Heavy quarks and effective field theories in and for lattice QCD

# Rainer Sommer

John von Neumann Institute for Computing, DESY & Humboldt Universität zu Berlin

#### Madrid, IFT Xmas workshop, 2022







#### **Motivation 1**

#### B-physics still is a possible window for new physics

- much non-perturbative theory (= lattice QCD) is needed
- is it always understood to the level that is claimed?
- reason to doubt

$$\underbrace{m_{b}}_{5 \text{ GeV}} > \Lambda_{\text{cut}}^{\text{UV}} = \frac{1}{a} \quad \text{when } \Lambda_{\text{cut}}^{\text{IR}} = \frac{1}{L} \ll m_{\pi}$$

$$\underbrace{1.5 \text{ GeV}}_{1.5 \text{ GeV} \dots 4 \text{ GeV}} \qquad \left(\frac{L}{a}\right)^{4} = \text{\# points limited}$$





EFT can provide unexpected help to "solve" fundamental theory

•  $\alpha_s$  from decoupling





## Lattice for EFTs, EFTs for the lattice, and EFT on the lattice

**Table 1.2** Examples for the interplay of EFT and lattice QCD. Special considerations beyond  $E \ll a^{-1}$  are marked in the last double-column.

RS: Les Houches Lect.Notes 108 (2020)

|         |                        | applicability range            |                                                                               |                                |            |
|---------|------------------------|--------------------------------|-------------------------------------------------------------------------------|--------------------------------|------------|
|         | rôle                   | $\mathrm{EFT}$                 | of EFT                                                                        | of lattice QCD                 |            |
|         | 1. Lattice for EFT     |                                |                                                                               |                                |            |
|         | determine LEC's        | Chiral PT                      | low energy QCD                                                                |                                |            |
|         | 2. EFT for Lattice     |                                |                                                                               |                                |            |
|         | discretisation effects | Symanzik EFT                   | $E \ll a^{-1}$                                                                |                                |            |
|         | finite volume effects  | Chiral PT $[3,4]$              | $L^{-1} \ll m_{\pi}, \Lambda_{\rm QCD}$                                       |                                |            |
|         | quark mass effects     | Chiral PT $[5]$                | $m_{\rm u}, m_{\rm d} \ll \Lambda_{\rm QCD}$                                  |                                |            |
|         |                        | Heavy Meson<br>Chiral PT [6–8] | $m_{ m b} \gg \Lambda_{ m QCD}$<br>$m_{ m u}, m_{ m d} \ll \Lambda_{ m QCD}$  | $m_{\rm b} \ll a^{-1}$         |            |
|         | combined effects       | HMrsChPT [9]                   | $m_{ m u}, m_{ m d} \ll \Lambda_{ m QCD}$<br>$m_{ m b} \gg \Lambda_{ m QCD},$ | $m_{\rm b} \ll a^{-1}$         |            |
| <u></u> | 3. EFT on the Lattice  |                                |                                                                               |                                |            |
|         | NP EFT                 | $QCD^{(3)}$                    | $E \ll m_{ m c}, m_{ m b}, m_{ m t}$                                          |                                | + more e.g |
|         | NP EFT                 | HQET                           | $E, \Lambda_{\rm QCD} \ll m_{\rm b}$                                          |                                | effects    |
|         | NP EFT                 | NRQCD                          | $E, \Lambda_{ m QCD} \ll a^{-1}$                                              | $^{-1} \ll m_{ m c}, m_{ m b}$ |            |
| 1       | NP EFT                 | Nuclear EFT                    | see the lit                                                                   | erature                        | ,          |
|         |                        |                                |                                                                               |                                | (          |



#### **EFTs beyond perturbation theory**

#### a bit of formalism

$$\Phi^{\mathrm{LO}} = \langle O \rangle_{\mathrm{LO}} = \frac{1}{Z_{\mathrm{LO}}} \int_{\mathrm{fields}} \mathrm{e}^{-S^{\mathrm{LO}}} O, \quad S^{\mathrm{LO}} = \int \mathrm{d}^4 x \, \mathscr{L}_{\mathrm{LO}}(x) \,,$$
$$\mathscr{L}_{\mathrm{LO}}(x) = \sum_i \omega_i^{\mathrm{LO}} \, \mathscr{O}_i^{\mathrm{LO}}(x) \,, \quad [\mathscr{O}_i^{\mathrm{LO}}] \leq 4 \quad [\omega_i^{\mathrm{LO}}] \geq 0 \,,$$

 $O = \varphi(x)\varphi(y)$  as in any fundamental QFT

$$\mathscr{L}_{\rm NLO} = \sum_{j} \omega_{j} \mathscr{O}_{j}, \ \omega_{j} = \frac{1}{m_{\rm h}} \hat{\omega}_{j}, \quad [\mathscr{O}_{j}] = 5, \quad [\hat{\omega}_{j}] = 0,$$
$$O_{\rm eff} = O_{\rm LO} + O_{\rm NLO} + \dots.$$



Rainer Sommer | IFT Madrid | Xmas22



#### **EFTs beyond perturbation theory**

#### At NLO in 1/m

$$\mathscr{L}_{\rm NLO} = \sum_{j} \omega_{j} \mathscr{O}_{j}, \ \omega_{j} = \frac{1}{m_{\rm h}} \hat{\omega}_{j}, \quad [\mathscr{O}_{j}] = 5, \quad [\hat{\omega}_{j}] = 0,$$
$$O_{\rm eff} = O_{\rm LO} + O_{\rm NLO} + \dots$$

part of the definition of the EFT is

$$\Phi \equiv \langle O \rangle = \frac{\int_{\text{fields}} e^{-S} O}{\int_{\text{fields}} e^{-S}} \qquad e^{-S} \to e^{-S^{\text{LO}}} \{1 - S^{\text{NLO}} + \dots\}$$

which yields

$$\begin{split} \Phi_{\rm eff}^{\rm LO} &= \langle O^{\rm LO} \rangle_{\rm LO} \\ \Phi_{\rm eff}^{\rm NLO} &= \langle O^{\rm NLO} \rangle_{\rm LO} - \left( \langle O^{\rm LO} S^{\rm NLO} \rangle_{\rm LO} - \langle O^{\rm LO} \rangle_{\rm LO} \left\langle S^{\rm NLO} \rangle_{\rm LO} \right) \end{split}$$

higher order corrections as insertions into correlators





$$\Phi_{\rm eff}^{\rm LO} = \langle O^{\rm LO} \rangle_{\rm LO}$$
$$\Phi_{\rm eff}^{\rm NLO} = \langle O^{\rm NLO} \rangle_{\rm LO} - \left( \langle O^{\rm LO} S^{\rm NLO} \rangle_{\rm LO} - \langle O^{\rm LO} \rangle_{\rm LO} \langle S^{\rm NLO} \rangle_{\rm LO} \right)$$

higher order corrections as insertions into correlators

=> renormalizable also non-perturbatively (in coupling expansion)

why? OPE + renormalization of local fields + renormalizability of LO theory (different when the LO theory is not renormalizable, e.g. NRQCD)

note that for the lattice theory:

renormalizability <--> existence of continuum limit





Example: HQET: b-valence quark —> h(eavy)

$$\mathscr{L}^{\text{LO}} = \mathscr{L}^{\text{stat}} = \bar{\psi}_h (D_0 + m) \psi_h$$
 static

h-light axial current

$$A_0^{\text{stat}} = \bar{\psi}_u \gamma_0 \gamma_5 \psi_h , \quad \mathscr{M}^{\text{stat}} \equiv \langle 0 | A_0(0) | B \rangle$$

no chiral symmetry for h -> renormalization, AD for  $A_0^{\text{stat}}$ 

renormalize + match to QCD  $\mathcal{M}^{\text{QCD}}(m_b) = C_{\text{match}}(m_b, \mu) \times \mathcal{M}^{\text{stat}}(\mu)$ 

renormalization group improvement, pass to renormalization group invariant

$$\mathscr{M}(\mu) = \frac{\mathscr{M}^{\mathrm{RGI}}}{\varphi(\bar{g}(\mu))}, \qquad \varphi(\bar{g}) = \left[2b_0\bar{g}^2\right]^{-\gamma_0/2b_0} \exp\left\{-\int_0^{\bar{g}} x \left[\frac{\gamma(x)}{\beta(x)} - \frac{\gamma_0}{b_0x}\right]\right\}$$





#### Renormalization and matching at LO in 1/m

renormalize + match to QCD

$$\mathcal{M}^{\text{QCD}}(m_b) = C_{\text{match}}(m_b, \mu) \times \mathcal{M}^{\text{stat}}(\mu)$$

renormalization group improvement, pass to renormalization group invariant

$$\mathscr{M}(\mu) = \frac{\mathscr{M}^{\mathrm{RGI}}}{\varphi(\bar{g}(\mu))}, \qquad \varphi(\bar{g}) = \left[2b_0\bar{g}^2\right]^{-\gamma_0/2b_0} \exp\left\{-\int_0^{\bar{g}} x \left[\frac{\gamma(x)}{\beta(x)} - \frac{\gamma_0}{b_0x}\right]\right\}$$

in perturbation theory

 $\mathcal{M}^{\text{QCD}}(\boldsymbol{m}_b) = [\bar{g}^2(\boldsymbol{m}_b)]^{\hat{\gamma}} \left\{ 1 + \mathcal{O}(\bar{g}^2(\boldsymbol{m}_b)) \right\} \times \mathcal{M}^{\text{RGI}}$ 





# **Beyond LO in 1/m**

renormalize + match to QCD in perturbation theory at LO in EFT

 $\mathscr{M}^{\text{QCD}}(m_b) = [\bar{g}^2(m_b)]^{\hat{\gamma}} \left\{ 1 + \mathcal{O}(\bar{g}^2(m_b)) \right\} \times \mathscr{M}^{\text{RGI}}$ 

perturbative uncertainty

 $O([\bar{g}^2(m_b)]^{\# \text{loops}})$ 

This is not good enough if NLO accuracy is desired :

pert. errors = 
$$[\bar{g}^2(m_b)]^{\# \text{loops}} \gg \frac{\Lambda_{\text{QCD}}}{m_b}$$
 for  $m_b \gg \Lambda_{\text{QCD}}$ 

instead need to perform renormalization and matching non-perturbatively (on the lattice)

in fact: even more severe reasons:

power-law divergences  $\sim$ 

$$\left(\frac{g^2}{a^k}\right)$$
,









# **Beyond LO in 1/m**

more precisely the requirement is:

$$\Phi = \underbrace{\Phi^{LO}}_{NP} + \underbrace{\Phi^{NLO}}_{perturbative renormalization} + \underbrace{P_{MP}}_{matching}$$

perturbative renormalization+matching is okay (with perturbative errors) for the highest EFT-order correction

everything else needs to be done non-perturbatively (NP)

PT is useful for the highest EFT-order, in particular, to estimate the size of a small higher order EFT term





## **Non-perturbative HQET**

Beautiful strategy [Heitger, S., Heitger:2003nj]

Unfortunately very few phenomenological applications



But there is a twist to it:

combine HQET step scaling functions with relativistic ones to obtain a stabilized mass-dependence in the full range





#### **Non-perturbative HQET + QCD**

Combine HQET step scaling functions with relativistic ones to obtain a stabilized mass-dependence



[Guazzini, S., Tantalo; Guazzini:2007ja]





Rainer Sommer | IFT Madrid | Xmas22



#### **Non-perturbative HQET + QCD**



Presently revival with

- three dynamical quarks
- a twist in the quark-mass term
- a generalization to allow for form-factors such as B  $\rightarrow \pi \ell \nu$  stay tuned

[A. Conigli, J. Frison, P. Fritsch, J. Heitger, G. Herdoiza, S. Kuberski, C. Pena, H. Simma, R.S.]





to a project with a phenomenologically relevant result

$$\alpha_s(m_Z) = 0.11823(69)(42)_{b_g}(20)_{\Gamma_m}(6)_{3\to 5, \text{PT}}(7)_{3\to 5, \text{NP}}$$

[M.DallaBrida, R.Hoellwieser, F.~Knechtli, T.Korzec, A.Ramos, S.Sint, R.S., 2022]

- try to explain some of the EFT (fun) aspects





## **Decoupling of heavy quarks**

 $QCD_{N_{f}}$  with  $N_{f}$  quarks (6 in Nature)

 $N_{\ell}$  light (neglect mass (uninteresting)),

 $N_{\ell} - N_{\rm f}$  heavy, RGI mass M

For energy scales far below M: EFT = 
$$QCD_{N_{e}} + O(E^2/M^2)$$
  
NLO

renormalization + matching at LO:  $\bar{g}_{f}^{2} \leftrightarrow \bar{g}_{\ell}^{2}$ , or  $\Lambda_{f} \leftrightarrow \Lambda_{\ell}$ 

reminder:

$$\Lambda_{s} = \mu \, \varphi_{s}(\bar{g}_{s}(\mu)), \qquad d/d\mu \, \Lambda_{s} = 0$$
  
$$\varphi_{s}(\bar{g}_{s}) = (b_{0}\bar{g}_{s}^{2})^{-b_{1}/(2b_{0}^{2})} e^{-1/(2b_{0}\bar{g}_{s}^{2})} \times \exp\left\{-\int_{0}^{\bar{g}_{s}} dx \left[\frac{1}{\beta_{s}(x)} + \frac{1}{b_{0}x^{3}} - \frac{b_{1}}{b_{0}^{2}x}\right]\right\},$$





# How large are $1/M^2$ corrections?

Avoid  $\Lambda_f \leftrightarrow \Lambda_{\ell}$  relation for this question

Any physical ( $\mu$  -independent) mass-scale  $\mathcal{S}_i$ , in particular a particle mass satisfies

$$\mathcal{S}_{\ell,i} = k_i \Lambda_{\ell}$$
 mass-less EFT, LO ([ $k_i$ ] = 0)  
 $\mathcal{S}_{f,i} = h_i (M/\Lambda_f) \Lambda_f$  full theory ([ $h_i$ ] = 0)

For ratios the  $\Lambda$  - dependence drops out

$$\frac{\mathcal{S}_{\mathrm{f},i}}{\mathcal{S}_{\mathrm{f},j}} = \frac{h_i(M/\Lambda_{\mathrm{f}})}{h_j(M/\Lambda_{\mathrm{f}})} = \frac{k_i}{k_j} + \mathcal{O}(\Lambda_{\mathrm{f}}^2/M^2)$$

we tested this for  $N_{\rm f} = 2 \rightarrow N_{\ell} = 0$  (QCD-like toy model)





and

# **Decoupling: How large are** $1/M^2$ corrections?





#### Decoupling: relation of $\Lambda$ parameters

**Decoupling relation** 

$$\Lambda_{\ell} = P_{\ell,f}(M/\Lambda_f) \Lambda_f \quad (\mathbf{x})$$

more precisely need to first specify the units (scale)

$$\frac{\Lambda_{\ell}}{\mathcal{S}_{\ell}} = P_{\ell,\mathrm{f}}^{\mathcal{S}}(M/\Lambda_{\mathrm{f}}) \times \frac{\Lambda_{\mathrm{f}}}{\mathcal{S}_{\mathrm{f}}(M)}$$

scales  $\mathcal{S}$  can be dropped because

$$= \frac{\mathcal{S}_{\mathrm{f},i}}{\mathcal{S}_{\mathrm{f},j}} = \frac{h_i(M/\Lambda)}{h_j(M/\Lambda)} = \frac{k_i}{k_j} + \mathrm{O}(\Lambda^2/M^2)$$

SO

$$P^{\mathscr{S}}_{\ell,\mathrm{f}}(M/\Lambda_{\mathrm{f}}) = P^{\mathscr{S}'}_{\ell,\mathrm{f}}(M/\Lambda_{\mathrm{f}}) \times (1 + \mathrm{O}(\Lambda_{\mathrm{f}}^2/M^2))$$

observations

- (x) is valid at LO in the EFT
- $\Lambda_{\ell}$  inherits a mass-dependence from (x)

 $\rightarrow$  large (external) mass beyond the reach of  $\mathrm{QCD}_{\ell}$ 

### **Decoupling:** relation of $\Lambda$ parameters

$$\begin{split} \Lambda_{\ell} &= P_{\ell,f}(M/\Lambda_{\rm f})\,\Lambda_{\rm f} \,\,, \quad \Lambda_{s} = \mu\,\varphi_{s}(\bar{g}_{s}(\mu)) \\ \varphi_{s}(\bar{g}_{s}) &= (b_{0}\bar{g}_{s}^{2})^{-b_{1}/(2b_{0}^{2})}\,\mathrm{e}^{-1/(2b_{0}\bar{g}_{s}^{2})} \times \exp\left\{-\int_{0}^{\bar{g}_{s}}\mathrm{d}x \,\left[\frac{1}{\beta_{s}(x)} + \frac{1}{b_{0}x^{3}} - \frac{b_{1}}{b_{0}^{2}x}\right]\right\}\,, \end{split}$$

yields

$$P_{\ell,f}(M/\Lambda_{\rm f}) = \frac{\varphi_{\ell}(\bar{g}_{\ell}(\mu))}{\varphi_{\rm f}(\bar{g}_{\rm f}(\mu))}$$

insert perturbative relation of couplings

$$\bar{g}_{\ell}^2(\mu) = C(\bar{g}_{\rm f}(m_{\star})) \ \bar{g}_{\rm f}^2(m_{\star}), \qquad m_{\star} = \overline{m}_{\overline{\rm MS}}(m_{\star})$$

in  $\overline{\text{MS}}$  scheme:  $C(x) = 1 + c_2 x^4 + c_3 x^6 + c_4 x^8 + \dots$ ,

[Bernreuther:1981sg,Grozin:2011nk,Chetyrkin:2005ia,Schroder:2005hy,Kniehl:2006bg,Gerlach:2018hen]





#### Decoupling: relation of $\Lambda$ parameters

 $P_{\ell,\mathrm{f}}(M/\Lambda_{\mathrm{f}}) = \frac{\varphi_{\ell}(C(\bar{g}_{\ell}(\mu)))}{\varphi_{\mathrm{f}}(\bar{g}_{\mathrm{f}}(\mu))}$ 



NP "corrections" have been studied and are small as well

[A.Athenodorou, J.Finkenrath, F.~Knechtli, T.Korzec, B.Leder, M.Marinkovic, R.S., 2018]

charm-mass dependence of proton mass can be computed in PT. It is very weak.

 $m_{\rm proton} = P(M/\Lambda_{\rm f}) \times {\rm const}$ 

## Decoupling as a tool: determination of QCD $\Lambda$ parameter(s)

• pure gauge theory  $\Lambda_{\ell} = \Lambda^{(0)}$  known in terms of GF scale

[M. Dalla Brida & A. Ramos: DallaBrida:2019wur]

decoupling relation relates it to Λ<sub>f</sub> = Λ<sup>(3)</sup> with 3 quarks in terms
 of the same GF scale in theory with
 3 artificially heavy quarks



decoupling relation

$$P_{\ell,f}(M/\Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}})\frac{\Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}}{\mathcal{S}^{\mathrm{f}}(M)} = \frac{\Lambda_{\overline{\mathrm{MS}}}^{\ell}}{\mathcal{S}^{\ell}}$$

it is practical to define the scale through a specific value of a non-perturbatively defined running coupling  $$\mathcal{M}_{\rm H}$$ 

$$\mathcal{S} \equiv \mu_{\rm dec}$$
, with  $[\bar{g}_{\rm GF}^{\rm f}(\mu_{\rm dec},M)]^2 = u_{\rm M}$ 

rewrite

$$\frac{\Lambda_{\overline{MS}}^{\ell}}{\mathcal{S}} = \frac{\Lambda_{\overline{MS}}^{\ell}}{\mu_{\text{dec}}} = \frac{\Lambda_{\overline{MS}}^{\ell}}{\Lambda_{\overline{GF}}^{\ell}} \frac{\Lambda_{\overline{GF}}^{\ell}}{\mu_{\text{dec}}} = \frac{\Lambda_{\overline{MS}}^{\ell}}{\Lambda_{\overline{GF}}^{\ell}} \varphi_{g,\overline{GF}}^{\ell} (\sqrt{u_{\text{M}}})$$

Malec

Mdec

Uo

YM

Massive

less

introduce the function which relates the coupling in the full theory with the massive quarks and the one with all massless ones:

$$u_{\rm M} = \Psi_{\rm M}(u_0, z)$$
, with  $u_0 = [\bar{g}_{\rm GF}^{\rm f}(\mu_{\rm dec}, 0)]^2$ ,  $z = M/\mu_{\rm dec}$ 

decoupling relation now is

$$\rho \times P_{\ell,f}(z/\rho) = \frac{\Lambda_{\overline{MS}}^{\ell}}{\Lambda_{\overline{GF}}^{\ell}} \quad \underbrace{\varphi_{\overline{GF}}^{\ell}}_{\text{full}} \left( \sqrt{\Psi_{M}(u_{0},z)} \right), \qquad \rho = \frac{\Lambda_{\overline{MS}}^{f}}{\mu_{\text{dec}}}$$

$$\frac{1 - \ln \text{ pexact}}{1 - \ln \text{ pexact}} \quad \underbrace{\varphi_{\overline{GF}}^{\ell}}_{\text{full}} \left( \sqrt{\Psi_{M}(u_{0},z)} \right), \qquad z = M/\mu_{\text{dec}}$$

decoupling relation



finite volume step scaling + ...

[M. Dalla Brida & A. Ramos, DallaBrida:2019wur]

#### **Decoupling as a tool**

decoupling relation



choice of GF-scheme + scale,  $\bar{g}_{GF}^2(\mu_{dec} = 2/L_1, M = 0) = u_0 = 3.949$ ,

| as in HQET project | $(\mu_{\rm dec} = 789(15) {\rm MeV})$ | Collaboration |
|--------------------|---------------------------------------|---------------|
|--------------------|---------------------------------------|---------------|

| L/a | $\beta$ | К             | $ar{g}_{ m GF}^2$ | $\beta_{\rm LCP}$ |
|-----|---------|---------------|-------------------|-------------------|
| 12  | 4.3030  | 0.1359947(18) | 3.9461(41)        | 4.3019(16)        |
| 16  | 4.4662  | 0.1355985(9)  | 3.9475(61)        | 4.4656(23)        |
| 20  | 4.6017  | 0.1352848(2)  | 3.9493(63)        | 4.6018(24)        |
| 24  | 4.7165  | 0.1350181(20) | 3.9492(64)        | 4.7166(25)        |
| 32  | 4.9000  | 0.1345991(8)  | 3.949(11)         | 4.9000(42)        |
| 40  | _       | _             | _                 | 5.0497(41)        |
| 48  | _       | _             | _                 | 5.1741(54)        |









#### **Sources of errors**

$$\alpha_s(m_Z) = 0.11823(69)(42)_{b_g}(20)_{\Gamma_m}(6)_{3\to 5, \text{PT}}(7)_{3\to 5, \text{NP}}$$

- uncertainty is very small
- many small uncertainties play a role and need to be understood
- EFTs help





#### **Discretization errors / the continuum limit**









#### **Discretization errors / the continuum limit**

 $E = a^{-1} \quad \text{lattice QCD}$ -  $M \quad \text{SymEFT} \quad \mathscr{L} = \mathscr{L}_{\text{QCD}} + a^2 \mathscr{L}_2^{\text{Sym}} + \dots$  $\mathscr{L}_2^{\text{Sym}} = \omega_1 \sum_{\mu\nu} \text{tr} D_{\mu} F_{\mu\nu} D_{\mu} F_{\mu\nu} + \dots + \omega_{m,1} M^2 \sum_{\mu\nu} \text{tr} F_{\mu\nu} F_{\mu\nu} + \dots$  $+ \omega_{m,2} M^2 \overline{\psi} M \psi + \dots$ expand SymEFT (continuum EFT) in 1/M  $\sim \mu_{dec} \quad \text{decSymEFT} \quad \mathscr{L} = \mathscr{L}_{QCD} + \frac{1}{M^2} \mathscr{L}_2^{dec} + a^2 M^2 \mathscr{D}_0 + a^2 \mathscr{L}_2^{decSym} + \dots$   $\mathscr{L}_2^{dec} = \sigma_1 \mathscr{D}_1 + \sigma_2 \mathscr{D}_2, \quad \mathscr{L}_2^{decSym} = \omega_1 \mathscr{D}_1 + \omega_2 \mathscr{D}_2 + \omega_3 \mathscr{D}_3$  $\mathscr{D}_{1} = \sum_{\mu\nu\rho} \operatorname{tr} D_{\rho} F_{\mu\nu} D_{\rho} F_{\mu\nu}, \quad \mathscr{D}_{2} = \sum_{\mu\nu\rho} \operatorname{tr} D_{\mu} F_{\mu\nu} D_{\rho} F_{\rho\nu}, \quad \mathscr{D}_{3} = \sum_{\mu\nu} \operatorname{tr} D_{\mu} F_{\mu\nu} D_{\mu} F_{\mu\nu}$ 

> $\Rightarrow [\alpha(1/a)]^{\hat{\Gamma}_{i}} [\alpha(M)]^{\hat{\Sigma}_{j}} \mathcal{M}(\mu_{dec})$ partial knowledge on  $\hat{\Gamma}_{i}, \hat{\Sigma}_{j}$

crucial conclusion:

#### global continuum limit for several, large M

$$\bar{g}^{2}(z_{i}, a) = C_{i} + p_{1}[\alpha_{\overline{\text{MS}}}(a^{-1})]^{\hat{\Gamma}}(a\mu_{\text{dec}})^{2} + p_{2}[\alpha_{\overline{\text{MS}}}(a^{-1})]^{\hat{\Gamma}'}(aM_{i})^{2}$$

$$p_{1}, p_{2} \text{ common for all } z_{i}$$



#### **Boundary effects**

#### For various reasons we use the Coupling definition



$$\bar{g}_{\mathrm{GF}}^{2}(\mu = 1/L) = \# \times \langle E(t) \rangle$$
  
 $\sqrt{8t} = 0.3 L$ 

smoothing by GF = heat equation for gauge fields

Boundaries:

effects kept small by keeping E(t) away from the boundary but they introduce 1/M effects in the decoupling a single term  $\mathscr{L}_1^{\text{dec}} = \omega_b \left\{ \operatorname{tr} F_{0k} F_{0k} [\delta(x_0) + \delta(x_0 - T)] \right\}$ 

#### **Boundary effects**

Boundary 1/M effects due to

$$\mathscr{L}_{1}^{\text{dec}} = \hat{\omega}_{\text{b}} \frac{1}{M} \left\{ \operatorname{tr} F_{0k} F_{0k} \left[ \delta(x_{0}) + \delta(x_{0} - T) \right] \right\}$$

evaluated  $\hat{\omega}_{b}$  in leading order (1-loop) PT

and  $\mathcal{M} = \langle \operatorname{tr} F_{0k} F_{0k} [\delta(x_0) + \delta(x_0 - T)] E(t) \rangle_c \xrightarrow{-0.5}$ non-perturbatively by simulation in YM  $\stackrel{-1}{\overset{\mathfrak{S}}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{.5}}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5}{\overset{-1.5$ 

to our statistical errors



#### Summary

#### EFTs are important for lattice QCD

- SymEFT crucial for understanding the continuum limit log-corrections recently [N. Husung et al]
- HQET solves heavy-quark-on-the-lattice problem (valence quark) but has not reached its potential
- decoupling of heavy sea quarks:
  - already charm can usually be neglected
  - can be turned into a tool: world-highest precision already for  $\alpha_s(M_Z)$ higher when a technical problem will be solved ( $b_g$  uncertainty)





#### have a nice holiday season



