	$\begin{array}{c} \mathrm{SSM} & & \ \lambda_{3H_{\mathrm{SM}}}^{\mathrm{NMSSM}}/\lambda_{3H} & \ & \mathrm{n.a.} & \ & \ & \ & \mathrm{n.a.} & \ & \ & \ & \ & \ & \ & \ & \ & \ & $		
light I medium I heavy I light II	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\\ 0.9421.038\end{array}$	IDM $\lambda_{3H_{SM}}^{N2HDM}/\lambda_{3H}$ -1.1601.004 -1.2471.168 0.7701.112 -0.6080.999	NMSSM $y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}$ n.a. n.a. n.a. 0.8261.003	$\begin{array}{c} \mathrm{SSM}\\ &\lambda_{3H_{\mathrm{SM}}}^{\mathrm{NMSSM}}/\lambda_{3H}\\ &\mathrm{n.a.}\\ &\mathrm{n.a.}\\ &\mathrm{n.a.}\\ &\mathrm{n.a.}\\ &\mathrm{0.0240.747} \end{array}$		
light I medium I heavy I light II medium II	$\begin{array}{c} {\rm N2H}\\ y_{t,H_{\rm SM}}^{\rm N2HDM}/y_{t,H}\\ 0.8951.079\\ 0.8741.049\\ 0.8931.030\\ 0.9421.038\\ 0.9421.029\end{array}$	IDM $\lambda_{3H_{SM}}^{N2HDM}/\lambda_{3H}$ -1.1601.004 -1.2471.168 0.7701.112 -0.6080.999 0.6130.994	$\begin{array}{c c} & \text{NM}\\ & y_{t,H_{\text{SM}}}^{\text{NMSSM}}/y_{t,H}\\ & \text{n.a.}\\ & \text{n.a.}\\ & \text{n.a.}\\ & 0.8261.003\\ & 0.9161.000 \end{array}$	SSM $\lambda_{3H_{\rm SM}}^{\rm NMSSM}/\lambda_{3H}$ n.a. n.a. 0.0240.747 -0.5020.666		

some models: λ_{HHH} compatible

w/ zero still possible

M. Mühlleitner (KIT), 14 December

CP-Violating Decays

+ CP-violating 2HDM (C2HDM): BSM CP violation required in electroweak baryogenesis

+ Example C2HDM T1:

m	$_{H_1}$ [GeV]	m_{H_2} [GeV]	$m_{H^{\pm}} [\text{GeV}]$	α_1	α_2	α_3	$\tan\beta$	${\rm Re}(m_{12}^2)$	$[GeV^2]$
	125.09	200	230	1.419	0.004	-0.731	0.474	9925	9
	$\sigma_{H_1H_1}^{\text{NLO}}$ [f]	b] K-factor	$\Gamma_{H_1}^{\text{tot}} [\text{GeV}]$	Γ_{H}^{to}	$I_2^{\rm ot} [{\rm GeV}]$	$\Gamma_{H_3}^{\text{tot}}$	[GeV]	$\Gamma_{H^{\pm}}^{\text{tot}}$ [Ge	eV]
	387	2.06	4.106×10^{-1}	$\frac{13}{3.62}$	25×10^{-1}	$\frac{3}{4.880}$	$) \times 10^{-3}$	0.127	
	$\lambda_{3H_1}/\lambda_{3H_2}$	$H = \frac{y_{t,H_1}^e/y_{t,H_1}}{1.005}$	$\sigma_{H_1}^{\text{INNLO}}$ [pb]	$\sigma_{H_{2}}^{n}$	$\frac{1}{2}$ [pb]	$\sigma_{H_3}^{\text{ININ}}$	$\frac{10 \text{ [pb]}}{2.04}$		
_	0.995	1.005	49.75		0.76		J.84		
$\sigma($	$H_2) \times BF$	$R(H_2 \to H_1 H_2)$	$H_1) = 191$	fb,	$\sigma(H_2)$ >	$\times \mathrm{BR}(H)$	$T_2 \to W$	W) =	254 fb
$\sigma($	$H_2) \times BF$	$R(H_2 \to ZZ)$	= 109	fb,	$\sigma(H_2)$ >	$\times \mathrm{BR}(H)$	$T_2 \rightarrow Z P$	$H_1) =$	122 fb
$\sigma($	$H_3) \times BF$	$R(H_3 \to H_1 H_2)$	$H_1) = 235$	fb,	$\sigma(H_3)$ >	$\times \mathrm{BR}(H)$	$J_3 \to W$	W) =	315 fb
$\sigma($	$H_3) \times BF$	$R(H_3 \to ZZ)$	= 136	fb,	$\sigma(H_3)$ >	$\times \mathrm{BR}(H)$	$J_3 \to ZP$	$(H_1) =$	76 fb .

CP-Violating Decays

+ CP-violating 2HDM (C2HDM): BSM CP violation required in electroweak baryogenesis*

+ Example C2HDM T1:

m	$_{H_1} [\text{GeV}]$	$m_{H_2} \; [\text{GeV}]$	$m_{H^{\pm}} \; [\text{GeV}]$	α_1	α_2	$lpha_3$	$\tan\beta$	${\rm Re}(m_{12}^2)$ [GeV^2]
	125.09	265	236	1.419	0.004	-0.731	5.474	9929)
	$ \begin{array}{c} \sigma^{\rm NLO}_{H_1H_1} \ [f] \\ 387 \end{array} $	[b] K-factor 2.06	$\Gamma_{H_1}^{\text{tot}} \text{ [GeV]}$ 4.106×10^{-100}	$\begin{array}{c c} & \Gamma_{H}^{\rm to} \\ \hline {}^{\cdot 3} & 3.62 \end{array}$	${}^{\rm pt}_{I_2} {\rm [GeV]}_{25} \times 10^{-1}$	$ \begin{array}{c c} \Gamma_{H_3}^{\text{tot}} \\ 3 & 4.880 \end{array} $	[GeV] 0×10^{-3}	$ \Gamma_{H^{\pm}}^{\text{tot}} [Ge \\ 0.127 $	eV]
	$\begin{array}{ c c }\hline \lambda_{3H_1}/\lambda_{3H_1}\\\hline 0.995\end{array}$	$\begin{array}{c c} H & y^e_{t,H_1}/y_{t,H} \\ \hline 1.005 \end{array}$	$ \begin{array}{c c} \sigma_{H_1}^{\text{NNLO}} \text{ [pb]} \\ 49.75 \end{array} $	$\sigma_{H_{2}}^{N}$	$\stackrel{\mathrm{NLO}}{_2} \mathrm{[pb]}{0.76}$	$\sigma_{H_3}^{\rm NN}$	^{LO} [pb] 0.84		
-	_			_	_	-	_	_	_
$\sigma($	$H_2) \times BF$	$R(H_2 \to H_1 H_2)$	$I_1) = 191$	fb,	$\sigma(H_2)$ >	$\times \mathrm{BR}(H)$	$V_2 \to W$	W) =	254 fb
$\sigma($	$H_2) \times BF$	$R(H_2 \to ZZ)$	= 109	fb,	$\sigma(H_2)$ >	$\times \mathrm{BR}(H)$	$I_2 \rightarrow ZH$	$H_1) =$	122 fb
$\sigma($	$H_3) \times BF$	$R(H_3 \to H_1 H_2)$	$H_1) = 235$	fb,	$\sigma(H_3)$ >	$\times \mathrm{BR}(H)$	$V_3 \to W$	W) =	315 fb
$\sigma($	$H_3) \times BF$	$R(H_3 \to ZZ)$	= 136	fb,	$\sigma(H_3)$ >	$\times \mathrm{BR}(H)$	$I_3 \rightarrow Z I_3$	$H_1) =$	76 fb .

CP-Violating Decays

+ CP-violating 2HDM (C2HDM): BSM CP violation required in electroweak baryogenesis*

+ Example C2HDM T1:

m	$_{H_1} [\text{GeV}]$	$m_{H_2} [\text{GeV}]$	$m_{H^{\pm}} \; [\text{GeV}]$	α_1	α_2	$lpha_3$	$\tan\beta$	${\rm Re}(m_{12}^2)$ [Ge	V^2]
	125.09	265	236	1.419	0.004	-0.731	5.474	9929	
	$ \begin{array}{c} \sigma^{\rm NLO}_{H_1H_1} \ [f] \\ 387 \end{array} $	$\begin{bmatrix} b \end{bmatrix} K$ -factor 2.06	$\Gamma_{H_1}^{\text{tot}} [\text{GeV}]$ 4.106 × 10 ⁻	$\begin{array}{c c} & \Gamma_{H}^{\rm to} \\ \hline 3 & 3.62 \end{array}$	$\frac{1}{2} \text{[GeV]}$ 25×10^{-1}	$ \begin{array}{c c} \Gamma_{H_3}^{\text{tot}} \\ \hline 3 & 4.880 \end{array} $	[GeV] 0×10^{-3}	$\begin{array}{c c} \Gamma_{H^{\pm}}^{\rm tot} \ [{\rm GeV}] \\ \hline 0.127 \end{array}$	
	$ \begin{array}{c} \lambda_{3H_1}/\lambda_{3H_2} \\ 0.995 \end{array} $	$\begin{array}{c c} H & y^e_{t,H_1}/y_{t,H_1} \\ & 1.005 \end{array}$	$ \begin{array}{c} \sigma_{H_1}^{\text{NNLO}} \text{ [pb]} \\ 49.75 \end{array} $	$\sigma_{H_{f}}^{N}$	$\stackrel{\mathrm{NLO}}{_2} [\mathrm{pb}]$	$\sigma_{H_3}^{\rm NN}$	^{LO} [pb] 0.84		
-				_	-	-	-		-
$\sigma(\sigma)$	$H_2) \times BF$ $H_2) \times BF$	$R(H_2 \to H_1 H_2)$ $R(H_2 \to ZZ)$	$I_1) = 191 = 109$	fb, dfb,	$\sigma(H_2) > \\ \sigma(H_2) >$	$\times BR(H)$ $\times BR(H)$	$V_2 \to W$ $V_2 \to Z P$	$W) = 254 \\ H_1) = 122$	4 fb 2 fb
$\sigma(\sigma)$	$H_3) \times BF$ $H_3) \times BF$	$R(H_3 \to H_1 H_3)$ $R(H_3 \to ZZ)$	$ I_1) = 235 \\ = 136 $	$\begin{array}{c} \mathrm{fb} \ , & \mathrm{o} \\ \mathrm{fb} \ , & \mathrm{o} \end{array}$	$\sigma(H_3) > $ $\sigma(H_3) > $	$\times BR(H)$ $\times BR(H)$	$V_3 \to W'_3 \to Z P$	$\begin{array}{rcl}W)&=&31\\H_1)&=&76\end{array}$	5 fb fb .

+ Higgs sector extensions with discrete symmetries:

Dark Matter candidate

+ Example CxSM: SM extended by complex singlet field

$$V = \frac{m^2}{2} \Phi^{\dagger} \Phi + \frac{\lambda}{4} \left(\Phi^{\dagger} \Phi \right)^2 + \frac{\delta_2}{2} \Phi^{\dagger} \Phi |\mathbb{S}|^2 + \frac{b_2}{2} |\mathbb{S}|^2 + \frac{d_2}{4} |\mathbb{S}|^4 + \left(\frac{b_1}{4} \mathbb{S}^2 + c.c. \right)$$

$$\Phi = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} \left(v + H + iG^0 \right) \end{pmatrix}, \ \mathbb{S} = \frac{1}{\sqrt{2}} (v_S + S + i(v_A + A)),$$

impose two separate discrete symmetries: S -> -S and A -> -A $v_A=0 \Rightarrow A -> -A$ symmetry unbroken, A is stable and becomes the Dark Matter candidate

Spectrum: h_1 , h_2 , A; one of the $h_{1,2}$ is the h_{125}

LHC Test: Higgs Decay into two DM Particles, h125->AA

Parameter point allowed at leading order may be excluded at next-to-leading order and vice versa

The Vector Dark Matter Model (VDM)

[Hambye, 08; Lebedev eal, 11; Farzan, Akbarich, 12; Baek eal, 12, 14; Duch eal, 15; Azevedo eal, 18]

+The VDM: SM extended by complex SM-gauge singlet S, charged under $U(1)_{\chi}$

gauge symmetry; gauged symmetry \rightarrow new vector boson χ_{μ} ; invariance under \mathbb{Z}_2 symmetry (under which SM particles are even) \rightarrow stable VDM candidate:

> $S \to S^*$ $\chi_{\mu} \to -\chi_{\mu}$ and

no kinetic mixing between $U(1)_{\gamma}$ dark gauge boson and SM $U(1)_{\gamma}$ gauge boson

+Higgs potential:

$$V = -\mu_H^2 |H|^2 + \lambda_H |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |S|^2 |H|^2$$

with the doublet and singlet fields

 σ_H : neutral SM-like Goldstone boson G^0

 σ_{S} : DM Goldstone boson G^{χ}

$$H = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} \left(v + \Phi_H + i\sigma_H \right) \end{pmatrix} \quad \text{and} \quad S = \frac{1}{\sqrt{2}} \left(v_S + \Phi_S + i\sigma_S \right)$$

and we have the covariant derivative

$$\mathcal{D}_{\mu}S = \left(\partial_{\mu} + ig_{\chi}\chi_{\mu}\right)S$$

M. Mühlleitner (KIT), 14 December

*Mass eigenstates:

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = R_\alpha \begin{pmatrix} \Phi_H \\ \Phi_S \end{pmatrix} \equiv \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \Phi_H \\ \Phi_S \end{pmatrix}$$

Using the relations

$$\lambda_{H} = \frac{m_{h_{1}}^{2} \cos^{2} \alpha + m_{h_{2}}^{2} \sin^{2} \alpha}{2v^{2}}$$

$$\kappa = \frac{(m_{h_{1}}^{2} - m_{h_{2}}^{2}) \cos \alpha \sin \alpha}{vv_{S}}$$

$$\lambda_{S} = \frac{m_{h_{1}}^{2} \sin^{2} \alpha + m_{h_{2}}^{2} \cos^{2} \alpha}{2v_{S}}$$

$$v_{S} = \frac{m_{\chi}}{g_{\chi}}.$$
tadpole parameters

*Independent physical Higgs potential parameters:

$$m_{h_1}, m_{h_2}, m_{\chi}, \alpha, v, g_{\chi}, T_{\Phi_H}, T_{\Phi_S}$$

The Scalar Dark Matter Model (SDM)

[Silveira,Zee, '85; McDonald, '94; ...; see also Gross eal, '17; Azevedo eal, '18; Ishiwata,Toma, '18]
 The SDM: SM extended by complex scalar singlet S, invariant under intrinsic global dark U(1) symmetry

 $S \rightarrow exp(i\alpha S)$

soft breaking of this U(1) symmetry to residual \mathbb{Z}_2 symmetry: S \rightarrow -S \rightarrow

+Higgs potential:

$$V = -\frac{\mu_H^2}{2} |H|^2 + \frac{\lambda_H}{2} |H|^4 - \frac{\mu_S^2}{2} |S|^2 + \frac{\lambda_S}{2} |S|^4 + \lambda_{HS} |H|^2 |S|^2 - \frac{m_\chi^2}{4} (S^2 + S^{*2})$$

with the doublet and singlet fields

$$H = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} \left(v + \Phi_H + iG^0 \right) \end{pmatrix}, \qquad S = \frac{1}{\sqrt{2}} \left(v_s + \Phi_S + i\chi \right)$$

+Mass eigenstates: χ DM particle with mass m χ and scalar mass eigenstates

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \equiv R(\alpha) \begin{pmatrix} \Phi_H \\ \Phi_S \end{pmatrix}, \qquad M^2 \equiv R(\alpha) \mathcal{M}^2 R^{-1}(\alpha) = \begin{pmatrix} m_{h_1}^2 & 0 \\ 0 & m_{h_2}^2 \end{pmatrix} \quad R(\alpha) \equiv \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$

soft breaking term gives mass to DM particle χ

The Scalar Dark Matter Model (SDM)

Using the relations

$$\lambda_{HS} = -\frac{m_{h_2}^2 - m_{h_1}^2}{2vv_s} \sin 2\alpha ,$$

$$\lambda_H = \frac{m_{h_2}^2 \sin^2 \alpha + m_{h_1}^2 \cos^2 \alpha}{v^2} \\\lambda_S = \frac{m_{h_2}^2 \cos^2 \alpha + m_{h_1}^2 \sin^2 \alpha}{v_s^2}$$

tadpole parameters

+Independent physical Higgs potential parameters:

$$v, v_s, \alpha, m_{h_1}^2, m_{h_2}^2, m_{\chi}^2, T_H, T_S$$

One-loop Corrections to the Spin-Independent DM-Nucleon Cross Section

+Computation of spin-independent DM-N cxn: use effective Lagrangian

+Approximation:

zero momentum transfer: incoming momentum of DM equal to outgoing momentum

+Cross section at Leading Order for the SDM:

equal to zero at vanishing momentum transfer (\leftarrow U(1) symmetry)

Parameter Scan

+ Scan with ScannerS checks for:

- theoretical constraints: EW minimum=global one, bounded from below, perturbative unitarity
- experimental constraints: EWPD, Higgs data [HiggsBounds, ATLAS,CMS '15]; BRs are computed w/ sHDECAY/anyHDECAY [Costa,MM,Sampaio,Santos, '15/MM,Sampaio,Santos,Wittbrodt, '20]

- DM relic density <
$$(\Omega h^2)_{\text{DM}}^{\text{obs}} = 0.1186 \pm 0.002 \rightarrow \text{define DM fraction } f_{\chi\chi} = \frac{(\Omega h^2)_{\chi}}{(\Omega h^2)_{\text{DM}}^{\text{obs}}}$$

- DM annihilation strongest bounds from Fermi-LAT [FermiLAT, 15]; comparison with data through $\sigma_{\chi\chi}^{\text{eff}} = f_{\chi\chi}^2 \sigma_{\chi\chi}$, with $f_{\chi\chi}$, $\sigma_{\chi\chi}$ obtained from MicrOmegas [Bélanger eal]
- bound on SI DM-nucleon cross section (applied on LO value): for DM mass > 6 GeV limit by Xenon1T [Xenon1T Aprile eal, '18]; for lighter DM masses combined limits by CRESST [CRESST Angloher eal, '15] and CDMSlite [SuperCDMS Agnese eal, '15]; quantity to be compared $\sigma_{\chi N}^{\text{eff}} \equiv f_{\chi\chi}\sigma_{\chi N}$; we use N=p, with $m_p = 0.93827 \text{ GeV}$
- * Notation and SM parameters: non-SM-like of the h_i (i=1,2) called m_{Φ} , SM-like called m_h

m_W	=	$80.398~{\rm GeV}$,	m_Z	=	$91.1876~{\rm GeV}$,	$\sin \theta_W$	=	0.4719,
m_e	=	$0.511 \cdot 10^{-3} \text{ GeV}$,	m_{μ}	=	$0.1057~{\rm GeV}$,	$m_{ au}$	=	$1.777~{\rm GeV}$,
m_u	=	$0.19~{ m MeV}$,	m_d	=	$0.19~{ m MeV}$,	m_s	=	$0.19~{\rm MeV}$,
m_c	=	$1.4 \mathrm{GeV}$,	m_b	=	$4.75~{\rm GeV}$,	m_t	=	$172.5~{\rm GeV}$.

Scan Ranges

 α

 $-\frac{\pi}{4}$ $\frac{\pi}{4}$

+ VDM:		$m_{\phi} \; [\text{GeV}]$	$m_{\chi} \; [\text{GeV}]$	v_S [GeV
	min	1	1	1
	max	1000	1000	10^{7}
	with g_{λ}	$\chi=m\chi/m_s$ with	gχ²≤4π	

	+	S	D	M	•
--	---	---	---	---	---

$m_{\phi} \in [$	$30\mathrm{GeV},$	$1000{ m GeV}]$
$m_{\chi} \in [$	$30\mathrm{GeV},$	$1000{ m GeV}]$
$v_S \in [$	$1\mathrm{GeV},$	$1000{ m GeV}]$
$\alpha \in [$	$-\pi/2,$	$\pi/2$]

 Nuclear proton 	$f_u^p = 0.01513,$	$f_d^p = 0.0191$,	$f_s^p = 0.0447$,
matrix elements:	$f_g^p = 0.92107,$		
[Hisano,Ishiwata,Nagata,´12; Young,Thomas,´09; Shifman,Vainshtein,Zakharov,´78]	$u^p(2) = 0.22$,	$c^p(2) = 0.019$,	
	$\bar{u}^p(2) = 0.034$,	$\bar{c}^p(2) = 0.019$,	
	$d^p(2) = 0.11$,	$s^p(2) = 0.026$,	$b^p(2) = 0.012$,
	$\bar{d}^p(2) = 0.036$,	$\bar{s}^p(2) = 0.026$,	$\bar{b}^p(2) = 0.012,$

M. Mühlleitner (KIT), 14 December

28th IFT Xmas Workshop

VDM: K-Factors

[Glaus, MM, Müller, Patel, Santos, 20]

- K-factor increases with g_{χ} , below 30% (barring outliers)

VDM: Phenomenological Impact

 blue: allowed at LO green excluded at NLO parameter points, allowed at LO, but excluded at NLO
 → NLO corrections phenomenologically important

SDM: Impact of NLO Corrections

[Glaus, MM, Müller, Patel, Römer, Santos, 20]

- $\sigma_{\chi N}^{LO}=0$ (vanishing momentum transfer), NLO corrections shift effective SI cxn above neutrino floor (grey) [Drukier, Stodolsky; COHERENT Coll. Asimov eal, 17]
- at resonances (m_X≳m_h/2, m_X≈m_Φ/2) suppressed DM-resonance coupling (←direct detection), compensated by kinematic resonant enhancement
- $m_{\chi} < m_h/2$: constrained by Higgs data (h-> $\chi\chi$)

• Electroweak Baryogenesis (EWBG): generation of the observed baryon-antibaryon asymmetry in the electroweak phase transition (EWPT) [Riemer-Sorensen, Jenssen '17]

$$5.8 \cdot 10^{-10} < \frac{n_B - n_{\bar{B}}}{n_{\gamma}} < 6.6 \cdot 10^{-10}$$

• Sakharov Conditions:

- * (i) B number violaton (sphaleron processes)
- * (ii) C and CP violation
- * (*iii*) Departure from thermal equilibrium
- Additional constraint: EW phase transition must be strong first order PT [Quiros '94; Moore '99]

$$\xi_c \equiv \frac{\left< \Phi_c \right>}{T_c} \ge 1$$

 $\langle \Phi_c \rangle$ and T_c field configuration and temperature at phase transition

[Sakharov '67]

Baryogenesis in a Nutshell

+ 2HDM type II struggle to reach SFOEWPT (compared to type I)

[see e.g. Basler,Krause,MM,Wittbrodt,Wlotzka,'16]

+ For 2HDM type II points with $\xi_c < 1$:

What extra dynamics is required to achieve SFOEWPT?

+ Our model: CP-conserving 2HDM with softly broken discrete Z_2 symmetry

$$V_{\text{tree}}(\Phi_1, \Phi_2) = m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \lambda_5 [(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2]$$

+Extended by (purely scalar) dim-6 EFT contributions to the Higgs potential [Anisha eal, 19]

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm 2HDM} + \sum_{i} \frac{C_6^i}{\Lambda^2} O_6^i \quad \Rightarrow \quad V_{\rm dim-6} = -\sum_{i} \frac{C_6^i}{\Lambda^2} O_6^i$$

+ Higgs pair production: a tool for fingerprinting an SFOEWPT?

<i>O</i> ₆ ¹¹¹¹¹¹	$(\Phi_1^\dagger \Phi_1)^3$	<i>O</i> ₆ ²²²²²²	$(\Phi_2^\dagger\Phi_2)^3$
O_6^{111122}	$(\Phi_1^\dagger \Phi_1)^2 (\Phi_2^\dagger \Phi_2)$	O_6^{112222}	$(\Phi_1^\dagger\Phi_1)(\Phi_2^\dagger\Phi_2)^2$
O_6^{122111}	$(\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1)(\Phi_1^\dagger \Phi_1)$	O_6^{122122}	$(\Phi_1^\dagger\Phi_2)(\Phi_2^\dagger\Phi_1)(\Phi_2^\dagger\Phi_2)$
O_6^{121211}	$(\Phi_1^{\dagger}\Phi_2)^2(\Phi_1^{\dagger}\Phi_1)$ + h.c.	O_6^{121222}	$(\Phi_1^{\dagger}\Phi_2)^2(\Phi_2^{\dagger}\Phi_2)$ + h.c.

- absorb dim-6 contributions (to scalar masses) in shifts $\lambda_i \rightarrow \lambda_i + \delta \lambda_i$, $m_{12}^2 \rightarrow m_{12}^2 + \delta m_{12}^2$
- ⇒ scalar mass spectrum same as for dim-4 @ LO
 ⇒ shift EFT effects into Higgs self-couplings & multi-Higgs final states

Effect of Dim-6 Operators

[Anisha,Biermann,Englert,MM,'22]

impact of individual Wilson coefficients on ξ_c^{d6} for $\xi_c^{d4} \approx 0.9$:

- linear response ~ C_{6}^{i} -> perturbativity ok
- SFOEWPT achievable in agreement with experimental constraints

interference effects in heavy Higgs production in tt final state are width dependent -> sensitive to EFT modifications: overall effect is small after taking the Higgs data constraints into account => hh production important tool for fingerprinting SFOEWPT

Strength of EWPT and hh production

[Anisha,Biermann,Englert,MM,'22]

Points with $\xi_c^{d6} \cong 1$ for $\xi_c^{d4} \ge 0.3$, orange points $\xi_c^{d4} > 0.8$

- suppression of overall hh: additional potential contributions enhance λ_{hhh} by O(50%)

- analysis of the separated res. production $H \rightarrow hh$ compared to hh continuum production

 \rightarrow indirect constraint on $\xi_c{\sim}1$

Correlation of ξ_c^{d4} and resonant H \rightarrow hh Production

[Anisha,Biermann,Englert,MM,'22]

- Higgsphilic points characterized by larger distance |1- ξ_c^{d4} |

 \rightarrow interplay of different dim-6 operators to achieve $\xi_c \sim 1$ in a controlled way

Correlation of ξ_c^{d4} , continuum and resonant hh production

[Anisha,Biermann,Englert,MM,'22]

- Resonant H \rightarrow hh production enhancement factor of 2.5 possible for cxn in fb range
- Higgs-philic points: resonance contribution modified by ~5-10%, continuum production modified by ~50%

More on Electroweak Phase Transítíon and Baryogenesís

Model "CP in the Dark"

+Next-to-Minimal 2-Higgs Doublet Model:

[Azevedo, Ferreira, MM, Patel, Santos, '18]

$$\begin{split} V^{(0)} &= m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 + \frac{m_S^2}{2} \Phi_S^2 + \left(A \Phi_1^{\dagger} \Phi_2 \Phi_S + \text{ h.c.} \right) \\ &+ \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{\lambda_5}{2} [(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2] \\ &+ \frac{\lambda_6}{4} \Phi_S^4 + \frac{\lambda_7}{2} |\Phi_1|^2 \Phi_S^2 + \frac{\lambda_8}{2} |\Phi_2|^2 \Phi_S^2. \end{split}$$

* with one discrete \mathbb{Z}_2 symmetry: $\Phi_1 \to \Phi_1$, $\Phi_2 \to -\Phi_2$, $\Phi_S \to -\Phi_S$

one SM-like Higgs plus dark sector: h1,h2,h3,H[±]

 trilinear coupling A is complex: dark sector with CP violation <- not constrained by electric dipole moment

Strong First Order Phase Transition and DM Constraints

[Biermann, MM, Müller'22]

points also compatible with DM relic density

Spontaneous CP Violation

[Biermann,MM,Müller'22]

Strong first order electroweak phase transition

 Θ_{t} CP-violating top-quark phase, L_W wall thickness

but with large uncertainties in the baryogenesis calculation [Postma,van de Vis,White,'22]

CP-violating Higgs-Fermion Couplings, Electron EDM and Baryogenesis

[Bahl,Fuchs,Heinemeyer,Katzy,Menen,Peters,Saimpert,Weiglein,'22]

- Complex tau Yukawa coupling can account for observed baryon asymmetry but with large uncertainties in the baryogenesis calculation [Postma,van de Vis,White,'22]

Interplay between Gravitational Waves and LHC Physics in the 2HDM

[Biekötter,Heinemeyer,No,Olea-Romacho,Weiglein,'22]

Conclusions

+ Flaws of SM call for new physics; no direct signs of new physics => Higgs boson

+ Insights

- in allowed parameter ranges of the BSM models, in scale of new physics
- in mechanism of mass generation, structure & dynamics of electroweak symmetry breaking

life, the universe but and everything!

- in nature of Dark Matter
- in baryogenesis
- in flavor/CP puzzle
- ✤ Interesting times ahead!

 Image: Wind State State

Bijou

Bijou

Comparison with EFT

c3: trilinear coupling modification; c1: top-Yukawa coupling modification;
 c11: effective two-Higgs-two-fermion coupling
 no cq, cqq: no new heavy colored BSM particles assumed

* Matching relations of our specific BSM models:

Higgs-top Yukawa coupling: $g_t^{H_{\rm SM}}(\alpha_i,\beta)$ $\rightarrow c_t$ trilinear Higgs coupling: $\frac{g_3^{H_{\rm SM}H_{\rm SM}H_{\rm SM}}(p_i)}{3M_{H_{\rm SM}}^2/v}$ $\rightarrow c_3$ two-Higgs-two-top quark coupling: $\sum_{k=1}^{k_{\rm max}} \left(\frac{-v}{m_{H_k}^2}\right) g_3^{H_k H_{\rm SM}}(p_i) g_t^{H_k}(\alpha_i,\beta)$ $\rightarrow c_{tt}$

+R2HDM T2 sample parameter point:

$m_{H_1} \; [\text{GeV}]$	$m_{H_2} \; [\text{GeV}]$	$m_A \; [\text{GeV}]$	$m_{H^{\pm}} \; [\text{GeV}]$	α	aneta	$m_{12}^2 [{ m GeV^2}]$
125.09	1131	1082	1067	-0.924	0.820	552749

+ corresponding EFT values:

 $g_t^{H_2} = -1.126$

$$c_3 = 0.782, \ c_t = 0.951, \ c_{tt} = -0.122$$

*goodness of approximation?:

$m_{H_2} \; [\text{GeV}]$	Γ_{H_2} [GeV]	c_{tt}	$g_3^{H_2H_1H_1} \text{ [GeV]}$	$\sigma_{\rm R2HDM}^{\rm w/res}$ [fb]	$\sigma_{\mathrm{SMEFT}}^{c_{tt} \neq 0}$ [fb]	ratio
1131	78.80	-0.1222	-504.52	30.5	26.1	86%
1200	89.74	-0.1031	-479.29	27.7	24.8	90%
1500	470.2	-4.85310^{-2}	-352.42	21.8	21.4	98%

+Remark:

$$\sigma_{\text{R2HDM}}^{\text{w/o res}} = 18.6 \text{ fb} \text{ and } \sigma_{\text{SMEFT}}^{c_{tt}=0} = 18.6 \text{ fb}$$

+N2HDM T1 sample parameter point:

$m_{H_1} \; [\text{GeV}]$	$m_{H_2} \; [\text{GeV}]$	$m_{H_3} \; [\text{GeV}]$	$m_A [{ m GeV}]$	$m_{H^{\pm}} \; [\text{GeV}]$	aneta
125.09	269	582	390	380	4.190
α_1	$lpha_2$	$lpha_3$	$v_s \; [\text{GeV}]$	$\operatorname{Re}(m_{12}^2) \ [\mathrm{GeV}^2]$	
1.432	-0.109	0.535	1250	28112	

 $g_t^{H_2} = 0.179$ and $g_t^{H_3} = 2.337 \times 10^{-2}$

+ corresponding EFT values:

$$c_3 = 0.877, c_t = 1.012, c_{tt} = 4.127 \times 10^{-2}$$

* goodness of approximation?: (m_{H3} kept fixed)

m_{H_2}	Γ_{H_2}	$c_{tt}^{H_2}$	c_{tt}	$g_3^{H_2H_1H_1}$	$\sigma_{\rm N2HDM}^{\rm w/ \ res}$ [fb]	$\sigma_{\text{SMEFT}}^{c_{tt} \neq 0}$ [fb]	ratio
269	0.075	4.410×10^{-2}	4.127×10^{-2}	-72.42	183.70	20.56	11%
300	0.083	3.170×10^{-2}	2.877×10^{-2}	-64.80	162.80	21.28	13%
400	0.177	9.544×10^{-3}	6.721×10^{-3}	-34.68	43.33	22.60	52%
420	0.229	6.895×10^{-3}	4.063×10^{-3}	-27.62	31.70	22.76	72%
440	0.284	4.600×10^{-3}	1.767×10^{-3}	-20.22	26.26	22.90	87%
450	0.315	3.564×10^{-3}	7.323×10^{-4}	-16.39	24.84	22.96	92%
500	2.567	-7.132×10^{-4}	-3.545×10^{-3}	4.05	23.56	23.22	99%

Single Higgs versus Di-Higgs Cascade Decays

Singlet extended N2HDM, NMSSM: non-SM Higgs is singlet-like and/or more down-than up-type like => suppressed direct production rate

+ Sample parameter point N2HDM T1:

$m_{H_1} \; [\text{GeV}]$	$m_{H_2} \; [\text{GeV}]$	$m_{H_3} \; [\text{GeV}]$	$m_A \; [\text{GeV}]$	$m_{H^{\pm}} \; [\text{GeV}]$	aneta
125.09	281.54	441.25	386.98	421.81	1.990
α_1	α_2	$lpha_3$	$v_s \; [{ m GeV}]$	${ m Re}(m_{12}^2) \ [{ m GeV^2}]$	
1.153	0.159	0.989	9639	29769	

 $\sigma_{H_1H_2}^{\text{NLO}} \times \text{BR}(H_2 \to H_1H_1) \times \text{BR}(H_1 \to b\bar{b})^3 = 509 \cdot 0.37 \cdot 0.60^3 \text{ fb} = 40 \text{ fb}$

 $\sigma^{\text{NNLO}}(H_2) \times \text{BR}(H_2 \to H_1 H_1) \times \text{BR}(H_1 \to b\bar{b})^2 = 161 \cdot 0.37 \cdot 0.60^2 \text{ fb} = 21 \text{ fb}$

H2 has tiny couplings to b-quarks => better chances to be discovered in di-Higgs than single Higgs channels

Computation of the DM-Nucleon Cross Section

+Effective Lagrangian:

[Hisano,Nagai,Nasato, 15; Hisano,Ishiwata,Nagata, 10, 15; Ishiwata,Toma, 18; Hisano,Ishiwata,Nagata,Yamanaka, 10]

$$\mathcal{L}^{\text{eff}} = \sum_{q=u,d,s} \mathcal{L}_q^{\text{eff}} + \mathcal{L}_G^{\text{eff}}$$

$$\mathcal{L}_q^{\text{eff}} = f_q \chi_{\downarrow} \chi_{\downarrow} m_q \bar{q} q + \frac{g_q}{m_\chi^2} \chi_{\downarrow} i \partial^{\mu} i \partial^{\nu} \chi_{\downarrow} \mathcal{O}_{\mu\nu}^q$$

$$\mathcal{O}_{\mu\nu}^{q} = \frac{1}{2} \bar{q} i \left(\partial_{\mu} \gamma_{\nu} + \partial_{\nu} \gamma_{\mu} - \frac{1}{2} \partial \right) q$$

 $\mathcal{L}_G^{\text{eff}} = f_G \chi \ \chi \ G^a_{\mu\nu} G^{a \ \mu\nu}$

 χ stands generically for scalar and vector (χ_{μ}) DM

+Nuclear Matrix elements for the partonic operators:

$$\langle N | m_q \bar{q}q | N \rangle = m_N f_{T_q}^N$$

$$= \begin{pmatrix} 9\alpha_S \\ 8\pi & \langle N | G^a_{\mu\nu} G^{a,\mu\nu} | N \rangle = \begin{pmatrix} 1 - \sum_{q=u,d,s} f_{T_q}^N \end{pmatrix} m_N = m_N f_{T_G}^N$$

$$N=p,n, m_N \text{ nucleon mass}$$

$$\langle N(p) | \mathcal{O}^q_{\mu\nu} | N(p) \rangle = \frac{1}{m_N} \left(p_\mu p_\nu - \frac{1}{4} m_N^2 g_{\mu\nu} \right) \left(q^N(2) + \bar{q}^N(2) \right)$$

$$(anti-)quark pdfs$$

+DM-Nucleon Cross section:

$$\sigma_N = \frac{1}{\pi} \left(\frac{m_N}{m_\chi + m_N} \right)^2 \left| f_N \right|^2. \qquad f_N/m_N = \sum_{q=u,d,s} f_q f_{T_q}^N + \sum_{q=u,d,s,c,b} \frac{3}{4} \left(q^N(2) + \bar{q}^N(2) \right) g_q - \frac{8\pi}{9\alpha_S} f_{T_G}^N f_G$$

Treatment of Heavy Quarks

+ Second momenta (contribution from quark twist-2 operator):

$$\sum_{q=u,d,s,c,b} \frac{3}{4} \left(q^N(2) + \bar{q}^N(2) \right) g_q$$

contains all quarks below energy scale ~ 1 GeV

+ Sum over quarks in first term:

$$\sum_{q=u,d,s} f_q f_T^N$$

only light quarks

+ Heavy quarks contribute through effective gluon interaction:

Computation of the Wilson Coefficients

+Wilson coefficients f_q , g_q , f_G :

compute building blocks of direct detection cross section and match onto tensor structure of effective Lagrangian

+Cross section at Leading Order for the VDM:

at vanishing momentum transfer, summing over Higgs mediators $h_{i} \sim$

hence

$$\sigma^{\rm LO} = \frac{\sin^2 2\alpha}{4\pi} \left(\frac{m_{\chi} m_N}{m_{\chi} + m_N} \right)^2 \frac{\left(m_{h_1}^2 - m_{h_2}^2 \right)^2}{m_{h_1}^4 m_{h_2}^4} \frac{m_{\chi}^2 m_N^2}{v^2 v_S^2} \left| \sum_{q=u,d,s} f_{T_q}^N + 3 \cdot \frac{2}{27} f_{T_G}^N \right|^2$$

no contribution from twist-2 operator at LO

+Cross section at Leading Order for the SDM:

equal to zero at vanishing momentum transfer (\leftarrow U(1) symmetry)

Renormalization of the VDM

*Parameters to be renormalized: DM and scalar fields h_i and m_{χ} , m_{h_i} , mixing angle a, dark coupling g_{χ} (dark coupling replaces singlet VEV)

*Mass and field renormalization: on-shell

$$\delta m_{\chi}^2 = \operatorname{Re} \Sigma_{\chi\chi}^T \left(m_{\chi}^2 \right) \qquad \delta Z_{\chi\chi} = -\operatorname{Re} \frac{\partial \Sigma_{\chi\chi}^2 (p^2)}{\partial p^2} \Big|_{p^2 = m_{\chi}^2}$$

$$\delta m_{h_i}^2 = \operatorname{Re}\left[\Sigma_{h_i h_i}(m_{h_i}^2) - \delta T_{h_i h_i}\right] \qquad \delta Z_{h_i h_i} = -\operatorname{Re}\left[\frac{\partial \Sigma_{h_i h_i}(p^2)}{\partial p^2}\right]_{p^2 = m_{h_i}^2} \qquad \delta Z_{h_i h_j} = \frac{2}{m_{h_i}^2 - m_{h_i}^2} \operatorname{Re}\left[\Sigma_{h_i h_j}(m_{h_j}^2) - \delta T_{h_i h_j}\right], \quad i \neq j$$

+Renormalization of the dark coupling: \overline{MS}

$$\delta g_{\chi} \big|_{\varepsilon} = \frac{g_{\chi}^3}{96\pi^2} \Delta_{\varepsilon}$$
 with $\Delta_{\varepsilon} = \frac{1}{\varepsilon} - \gamma_E + \ln 4\pi$

Renormalization of the VDM

[Pilaftsis, 97; Kanemura, Okada, Senaha, Yuan, 04; Krause, Lorenz, MM, Santos, Ziesche, 16]

Mixing angle renormalization: KOSY scheme, process-dependent scheme, MS

(i) KOSY scheme: counterterm def. through off-diagonal wave function ren. constants

rotation from gauge $\binom{h_1}{h_2} = R\left(\alpha + \delta\alpha\right)\sqrt{Z_{\Phi}} \begin{pmatrix} \Phi_H \\ \Phi_S \end{pmatrix}$ to mass eigenstates $R\left(\alpha + \delta\alpha\right)\sqrt{Z_{\Phi}}\begin{pmatrix}\Phi_{H}\\\Phi_{S}\end{pmatrix} = \underbrace{R(\delta\alpha)R(\alpha)\sqrt{Z_{\Phi}}R(\alpha)^{T}}_{P}R(\alpha)\begin{pmatrix}\Phi_{H}\\\Phi_{S}\end{pmatrix} + \mathcal{O}(\delta\alpha^{2}) = \sqrt{Z_{H}}\begin{pmatrix}h_{1}\\h_{2}\end{pmatrix}$ $\sqrt{Z_H} = R(\delta\alpha) \begin{pmatrix} 1 + \frac{\delta Z_{h_1 h_1}}{2} & \delta C_h \\ \delta C_h & 1 + \frac{\delta Z_{h_2 h_2}}{2} \end{pmatrix} \approx \begin{pmatrix} 1 + \frac{\delta Z_{h_1 h_1}}{2} & \delta C_h + \delta\alpha \\ \delta C_h - \delta\alpha & 1 + \frac{\delta Z_{h_2 h_2}}{2} \end{pmatrix}$ expansion in a on-shell conditions $\frac{\delta Z_{h_1h_2}}{2} \stackrel{!}{=} \delta C_h + \delta \alpha$ and $\frac{\delta Z_{h_2h_1}}{2} \stackrel{!}{=} \delta C_h - \delta \alpha$ $\delta \alpha = \frac{1}{4} \left(\delta Z_{h_1 h_2} - \delta Z_{h_2 h_1} \right)$

$$= \frac{1}{2(m_{h_1}^2 - m_{h_2}^2)} \operatorname{Re} \left(\Sigma_{h_1 h_2}(m_{h_1}^2) + \Sigma_{h_1 h_2}(m_{h_2}^2) - 2\delta T_{h_1 h_2} \right)$$

Renormalization of the VDM

(ii) MS scheme: take only divergent part of counterterm in D=4 dimensions

(iii) process dependent scheme: through SM-like h decay $h \rightarrow \tau \tau$

wit

$$\begin{array}{ll} \mathsf{requirement} & \mathcal{A}_{h \rightarrow \tau \tau}^{\mathrm{NLO},\mathrm{weak}} \stackrel{!}{=} \mathcal{A}_{h \rightarrow \tau \tau}^{\mathrm{LO}} \end{array}$$

h
$$\mathcal{A}_{h o au au}^{ ext{NLO,weak}} = \mathcal{A}^{ ext{LO}} + \mathcal{A}^{ ext{virt,weak}} + \mathcal{A}^{ ext{ct}}$$

leads to
$$\mathcal{A}^{\mathrm{virt},\mathrm{weak}} + \mathcal{A}^{\mathrm{ct}} = 0$$
 so that finally

$$\delta \alpha = \left(\frac{2m_W}{gm_\tau \cos \alpha}\right) \left[\mathcal{A}^{\text{virt,weak}} + \mathcal{A}^{\text{ct}}\big|_{\delta \alpha = 0}\right]$$

Note: weak corrections form UV-finite subset (electromagnetic corrs. exhibit IR divergence, to be avoided)

Renormalization of the SDM

*Parameters to be renormalized: DM and scalar fields h_i and m_{χ} , m_{hi} , mixing angle a, singlet VEV v_s (singlet VEV instead of dark coupling)

*Mass and field renormalization: on-shell - like in VDM

*Renormalization of the singlet VEV: we use standard tadpole scheme: in R_{ξ} gauge singlet VEV does not need to be renormalized at 1-loop if scalar field obeys rigid invariance (disconnected from scalar sector \rightarrow invariance unter global transformations) [Sperling,Stöckinger,Voigt, 13]

Mixing angle renormalization: KOSY scheme

The NLO Cross Section

The SI Cross Section at NLO

+NLO contributions:

Calculation of loops including ct diagrams → result can be expressed in terms of form factors of the effective Lagrangian

+One-loop Wilson coefficients:

Upper Vertex Corrections

+Upper vertex corrections: $S = \{h_i, G_{\chi}\} \qquad S, V = \{h_i, G_{\chi}\}, \{X\} \quad S, V = \{h_i, G_{\chi}\}, \{X\} \qquad S, V = \{h_i\}, \{X\}$ $\begin{array}{c} s \\ x \\ x \\ y \\ h_{1} \end{array} \begin{array}{c} x \\ y \\ y \end{array} \begin{array}{c} x \\ y \end{array} \begin{array}{c} x \\ y \\ y \end{array} \begin{array}{c} x \\ y \\ y \end{array} \begin{array}{c} x \\ y \end{array} \begin{array}{c} x \\ y \\ y \end{array} \begin{array}{c} x \\ y \end{array} \end{array}$ $S, V = \{h_i\}, \{X\}$ $S, V = \{h_i\}, \{X\}$ $S, V = \{h_i\}, \{X\}$ $S = \{h_i, G_{\gamma}\}$ **VDM** SDM Computation of $i\mathcal{A}_{\chi\chi h_i}^{\text{NLO}} = i\mathcal{A}_{\chi\chi h_i}^{\text{LO}} + i\mathcal{A}_{\chi\chi h_i}^{\text{VC}} + i\mathcal{A}_{\chi\chi h_i}^{\text{CT}}$ $i\mathcal{A}_{\chi\chi h_i}^{\rm LO} = g_{\chi\chi h_i}\varepsilon(p)\cdot\varepsilon^*(p) = 2g_{\chi}m_{\chi}\varepsilon(p)\cdot\varepsilon^*(p) \begin{cases} \sin\alpha \,, & i=1\\ \cos\alpha \,, & i=2 \end{cases}$ with $i\mathcal{A}_{\chi\to\chi h_1}^{\rm CT} = \left[\frac{1}{2} \left(g_{\chi\chi h_2} \delta Z_{h_2 h_1} + g_{\chi\chi h_1} \delta Z_{h_1 h_1}\right) + g_{\chi\chi h_1} \delta Z_{\chi\chi} + \delta g_{\chi\chi h_1}\right] \varepsilon(p) \cdot \varepsilon^*(p)$

$$i\mathcal{A}_{\chi\to\chi h_2}^{\rm CT} = \begin{bmatrix} \frac{1}{2} \left(g_{\chi\chi h_1} \delta Z_{h_1 h_2} + g_{\chi\chi h_2} \delta Z_{h_2 h_2} \right) + g_{\chi\chi h_2} \delta Z_{\chi\chi} + \delta g_{\chi\chi h_2} \end{bmatrix} \varepsilon(p) \cdot \varepsilon^*(p)$$

results in tensor structure

$$i\mathcal{A}^{\text{NLO}} = (\dots)\underbrace{\varepsilon(p_{\text{in}}) \cdot \varepsilon^*(p_{\text{out}})}_{\sim \text{LO}} + (\dots)\underbrace{(p_{\text{in}} \cdot \varepsilon^*(p_{\text{out}}))(p_{\text{out}} \cdot \varepsilon(p_{\text{in}}))}_{\sim \text{NLO}}$$

with our approximation $p_{in} = p_{out}$ second tensor structure vanishes

+Lower vertex corrections:

we encounter IR divergences in VDM from QED subset

diagrams form UV-finite subset

expansion for strictly vanishing external quark momentum and neglecting terms of $\mathcal{O}(p_q^2) \rightarrow$ regularization of IR divergences in VDM

SDM: U(1) symmetry of the potential \rightarrow complete cancellation of the QED subset, hence no IR divergences

Heavy Quarks

• Inclusion of heavy quarks through replacement rule $m_Q \bar{Q} Q \rightarrow -\frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a\mu\nu}$

Inclusion of EW corrections would require two-loop matching of QCD trace anomaly!

Our approach: no inclusion of EW correction to heavy quark contributions

with

only for comparison w/ literature we include the "additional gluon contributions" [Ishiwata,Toma, 18]

Heavy Quarks

Mediator Corrections

*Mediator corrections:

in approximation of zero momentum exchange we get

$$\Delta_{h_i h_j} = -\frac{\hat{\Sigma}_{h_i h_j} (p^2 = 0)}{m_{h_i}^2 m_{h_j}^2}$$

projection on corresponding tensor structure \rightarrow effective NLO correction to Wilson coefficient of operator $m_q \chi \chi q \bar{q}$

$$f_q^{\text{med}} = \frac{gg_{\chi}m_{\chi}}{2m_W} \sum_{i,j} R_{\alpha,i2}R_{\alpha,j1}\Delta_{h_ih_j}$$

Box Corrections

*Box corrections:

expansion of propagator terms in small quark momentum \rightarrow projection onto required tensor structures \rightarrow we get the box contribution to the Wilson coefficients f_q^{box} and g_q^{box}

Result for SI Cross Section at NLO

+LO form factor: $\frac{f_N^{\text{LO}}}{m_N} = f_q^{\text{LO}} \left[\sum_{q=u,d,s} f_{T_q}^N + \sum_{q=c,b,t} \frac{2}{27} f_{T_G}^N \right]$

+NLO form factor:

$$\frac{f_N^{\rm NLO}}{m_N} = \sum_{q=u,d,s} f_q^{\rm NLO} f_{T_q}^N + \sum_{q=u,d,s,c,b} \frac{3}{4} \left(q(2) + \bar{q}(2) \right) g_q^{\rm NLO} - \frac{8\pi}{9\alpha_S} f_{T_G}^N f_G^{\rm NLO}$$

with

$$\begin{aligned} f_q^{\rm NLO} &= f_q^{\rm vertex} + f_q^{\rm med} + f_q^{\rm box} \\ g_q^{\rm NLO} &= g_q^{box} \\ f_G^{\rm NLO} &= -\frac{\alpha_S}{12\pi} \sum_{q=c,b,t} \left(f_q^{\rm vertex} + f_q^{\rm med} \right) + f_G^{\rm top} \end{aligned}$$

"additional gluon contributions"

+NLO cross section:

$$\sigma_{N} = \frac{1}{\pi} \left(\frac{m_{N}}{m_{\chi} + m_{N}} \right)^{2} \left[|f_{N}^{\text{LO}}|^{2} + 2\text{Re} \left(f_{N}^{\text{LO}} f_{N}^{\text{NLO}*} \right) \right] \qquad \text{VDM}$$
$$\sigma_{N} = \frac{1}{\pi} \left(\frac{m_{N}}{m_{\chi} + m_{N}} \right)^{2} \left[||f_{N}^{\text{NLO}}|^{2} \right] \qquad \text{SDM}$$
VDM: K-Factors

- K-factor increases with g_{χ} , below 30% (barring outliers)
- for $m_{\Phi} \approx m_h$ K-factor close to 2 due to resonant behavior in vertex correction
- blind spots are the same for LO and NLO