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Motivation 1

B-physics still is a possible window for new physics

• much non-perturbative theory (= lattice QCD) is needed 

• is it always understood to the level that is claimed? 

• reason to doubt  
 

   when                 

                                                     limited

mb⏟
5 GeV

> ΛUV
cut = 1

a
1.5 GeV…4GeV

ΛIR
cut = 1

L
≪ mπ

( L
a )

4
= # points 
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Motivation 2

EFT can provide unexpected help to “solve” fundamental 
theory

•  from decouplingαs
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Lattice for EFTs, EFTs for the lattice, and EFT on the lattice

6 Acknowledgements

Table 1.2 contains examples, the relevant scales, and the relations between the
scales which are necessary for the EFT (and lattice QCD) to apply.

Apart from the theoretical interest in describing EFTs non-perturbatively, the
advantage of using HQET and not just QCD with the heavy b-quark as a relativistic
Dirac field is the following. When the b-quark is a relativistic Dirac field, its mass just
like any mass and energy that is relevant needs to be far below the cuto↵, mb ⌧ a

�1.
In contrast,

mb > ⇤cut = a
�1

, (1.11)

is perfectly fine in HQET. Thus b-quarks become treatable without extrapolations or
other tricks. Concerning the relevant scales, look back to Table 1.1.

In these two lectures we focus on HQET but emphasize general features of non-
perturbative EFTs and the question how the parameters of the EFT can be determined
without loosing predictions. We also give a flavor of Symanzik EFT, our basis for
understanding how lattice field theories approach the continuum.

Table 1.2 Examples for the interplay of EFT and lattice QCD. Special considerations

beyond E ⌧ a�1
are marked in the last double-column.

applicability range
rôle EFT of EFT of lattice QCD

1. Lattice for EFT

determine LEC’s Chiral PT low energy QCD

2. EFT for Lattice

discretisation e↵ects Symanzik EFT E ⌧ a
�1

(Sect. 1.5.2)

finite volume e↵ects Chiral PT [3,4] L
�1

⌧ m⇡,⇤QCD

quark mass e↵ects Chiral PT [5] mu,md ⌧ ⇤QCD

Heavy Meson mb � ⇤QCD mb ⌧ a
�1

Chiral PT [6–8] mu,md ⌧ ⇤QCD

combined e↵ects HMrsChPT [9] mu,md ⌧ ⇤QCD

mb � ⇤QCD, mb ⌧ a
�1

3. EFT on the Lattice

NP EFT QCD(3)
E ⌧ mc,mb,mt

NP EFT HQET E, ⇤QCD ⌧ mb

NP EFT NRQCD E, ⇤QCD ⌧ a
�1

⌧ mc,mb

NP EFT Nuclear EFT see the literature

RS: Les Houches  
Lect.Notes 108 (2020)

+ more e.g.  
boundary  

effects
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EFTs beyond perturbation theory

a bit of formalism
-

ΦLO = 〈O〉LO = 1
ZLO

!

fields

e−SLO

O , SLO =

!
d4xLLO(x) ,

LLO(x) =
"

i

ωLO
i OLO

i (x) , [OLO
i ] ≤ 4 [ωLO

i ] ≥ 0 ,

O = ϕ(x)ϕ(y) .

LNLO =
"

j

ωjOj , ωj =
1

mh
ω̂j , [Oj ] = 5 , [ω̂j ] = 0 ,

as in any fundamental QFT

Oeff = OLO +ONLO + . . . .



Rainer Sommer | IFT Madrid | Xmas22

EFTs beyond perturbation theory

At NLO in 1/m

LNLO =
"

j

ωjOj , ωj =
1

mh
ω̂j , [Oj ] = 5 , [ω̂j ] = 0 ,

Oeff = OLO +ONLO + . . . .

Φ ≡ 〈O〉 =
-
fields

e−SO-
fields

e−S
.

part of the definition of the EFT is -

e−S → e−SLO

{1− SNLO + . . . } ,

which yields

higher order corrections as insertions into correlators

ΦLO
eff = 〈OLO〉LO

ΦNLO
eff = 〈ONLO〉LO −

.
〈OLOSNLO〉LO − 〈OLO〉LO 〈SNLO〉LO

/
.
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EFTs beyond perturbation theory

higher order corrections as insertions into correlators
 
=> renormalizable  
     also non-perturbatively (in coupling expansion)  
 
why?  
OPE + renormalization of local fields + renormalizability of LO theory 
(different when the LO theory is not renormalizable, e.g. NRQCD)  
 
note that for the lattice theory:

         renormalizability <—> existence of continuum limit

ΦLO
eff = 〈OLO〉LO

ΦNLO
eff = 〈ONLO〉LO −

.
〈OLOSNLO〉LO − 〈OLO〉LO 〈SNLO〉LO

/
.
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Renormalization and matching at LO in 1/m

Example: HQET: b-valence quark —> h(eavy) 
        
                                              static
h-light axial current 

                                         

no chiral symmetry for h —> renormalization, AD for 

renormalize + match to QCD
                                              

renormalization group improvement, pass to renormalization group invariant

                          

                                 

ℒLO = ℒstat = ψ̄h(D0 + m)ψh

Astat
0 = ψ̄u γ0γ5 ψh , ℳstat ≡ ⟨0 |A0(0) |B⟩

Astat
0

ℳQCD(mb) = Cmatch(mb, μ) × ℳstat(μ)

ℳ(μ) = ℳRGI

φ(ḡ(μ)) , φ(ḡ) = [ 2b0ḡ2 ]−γ0/2b0 exp −∫
ḡ

0
x [ γ(x)

β(x) − γ0
b0x ]

1+O(ḡ2)
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Renormalization and matching at LO in 1/m

renormalize + match to QCD
                                              

renormalization group improvement, pass to renormalization group invariant

                            

                                
in perturbation theory

                                

ℳQCD(mb) = Cmatch(mb, μ) × ℳstat(μ)

ℳ(μ) = ℳRGI

φ(ḡ(μ)) , φ(ḡ) = [ 2b0ḡ2 ]−γ0/2b0 exp −∫
ḡ

0
x [ γ(x)

β(x) − γ0
b0x ]

1+O(ḡ2)

ℳQCD(mb) = [ḡ2(mb)] ̂γ{1 + O(ḡ2(mb))} × ℳRGI
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Beyond LO in 1/m

renormalize + match to QCD in perturbation theory at LO in EFT

                                

perturbative uncertainty
                                         

This is not good enough if NLO accuracy is desired : 

           pert. errors =       for   

instead need to perform renormalization and matching non-perturbatively
(on the lattice) 

in fact: even more severe reasons:  

            power-law divergences   

ℳQCD(mb) = [ḡ2(mb)] ̂γ{1 + O(ḡ2(mb))} × ℳRGI

O([ḡ2(mb)]# loops)

[ḡ2(mb)]# loops ≫
ΛQCD

mb
mb ≫ ΛQCD

∼ ( g2

ak ) ,  for NkLO EFT
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Beyond LO in 1/m

more precisely the requirement is:

                                 

                                                       perturbative renormalization  
                                                                      + matching

perturbative renormalization+matching is okay (with perturbative errors)
for the highest EFT-order correction

everything else needs to be done non-perturbatively (NP)

PT is useful for the highest EFT-order, in particular, to estimate the size of a 
small higher order EFT term

Φ = ΦLO
⏟

NP

+ ΦNLO
⏟
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Non-perturbative HQET

Beautiful strategy
[Heitger, S., Heitger:2003nj]

Unfortunately very few 
phenomenological 
applications 

L1 L1 L2 L2 L∞

SSF

S1 S2 S3 S4 S5

HQETQCD

match

a

ωω̃

But there is a twist to it:  

          combine HQET step scaling functions with relativistic ones 
          to obtain a stabilized mass-dependence in the full range

LPHAA
Collaboration
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Non-perturbative HQET + QCD

L1 L1 L2 L2 L∞

SSF

S1 S2 S3 S4 S5

HQETQCD

match

a

ωω̃

  Combine HQET 
  step scaling functions 
  with relativistic ones 
  to obtain a stabilized mass-dependence
 
                       [Guazzini, S., Tantalo; Guazzini:2007ja]

JHEP01(2008)076
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Figure 3: Interpolations to the physical points are shown by the filled circles. For σm, the static
constraints are illustrated as the error band of the static result 1 + σstat

m x. On the right hand side,
the static results enter as data points at x = 0.

scaling functions are significantly reduced by including the static constraints. Furthermore

we can perform the consistency check of including quadratic terms only when the static

constraints are used. The agreement between linear and quadratic interpolations is very

reassuring.

For ρ(x,L0) and FPS(x,L0) the relativistic simulations straddle the physical point

x = x0 and, for the decay constant, the static data do not sensitively improve the precision

on the interpolated point. However, as an illustration how HQET does describe these

quantities, we also show eq. (4.9) together with the data at finite x in figure 3; in that case

the interpolation yields L3/2
0 FPS

√
mPS/(2CPS) = 1.279(17) or ϕ(x0, L0) = 3.107(41) and

ρ(x0, L0) = 0.7485(9).

Our final large volume results from eq. (2.11) and

FBs = ϕ(x0, L0)σf(x1, L1)σf(x2, L2)L−3/2
0 m−1/2

Bs
(4.13)

are

FBs = 191(6)MeV , Mb = 6.88(10)GeV =⇒ mb(mb) = 4.42(6)GeV . (4.14)

Here the conversion to the running mass in the MS-scheme is done with the 4-loop RG

equations (for Nf = 0 and Λ(0)

MS
= 238(19)MeV [25]).

5. Conclusions and outlook

We have followed a general strategy for computing B-meson observables. Starting from a

finite volume, where the observables are straightforwardly computable in relativistic lattice

– 11 –

= 1/(LmPS(L)) ≈ 1/(Lmh)
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Non-perturbative HQET + QCD

 Presently revival with  
    - three dynamical quarks
    - a twist in the quark-mass term
    - a generalization to allow for form-factors such as B 
    stay tuned    
                                                [A. Conigli, J. Frison, P. Fritsch, J. Heitger, G. Herdoiza, S. Kuberski, C. Pena, H. Simma, R.S.]

→ πℓν

JHEP01(2008)076
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Figure 3: Interpolations to the physical points are shown by the filled circles. For σm, the static
constraints are illustrated as the error band of the static result 1 + σstat

m x. On the right hand side,
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scaling functions are significantly reduced by including the static constraints. Furthermore

we can perform the consistency check of including quadratic terms only when the static

constraints are used. The agreement between linear and quadratic interpolations is very

reassuring.

For ρ(x,L0) and FPS(x,L0) the relativistic simulations straddle the physical point

x = x0 and, for the decay constant, the static data do not sensitively improve the precision

on the interpolated point. However, as an illustration how HQET does describe these

quantities, we also show eq. (4.9) together with the data at finite x in figure 3; in that case

the interpolation yields L3/2
0 FPS

√
mPS/(2CPS) = 1.279(17) or ϕ(x0, L0) = 3.107(41) and

ρ(x0, L0) = 0.7485(9).

Our final large volume results from eq. (2.11) and

FBs = ϕ(x0, L0)σf(x1, L1)σf(x2, L2)L−3/2
0 m−1/2

Bs
(4.13)

are

FBs = 191(6)MeV , Mb = 6.88(10)GeV =⇒ mb(mb) = 4.42(6)GeV . (4.14)

Here the conversion to the running mass in the MS-scheme is done with the 4-loop RG

equations (for Nf = 0 and Λ(0)

MS
= 238(19)MeV [25]).

5. Conclusions and outlook

We have followed a general strategy for computing B-meson observables. Starting from a

finite volume, where the observables are straightforwardly computable in relativistic lattice

– 11 –

= 1/(LmPS(L)) ≈ 1/(Lmh)

σm = mPS(2L)
mPS(L)

static 
approx
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A radical switch …

 to a project with a phenomenologically relevant result

            
                    [M.DallaBrida,R.Hoellwieser,F.~Knechtli,T.Korzec,A.Ramos,S.Sint,R.S., 2022]

 
    - try to explain some of the EFT (fun) aspects
       
                                               

0.115 0.116 0.117 0.118 0.119 0.12 0.121 0.122
↵s(MZ)

ALPHA 17

PACS-CS 09A

Ayala 20

TUMQCD 19

Cali 20

HPQCD 10

Maltman 08

HPQCD 14A

HPQCD 10

FLAG 21

This work

Figure 4: Our result compared with other lattice computations [5, 18, 70, 81–84] that enter in the
FLAG average [4] (acronyms taken from the FLAG report [4]).

where the first error is statistical, the second is due to bg, and the third represents the uncertainty
associated with the logarithmic corrections in the limit M ! 1 (see Section 4.5). The last
two errors come instead from crossing the charm and bottom thresholds: first a perturbative error
(determined by taking the difference in the decoupling relations and RG functions between the last
two known orders [29–34,74–79]), and second an estimate of 0.3% in ⇤

(3)

MS
for the non-perturbative

corrections in the decoupling of the charm [28].
Using the experimental value mZ = 91187.6(2.1) MeV for the Z boson pole mass [7] we

get
↵s(mZ) = 0.11823(69)(42)bg(20)�m(6)3!5,PT(7)3!5,NP = 0.11823(84) . (5.3)

Figure 4 shows a comparison of our results with other lattice computations [5, 18, 70, 80–84] that
enter the FLAG average [4]. Our result shows a good agreement with the FLAG average, our
previous determination of the strong coupling [5], and the other lattice works that enter in the
FLAG average. It is important to point out that the result of this work is largely independent from
our previous determination [5]. Only the value of µdec = 789(15) MeV is shared between both
determinations of the strong coupling (see Section 4.5.2). This amounts to 28% of the squared
error.

6 Conclusions and outlook

The determination of the strong coupling on the lattice faces particular challenges compared with
low energy hadronic quantities. One has to connect a low energy scale with the perturbative high
energy regime of QCD. Due to the slow running of the coupling, perturbative scales are very
large and these two regimes cannot be comfortably simulated on a single lattice. This “window
problem” which is due to the fact that only a limited range of scales can be simulated on a single
lattice is the reason why most lattice determinations of the strong coupling have uncertainties
dominated by the truncation errors of the perturbative series: they apply perturbation theory at
in-between energy scales (see [9] for a review). One exception is the step scaling method [13],
which was designed to cover a large scale difference non-perturbatively. In practice, however, the
method is quite demanding, and a reduction of the current uncertainty in the strong coupling using
this technique is possible but requires large computational resources.

29
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Decoupling of heavy quarks

            with  quarks (6 in Nature) 

                             light (neglect mass (uninteresting)),  
                             heavy, RGI mass 

            For energy scales far below :  EFT = + 

renormalization + matching at LO:  , or  

reminder:
                  

                               

QCDNf
Nf

Nℓ
Nℓ − Nf M

M QCDNℓ
O (E2/M2)

NLO

ḡ2
f ↔ ḡ2

ℓ Λf ↔ Λℓ

Λs = μ φs(ḡs(μ)) , d/dμ Λs = 0
φs(ḡs) = (b0ḡ2

s)−b1/(2b2
0 ) e−1/(2b0ḡ2

s ) × exp −
ḡs

∫
0

dx [ 1
βs(x) + 1

b0x3 − b1
b2

0 x ] ,
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How large are   corrections?1/M2

Avoid  relation for this question

Any physical (  -independent) mass-scale , in particular a particle mass
satisfies
                          mass-less EFT, LO           ( )
and
                    full theory                    ( )

For ratios the  - dependence drops out

                   

we tested this for   (QCD-like toy model) 

Λf ↔ Λℓ

μ 1i

1ℓ,i = kiΛℓ [ki] = 0

1f,i = hi(M/Λf) Λf [hi] = 0

Λ
1f,i
1f,j

= hi(M/Λf)
hj(M/Λf)

= ki

kj
+ O(Λ2

f /M2)

Nf = 2 → Nℓ = 0
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Decoupling: How large are   corrections?1/M2

     ,   use  = gradient flow scales because of
                                                                                excellent precision

for  

               continuum limits                              mass behavior

1f,i
1f,j

= hi(M)
hj(M) = ki

kj
+ O(Λ2

f /M2) 1i

Nf = 2 → Nℓ = 0

652 ALPHA Collaboration / Physics Letters B 774 (2017) 649–655

Fig. 1. Combined continuum extrapolations. On the left, the ratio √tc/t0. On the right √t0/w0. We show data from twisted mass (pentagrams), standard Wilson (squares) 
and quenched (circles) simulations. For the second coarsest quenched lattice we performed a finite volume test and there are two data points overlapping. The lines represent 
the continuum extrapolations described in the text and the asterisks are the obtained continuum values.

Fig. 2. The continuum extrapolated values of √tc/t0 (left) and √t0/w0 (right) from the fit shown in Fig. 1 plotted against !/M . The line in the blue band is the effective 
theory prediction eq. (4) fitted through points from M = ∞ down to M/! = 2.5000. The line in the green band is instead a fit linear in !/M . For comparison the dashed 
lines represent the quadratic (blue) and linear (green) fit through points from M = ∞ down to M/! = 1.2800. Also shown by the dashed–dotted red line is a fit in this 
range adding to eq. (4) a next-to-leading correction term proportional to !4/M4. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

Table 2
The values of various dimensionless ratios in the continuum limit for several values of the quark mass.

M/! ∞ 5.7781 4.87 2.50 1.28 0.59
√

tc/t0 0.7919(3) 0.7894(9) 0.7888(5) 0.7826(6) 0.7751(9) 0.7643(6)√
t0/w0 0.9803(6) 0.9774(21) 0.9765(10) 0.9661(13) 0.9532(18) 0.9311(15)

r0/
√

t0 3.013(17) – 3.022(29) 2.988(35) 3.043(71) 3.050(64)

652 ALPHA Collaboration / Physics Letters B 774 (2017) 649–655

Fig. 1. Combined continuum extrapolations. On the left, the ratio √tc/t0. On the right √t0/w0. We show data from twisted mass (pentagrams), standard Wilson (squares) 
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the continuum extrapolations described in the text and the asterisks are the obtained continuum values.

Fig. 2. The continuum extrapolated values of √tc/t0 (left) and √t0/w0 (right) from the fit shown in Fig. 1 plotted against !/M . The line in the blue band is the effective 
theory prediction eq. (4) fitted through points from M = ∞ down to M/! = 2.5000. The line in the green band is instead a fit linear in !/M . For comparison the dashed 
lines represent the quadratic (blue) and linear (green) fit through points from M = ∞ down to M/! = 1.2800. Also shown by the dashed–dotted red line is a fit in this 
range adding to eq. (4) a next-to-leading correction term proportional to !4/M4. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

Table 2
The values of various dimensionless ratios in the continuum limit for several values of the quark mass.

M/! ∞ 5.7781 4.87 2.50 1.28 0.59
√

tc/t0 0.7919(3) 0.7894(9) 0.7888(5) 0.7826(6) 0.7751(9) 0.7643(6)√
t0/w0 0.9803(6) 0.9774(21) 0.9765(10) 0.9661(13) 0.9532(18) 0.9311(15)

r0/
√

t0 3.013(17) – 3.022(29) 2.988(35) 3.043(71) 3.050(64)

[Bruno, Finkenrath, Knechtli,  
Leder, S., Bruno:2014ufa]

[Knechtli, Korzec, Leder, Moir, 
Knechtli:2017xgy]

Tiny effects at 
the charm mass



Decoupling: relation of  parametersΛ

‣ (x) is valid at LO in the EFT

‣  inherits a mass-dependence from (x) 
                                   large (external) mass beyond the reach of 
Λℓ

QCDℓ

Decoupling relation
                                                (x)

more precisely need to first specify the units (scale)

                                            

scales  can be dropped because  

so
                          

observations

Λℓ = Pℓ,f(M/Λf) Λf

Λℓ

1ℓ
= P1

ℓ,f(M/Λf) × Λf
1f(M)

1
1f,i
1f, j

= hi(M/Λ)
hj(M/Λ) = ki

kj
+ O(Λ2/M2)

P1
ℓ,f(M/Λf) = P1′ 

ℓ,f(M/Λf) × (1 + O(Λ2
f /M2))
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Decoupling: relation of  parametersΛ

 ,                       

                                           

yields

                              

insert perturbative relation of couplings 

               ,                   

in  scheme:     
 
        [Bernreuther:1981sg,Grozin:2011nk,Chetyrkin:2005ia,Schroder:2005hy,Kniehl:2006bg,Gerlach:2018hen]

Λℓ = Pℓ,f(M/Λf) Λf Λs = μ φs(ḡs(μ))

φs(ḡs) = (b0ḡ2
s)−b1/(2b2

0 ) e−1/(2b0ḡ2
s ) × exp −

ḡs

∫
0

dx [ 1
βs(x) + 1

b0x3 − b1
b2

0 x ] ,

Pℓ,f(M/Λf) =
φℓ(ḡℓ(μ))
φf(ḡf(μ))

ḡ2
ℓ(μ) = C(ḡf(m⋆)) ḡ2

f (m⋆) m⋆ = mMS(m⋆)

MS C(x) = 1 + c2x4 + c3x6 + c4x8 + … ,



Decoupling: relation of  parametersΛ

‣ NP “corrections” have been studied and are small as well  
                                   [A.Athenodorou,J.Finkenrath,F.~Knechtli,T.Korzec,B.Leder,M.Marinkovic,R.S., 2018] 

‣ charm-mass dependence of proton mass                  
can be computed in PT. It is very weak.

mproton = P(M/Λf) × const

                             

fantastic asymptotic convergence in  scheme: use C from 
        [Bernreuther:1981sg,Grozin:2011nk,Chetyrkin:2005ia,Schroder:2005hy,Kniehl:2006bg,Gerlach:2018hen] 

and 5-loop beta-function

Pℓ,f(M/Λf) =
φℓ(C(ḡℓ(μ)))

φf(ḡf(μ))

MS

0 10 20 30 40
1

1.1

1.2

1.3

1.4
Mc/⇤

M/⇤

P

0 10 20 30 40
0

0.02

0.04

Mc/⇤

M/⇤

P
(1

)example:

decoupling 
of charm
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Decoupling as a tool: determination of QCD  parameter(s)Λ

‣ pure gauge theory  known in terms of GF scale  
                                                 [M. Dalla Brida & A. Ramos: DallaBrida:2019wur]

‣ decoupling relation relates it to  with 3 quarks in 
terms 
of the same GF scale in theory with  
3 artificially heavy quarks 
 
                            

Λℓ = Λ(0)

Λf = Λ(3)



Decoupling as a tool

decoupling relation

                                            

it is practical to define the scale through a specific value of a non-
perturbatively defined running coupling

                         

rewrite

                        

introduce the function which relates the coupling in the full  
theory with the massive quarks and the one with all massless ones:

       

Pℓ,f(M/Λf
MS)

Λf
MS

1f(M) =
Λℓ

MS
1ℓ

1 ≡ μdec ,  with [ḡf
GF(μdec, M)]2 = uM

Λℓ
MS
1 =

Λℓ
MS

μdec
=

Λℓ
MS

Λℓ
GF

Λℓ
GF

μdec
=

Λℓ
MS

Λℓ
GF

φℓ
g,GF ( uM)

uM = ΨM(u0, z) ,  with u0 = [ḡf
GF(μdec,0)]2 , z = M/μdec



Decoupling as a tool

decoupling relation now is
            

               

 

ρ × Pℓ,f(z /ρ)
High order PT

=
Λℓ

MS
Λℓ

GF
⏟

1-lp exact

φℓ
GF⏟

YM
( ΨM(u0, z)

full
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Fig. 4 The determination of !MS/µref from a non-perturbative matching between the GF and SF schemes

=
√

1 + u f (u)
[
− f ′(u) − 1/u2

( f (u)+ 1/u)2

]
βGF(

√
u)

(u = ḡ2
GF(µ/(2c))). (3.36)

Note that since we are not interested in matching the GF
schemes with their perturbative expressions, we can consider
also fits for βGF(g) where the b2 coefficient is treated as a
fit parameter, rather than being fixed to its perturbative value
(cf. Eq. (3.16)). In this case, the results for βSF(g) only use
as perturbative information the universal coefficients of the
β-function, Eq. (2.5). In particular the known value for bSF

2 is
not used. We have determined βSF using the data for βGF both
in the electric and magnetic GF scheme. The SF β-function
determined this way is shown in Fig. 4b. As one can see from
the plot, as expected there is agreement between the deter-
mination from the electric and magnetic GF schemes. The
non-perturbative data then match the perturbative prediction
in all the range of couplings we covered.

Similarly to what we did in the previous section for the GF
coupling, we can now explore in the SF scheme the effect on

!MS/µref of matching with perturbation theory at different
energy scales, µPT. To this end, we introduce the function
(ḡX,Y ≡ ḡX(µY)):

φSF(αPT) = 2c
!MS

!SF
(b0 ḡ2

GF, ref)

−b1
2b2

0 e
− 1

2b0 ḡ
2
GF, ref

× exp
{

− IGF
g (ḡGF, ref , ḡGF,PT)

−I SF,3
g (ḡSF,2cµPT , 0)

}
,

αPT ≡
ḡ2

GF,PT

4π
, (3.37)

where IGF
g is defined in terms of the non-perturbative β-

function in either the electric or magnetic GF scheme
(cf. Eq. (2.6)), while I SF,3

g integrates the perturbative 3-loop
β-function in the SF scheme (cf. Eq. (2.10)). This quantity
is entirely analogous to Eq. (3.30), the only difference being
that once we arrive at the scale µPT with the running in the
GF scheme, we change to the SF scheme at the scale 2cµPT,
and we then use perturbation theory in the SF scheme (see
Fig. 4a for a cartoon). Note that the factor s = 2c appearing

123

finite volume step scaling + …                [M. Dalla Brida & A. Ramos, DallaBrida:2019wur]

z = M/μdec
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as in HQET project  (                   )

ρ × Pℓ,f(z /ρ)
High order PT

=
Λℓ

MS
Λℓ

GF
⏟

1-lp exact

φℓ
GF⏟

YM
( ΨM(u0, z)

full

) , ρ =
Λf

MS
μdec

ḡ2
GF(μdec = 2/L1, M = 0) = u0 = 3.949

μdec = 789(15) MeV
L1 L1 L2 L2 L∞

SSF

S1 S2 S3 S4 S5

HQETQCD

match

a
ωω̃

L/a �  ḡ
2

GF
�LCP

12 4.3030 0.1359947(18) 3.9461(41) 4.3019(16)
16 4.4662 0.1355985(9) 3.9475(61) 4.4656(23)
20 4.6017 0.1352848(2) 3.9493(63) 4.6018(24)
24 4.7165 0.1350181(20) 3.9492(64) 4.7166(25)
32 4.9000 0.1345991(8) 3.949(11) 4.9000(42)

40 – – – 5.0497(41)
48 – – – 5.1741(54)

Table 1: Massless line of constant physics. The simulations described in the first four columns
are taken from [36]. They are used to fix �LCP such that the renormalized massless coupling
ḡ
2

GF
(µ) = 3.949. The last row (L/a = 48) is obtained indirectly from our knowledge of the

non-perturbative running of the coupling, while the previous one (L/a = 40) is an interpolation
of the other data, see Appendix G for more details.

Wilson fermions fixed lattice spacing corresponds to fixed improved bare coupling g̃
2
0
. The simu-

lation parameter � of the massive simulation is thus obtained from

� =
6(1 + bg amq)

g̃2
0

, (4.4)

where the values of g̃2
0
= 6/�LCP are taken from table 1, since at zero mass the improved and

unimproved couplings coincide. For bg as well as for all other improvement coefficients that are
known only perturbatively, we use 1-loop values and treat the difference between tree-level and
1-loop as uncertainties, see below and Appendix E. The largest effect arises from bg.

The other simulation parameter, , is obtained from the critical mass, amc(g
2
0
). Since table 1

provides the values of c = 1/(2amc(g̃
2
0
) + 8) we perform a small shift

amc(g
2

0) = amc(g̃
2

0) +
�
g
2

0 � g̃
2

0

� @

@g̃2
0

(amc) , (4.5)

where the needed derivative can be obtained either from the literature [35], or from the simulations
used to extract Zm, bm (see Appendix E). Both determinations of the derivative agree at the percent
level. We thus obtain �, needed to simulate at fixed values of z. The uncertainty in z, propagated
from our determinations of Zm, bm, , are propagated into an error in the coupling according to
the discussion in Appendix F. The error in z contributes to a small part to the uncertainty of ḡ2

GFT
.

Our simulations were performed when only an incomplete data-set for the determination of
the LCP was available. This can be observed by comparing our simulation parameters at z = 0 in
table 12 with the final values of the LCP available in table 1. We correct for this small mismatch
by a linear shift in g̃

2
0

using

@g
2

GFT

@g̃2
0

����
z,L/a

=
@g

2

GFT

@ log(a)

����
z,L/a

d log(a)

dg̃2
0

=
@g

2

GFT

@ log(L)

����
z,L/a

d log(a)

dg̃2
0

=
gGFT�

(0)

GFT
(gGFT)(1� ⌘

M
(g⇤))

g̃0�
(3)

0
(g̃0)

[1 +Rz +Ra] . (4.6)
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ḡ2 z

z =RXNdk
z =9Xy
z =eXy
z =3Xy
z =RyXy
z =RkXy

(c) (aM)
2
< 0.16.

0.000 0.001 0.002 0.003 0.004 0.005 0.006
4.2

4.4

4.6

4.8

5.0

(a/L)2
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Figure 1: Global continuum fit of our data for c = 0.3 (ḡ2z ⌘ ḡ
2
0.3

(z) in the plots) and two values of
the mass cuts. Note that the assumed 100% uncertainty of bg is not included in the error bars of
the points. However, it is propagated into the uncertainties of the global fit shown by the shaded
areas.

ḡ
2
c (zi, 0) ⌘ ḡ

2

GFT,c
(µdec,M, 0) from the values ḡ

2
c (zi, a) ⌘ ḡ

2

GFT,c
(µdec,M, aµdec) at non-zero

lattice spacing.5

Extrapolations at fixed z: The measured values of ḡ2c (zi, a) for each value of zi = Mi/µdec are
extrapolated with the ansatz

ḡ
2

c (zi, a) = Ci(c) + pi(c) [↵MS
(a

�1
)]
�̂
(aµdec)

2
, (4.7)

where Ci(c), pi(c) are independent fit parameters for each value zi (with the continuum
limits being ḡ

2
c (zi, 0) = Ci(c)), and we use �̂ 2 [�1, 1].

Global extrapolations: The measurements of the coupling for all zi, aµdec at a fixed c are com-
bined in a single fit using the ansatz

ḡ
2

c (zi, a) = Ci(c) + p1(c)[↵MS
(a

�1
)]
�̂
(aµdec)

2
+ p2(c)[↵MS

(a
�1

)]
�̂
0
(aMi)

2
. (4.8)

In this case the fit parameters are the continuum values Ci and the two parameters p1,2, while
we consider �̂ 2 [�1, 1], and �̂

0 2 [�1/9, 1]. This simple form is the result of expanding
5 Note that in the following we shall often use the more compact notation ḡ2c (z) for the massive coupling. Whether

we are referring to the coupling at finite a or in the continuum should be clear from the context.
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Figure 3: Values for ⇤
(3)

MS,e↵
from table 3 (c = 0.36) and their extrapolation M ! 1 us-

ing eq. (4.13) with �̂m = 0.

We further note that there is a significant correlation of the above statistical error with the one
of the previous work [5],

⇤
(3)

MS
= 341(12)MeV , (4.15)

using step scaling in the three-flavor theory up to high energy. The common piece is exactly
the scale µdec = 789(15)MeV. The off-diagonal element of the covariance matrix of the two
determinations is

Cov((4.14), (4.15)) = 41MeV
2
, (4.16)

compared to the diagonal ones of 144MeV
2, which at present happen to be about the same for each

of the individual determinations. As a quantitative measurement of the compatibility of the two
different determinations we note that their difference is not significant at all: ⇤(4.15)�⇤(4.14) =
5(14)MeV.

5 Result for ↵s(mZ)

Our result for ⇤(3)

MS
(eq. (4.14)) can be translated, after running across the charm and bottom quark

thresholds, into a value of the four and five flavor ⇤-parameter. Using the FLAG values [4] (based
on [70–73]) mc,? = 1275(5) MeV, mb,? = 4171(20) MeV for the charm and bottom quark mass
thresholds7 , we obtain the following values for the four and five flavor ⇤-parameters

⇤
(4)

MS
= 294(10)(6)bg(3)�m(0.7)3!4,PT(1)3!4,NPMeV = 294(12)MeV , (5.1)

⇤
(5)

MS
= 211.3(8.1)(5.0)bg(2.4)�m(0.7)3!5,PT(0.8)3!5,NPMeV = 211.3(9.8)MeV .(5.2)

7 The uncertainties in the quark and Z-boson masses are negligible in all quoted results.
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Figure 4: Our result compared with other lattice computations [5, 18, 70, 81–84] that enter in the
FLAG average [4] (acronyms taken from the FLAG report [4]).

where the first error is statistical, the second is due to bg, and the third represents the uncertainty
associated with the logarithmic corrections in the limit M ! 1 (see Section 4.5). The last
two errors come instead from crossing the charm and bottom thresholds: first a perturbative error
(determined by taking the difference in the decoupling relations and RG functions between the last
two known orders [29–34,74–79]), and second an estimate of 0.3% in ⇤

(3)

MS
for the non-perturbative

corrections in the decoupling of the charm [28].
Using the experimental value mZ = 91187.6(2.1) MeV for the Z boson pole mass [7] we

get
↵s(mZ) = 0.11823(69)(42)bg(20)�m(6)3!5,PT(7)3!5,NP = 0.11823(84) . (5.3)

Figure 4 shows a comparison of our results with other lattice computations [5, 18, 70, 80–84] that
enter the FLAG average [4]. Our result shows a good agreement with the FLAG average, our
previous determination of the strong coupling [5], and the other lattice works that enter in the
FLAG average. It is important to point out that the result of this work is largely independent from
our previous determination [5]. Only the value of µdec = 789(15) MeV is shared between both
determinations of the strong coupling (see Section 4.5.2). This amounts to 28% of the squared
error.

6 Conclusions and outlook

The determination of the strong coupling on the lattice faces particular challenges compared with
low energy hadronic quantities. One has to connect a low energy scale with the perturbative high
energy regime of QCD. Due to the slow running of the coupling, perturbative scales are very
large and these two regimes cannot be comfortably simulated on a single lattice. This “window
problem” which is due to the fact that only a limited range of scales can be simulated on a single
lattice is the reason why most lattice determinations of the strong coupling have uncertainties
dominated by the truncation errors of the perturbative series: they apply perturbation theory at
in-between energy scales (see [9] for a review). One exception is the step scaling method [13],
which was designed to cover a large scale difference non-perturbatively. In practice, however, the
method is quite demanding, and a reduction of the current uncertainty in the strong coupling using
this technique is possible but requires large computational resources.
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z � 4 z � 6 z � 8

c ⇤
(3)

MS
Q [%] c ⇤

(3)

MS
Q [%] c ⇤

(3)

MS
Q [%]

0.30 349(11) 2 0.30 340(12) 11 0.30 338(13) 4
0.33 345(11) 8 0.33 338(12) 13 0.33 338(13) 4
0.36 342(11) 16 0.36 336(12) 16 0.36 338(13) 6
0.39 339(11) 21 0.39 335(12) 16 0.39 338(13) 7
0.42 336(11) 23 0.42 333(12) 15 0.42 337(13) 7

Table 4: Estimates of ⇤(3)

MS,e↵
(see table 3) are extrapolated to M ! 1 according to eq. (4.13) with

�̂m = 0.

to the data, in order to obtain ⇤
(3)

MS
= A. Since the leading exponent �̂m is presently not known,

we vary it in a reasonable range �̂m 2 [0, 1] (cf. Section 3.2.1).
The first issue that we have to deal with is what values of z are included in this extrapolation.

Part of the difficulty here is that the estimates of ⇤(3)

MS
coming from different values of c, z are

very correlated. Correlations are due to many sources: bg, the running in the pure gauge theory,
the scale µdec, all enter in the same way for all c, z. There are also less obvious correlations. E.g.
the global fit performed to obtain the continuum limit has common parameters p1, p2 describing
the cutoff effects. All of these correlations are precisely known – they do not involve difficult-to-
estimate correlation matrices from Monte Carlo chains.

We therefore performed correlated fits to eq. (4.13). Visually they all look very good; an
example is displayed in figure 3. The �

2-values are found above the numbers of d.o.f., but the
quality of fit, Q, reported in table 4, is generally good enough. Only fits including z = 4 and the
smallest values of c are statistically discouraged. As a precaution against higher order corrections
(i.e. O(z

�3
), etc.) we exclude the z = 4 data also for the larger values of c and use c = 0.36, z � 6

as our central result. Note that the Q-value is relatively small for the z � 8 fits since they only
contain one degree of freedom. The fact that Q becomes better including more data is supporting
our choice of the z � 6 fits.

As a check of this analysis we also performed uncorrelated fits, computed their Q-value from
the known covariance matrix [69] and found entirely consistent results.

We now proceed to investigate the effect of the logarithmic corrections. Fits with �̂m = 1

yield only about 3 MeV higher values for ⇤ when the z = 4 data is excluded. Further excluding
also z = 6 reduces these shifts to only 1-2 MeV. We take the result with z � 6 and c = 0.36

as our final result, and add 3 MeV as our estimate of the systematic effect due to the logarithmic
corrections or higher orders in 1/M in the M ! 1 extrapolation, see figure 3.

Taking all these points into account, we quote as our final result

⇤
(3)

MS
= 336(10)(6)bg(3)�m MeV = 336(12)MeV . (4.14)

Here the first error is statistical, the second is due to bg, and the third results from the estimated
uncertainty in the z-extrapolation. The combined error covers all central results that we obtained
by varying the cuts in z, (aM)

2, and the different �̂m except for two cases. These extreme cases
have small c  0.33 and include z = 4 data, where corrections to decoupling are expected to be
the largest. They yield Q-values below 2%.
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where the first error is statistical, the second is due to bg, and the third represents the uncertainty
associated with the logarithmic corrections in the limit M ! 1 (see Section 4.5). The last
two errors come instead from crossing the charm and bottom thresholds: first a perturbative error
(determined by taking the difference in the decoupling relations and RG functions between the last
two known orders [29–34,74–79]), and second an estimate of 0.3% in ⇤

(3)

MS
for the non-perturbative

corrections in the decoupling of the charm [28].
Using the experimental value mZ = 91187.6(2.1) MeV for the Z boson pole mass [7] we

get
↵s(mZ) = 0.11823(69)(42)bg(20)�m(6)3!5,PT(7)3!5,NP = 0.11823(84) . (5.3)

Figure 4 shows a comparison of our results with other lattice computations [5, 18, 70, 80–84] that
enter the FLAG average [4]. Our result shows a good agreement with the FLAG average, our
previous determination of the strong coupling [5], and the other lattice works that enter in the
FLAG average. It is important to point out that the result of this work is largely independent from
our previous determination [5]. Only the value of µdec = 789(15) MeV is shared between both
determinations of the strong coupling (see Section 4.5.2). This amounts to 28% of the squared
error.

6 Conclusions and outlook

The determination of the strong coupling on the lattice faces particular challenges compared with
low energy hadronic quantities. One has to connect a low energy scale with the perturbative high
energy regime of QCD. Due to the slow running of the coupling, perturbative scales are very
large and these two regimes cannot be comfortably simulated on a single lattice. This “window
problem” which is due to the fact that only a limited range of scales can be simulated on a single
lattice is the reason why most lattice determinations of the strong coupling have uncertainties
dominated by the truncation errors of the perturbative series: they apply perturbation theory at
in-between energy scales (see [9] for a review). One exception is the step scaling method [13],
which was designed to cover a large scale difference non-perturbatively. In practice, however, the
method is quite demanding, and a reduction of the current uncertainty in the strong coupling using
this technique is possible but requires large computational resources.
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ḡ2 z

z =RXNdk
z =9Xy
z =eXy
z =3Xy
z =RyXy
z =RkXy

(d) (aM)
2
< 0.16.

Figure 1: Global continuum fit of our data for c = 0.3 (ḡ2z ⌘ ḡ
2
0.3

(z) in the plots) and two values of
the mass cuts. Note that the assumed 100% uncertainty of bg is not included in the error bars of
the points. However, it is propagated into the uncertainties of the global fit shown by the shaded
areas.
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GFT,c
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2
c (zi, a) ⌘ ḡ

2

GFT,c
(µdec,M, aµdec) at non-zero

lattice spacing.5

Extrapolations at fixed z: The measured values of ḡ2c (zi, a) for each value of zi = Mi/µdec are
extrapolated with the ansatz

ḡ
2

c (zi, a) = Ci(c) + pi(c) [↵MS
(a

�1
)]
�̂
(aµdec)

2
, (4.7)

where Ci(c), pi(c) are independent fit parameters for each value zi (with the continuum
limits being ḡ

2
c (zi, 0) = Ci(c)), and we use �̂ 2 [�1, 1].

Global extrapolations: The measurements of the coupling for all zi, aµdec at a fixed c are com-
bined in a single fit using the ansatz

ḡ
2

c (zi, a) = Ci(c) + p1(c)[↵MS
(a

�1
)]
�̂
(aµdec)

2
+ p2(c)[↵MS

(a
�1

)]
�̂
0
(aMi)

2
. (4.8)

In this case the fit parameters are the continuum values Ci and the two parameters p1,2, while
we consider �̂ 2 [�1, 1], and �̂

0 2 [�1/9, 1]. This simple form is the result of expanding
5 Note that in the following we shall often use the more compact notation ḡ2c (z) for the massive coupling. Whether

we are referring to the coupling at finite a or in the continuum should be clear from the context.
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2 = σ161 + σ262 ℒdecSym

2 = ω161 + ω262 + ω363

61 = ∑
μνρ

tr DρFμνDρFμν , 62 = ∑
μνρ

tr DμFμνDρFρν

GF modifies e.o.m.

, 63 = ∑
μν

tr DμFμνDμFμν

O(4) violating

[α(1/a)]Γ̂i [α(M)]Σ̂j ℳ(μdec)
Γ̂i , Σ̂j



Discretization errors / the continuum limit 

crucial conclusion:

     global continuum limit for several, large M
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Figure 1: Global continuum fit of our data for c = 0.3 (ḡ2z ⌘ ḡ
2
0.3

(z) in the plots) and two values of
the mass cuts. Note that the assumed 100% uncertainty of bg is not included in the error bars of
the points. However, it is propagated into the uncertainties of the global fit shown by the shaded
areas.

ḡ
2
c (zi, 0) ⌘ ḡ

2

GFT,c
(µdec,M, 0) from the values ḡ

2
c (zi, a) ⌘ ḡ

2

GFT,c
(µdec,M, aµdec) at non-zero

lattice spacing.5

Extrapolations at fixed z: The measured values of ḡ2c (zi, a) for each value of zi = Mi/µdec are
extrapolated with the ansatz

ḡ
2

c (zi, a) = Ci(c) + pi(c) [↵MS
(a

�1
)]
�̂
(aµdec)

2
, (4.7)

where Ci(c), pi(c) are independent fit parameters for each value zi (with the continuum
limits being ḡ

2
c (zi, 0) = Ci(c)), and we use �̂ 2 [�1, 1].

Global extrapolations: The measurements of the coupling for all zi, aµdec at a fixed c are com-
bined in a single fit using the ansatz

ḡ
2

c (zi, a) = Ci(c) + p1(c)[↵MS
(a

�1
)]
�̂
(aµdec)

2
+ p2(c)[↵MS

(a
�1

)]
�̂
0
(aMi)

2
. (4.8)

In this case the fit parameters are the continuum values Ci and the two parameters p1,2, while
we consider �̂ 2 [�1, 1], and �̂

0 2 [�1/9, 1]. This simple form is the result of expanding
5 Note that in the following we shall often use the more compact notation ḡ2c (z) for the massive coupling. Whether

we are referring to the coupling at finite a or in the continuum should be clear from the context.
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ḡ2(zi, a) = Ci + p1[αMS(a−1)]Γ̂(aμdec)2+p2[αMS(a−1)]Γ̂′ (aMi)2

p1, p2 common for all zi



Boundary effects

For various reasons we use the Coupling definition

homogeneous Dirichlet 
boundary conditions

smoothed 
action density E(t)

p
8t

ḡ2GF(µ = 1/L) = #⇥ hE(t)i
p
8t = 0.3L

smoothing by GF
= 

heat equation 
for gauge fields

Boundaries: 
         effects kept small by keeping  away from the boundary

            but they introduce  effects in the decoupling

            a single term 

E(t)
1/M

ℒdec
1 = ωb {tr F0kF0k [δ(x0) + δ(x0 − T )]}



Boundary effects

 Boundary   effects due to 

             

        evaluated   in leading order (1-loop) PT

         and 
              

         non-perturbatively by simulation in YM

  => the total effect is negligible compared  
       to our statistical errors

1/M

ℒdec
1 = ω̂b

1
M {tr F0kF0k [δ(x0) + δ(x0 − T )]}

ω̂b

ℳ = ⟨tr F0kF0k [δ(x0) + δ(x0 − T )] E(t)⟩c
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p
c
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c = 0.30
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Figure 5: Illustrative continuum limit extrapolations for the pc results of Table 8.

where to compute g? we used
M

⇤
(Nf=3)

MS

= z ⇥ µdec

⇤
(Nf=3)

MS

, (A.24)

with µdec = 789MeV and ⇤
(Nf=3)

MS
= 341MeV. For the O(1/M) counterterm pc we take the

result (cf. Table 8),
p0.30(ḡ

2

0.30(z = 6)) = �0.21 . (A.25)

Putting the numbers together we obtain for the LO estimate, eq. (A.19),

�0.3(z = 6)

ḡ2
0.30

(z = 6)

�����
LO

⇡ 5⇥ 10
�4

. (A.26)

This is about a factor 20 smaller than the statistical error on the coupling.
As a second case, we estimate �c(z) for z = 4 and c = 0.42. In this case we have,

ḡ
2

0.42(z = 4) = 6.68(10) , g
2

? ⇡ 3.5 , M/m? ⇡ 1.4 . (A.27)

For the O(1/M ) counterterm pc we take the result (cf. Table 8)

p0.42(ḡ
2

0.42(z = 4)) = �1.14 . (A.28)

Putting the numbers together we obtain for the LO estimate, eq. (A.19),

�0.42(z = 4)

ḡ2
0.42

(z = 4)

�����
LO

⇡ 3⇥ 10
�3

, (A.29)

which is about a factor 5-6 smaller than the statistical error on the coupling. A slightly more
conservative estimate may be obtained in this case by taking p0.42 = �1.71, which corresponds to
the result at the smallest lattice spacing we simulated, i.e. L/a = 16. In this case, the systematic
O(1/M ) effects are about 3-4 times smaller than the statistical error on the coupling. The smallest
value of z entering the analysis of Sect. 4.5.2 is z = 6. Considering that these effects decrease
linearly with increasing z and that the results for c = 0.42 offer an upper-bound for values of
c < 0.42, it appears to be safe to assume that O(1/M) effects can be neglected altogether.
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Summary 

EFTs are important for lattice QCD

• SymEFT crucial for understanding the continuum limit 
log-corrections recently                                                      [N. Husung et al] 

• HQET solves heavy-quark-on-the-lattice problem (valence quark) 
           but has not reached its potential 

• decoupling of heavy sea quarks:  
 
— already charm can usually be neglected 
— can be turned into a tool:  
     world-highest precision already for  
     higher when a technical problem will be solved  (  uncertainty)

αs(MZ)
bg
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Thanks for your patience

have a nice holiday season


