BSM searches at intensityfrontier experiments

Stefania Gori UC Santa Cruz

28th IFT Xmas Workshop

December 14, 2022

Outline of the talk

0. Introduction

- High intensity & high energy experiments
- * Light (< electroweak scale) Beyond the Standard Model (BSM) particles
- 1. (Thermal) Dark Matter (DM) models
- 2. Axion-like-particles (ALPs)
- 3. Off-shell probes of light BSM particles

High-intensity & high-energy experiments

High-intensity & high-energy experiments

Flavor factories

A big jump in luminosity is expected in the coming years

Past/Present

Future

Bfactories LHCb: more than ~ 10¹² b quarks produced so far; Belle (running until 2010): ~10⁹ BB-pairs were produced. LHCb: ~40 times more b quarks will be produced by the end of the LHC; Belle-II: ~50 times more BB-pairs will be produced.

Flavor factories

A big jump in luminosity is expected in the coming years

Past/Present

Pion-PIENU experimentat TRIUMF:factories~1011 pi+

Kaon-
factoriesE949
(decay at re-
content of the second second

<u>E949</u> at BNL: ~10¹² K⁺ (decay at rest experiment); **<u>E391</u>** at KEK: ~10¹² K_L PIONEER experiment at PSI (phase 1 approved. Data in ~2028(?)): ~10¹² pi⁺

Future

NA62 at CERN: ~10¹³ K⁺ by the end of its run (decay in flight experiment);

<u>KOTO</u> at JPARC: ~10¹⁴ K_L by the end of its run

Bfactories

LHCb: more than ~ 10¹² b quarks produced so far; Belle (running until 2010): ~10⁹ BB-pairs were produced. LHCb: ~40 times more b quarks will be produced by the end of the LHC; Belle-II: ~50 times more BB-pairs will be produced.

Fixed target, neutrino experiments, LHC auxiliary detectors

Fixed target (beam dump) experiments

Several running now:

e- beam for the NA64 experiment (CERN), HPS (JLab)

Several <u>proposed</u> for the coming years: e⁻ beam for the **LDMX** experiment (SLAC), e⁺ beam for the **POKER** experiment (CERN) µ⁻ beam for the **M**³ experiment (Fermilab) p beam for the **DarkQuest** experiment (Fermilab) p beam for the **SHADOWS** experiment (CERN)

Neutrino experiments

Several <u>running</u> now: **Microboone**, **Coherent**, **T2K**, ...

DUNE planned for the future

LHC auxiliary detectors

They use the primary interactions of the LHC to produce new particles. Several proposals: **FASER, Codex-b, MATHUSLA**, ...

Dark Matter at high-intensity experiments

Weakly Interacting Massive Particles (WIMP) models: One of the dominant models for more than 3 decades

Weakly Interacting Massive Particles (WIMP) models: One of the dominant models for more than 3 decades

Weakly Interacting Massive Particles (WIMP) models: One of the dominant models for more than 3 decades

Thanks to these interactions, DM with a mass O(100 GeV) can "freeze out" and obtain the measured relic abundance WIMP "miracle"? ... or "coincidence"

Weakly Interacting Massive Particles (WIMP) models: One of the dominant models for more than 3 decades

Dark Matter living in a dark sector

Dark Matter living in a dark sector

DM freeze-out thermal targets

Dark photon mediated DM:

$$\epsilon B^{\mu
u} A'_{\mu
u}$$
A' $ightarrow$ XX

 $m_{A^{\prime}} > 2m_{DM}$

$$\sigma \propto rac{oldsymbol{y}}{m_{
m DM}^2}, \hspace{0.3cm} oldsymbol{y} \equiv \epsilon^2 lpha_D \left(rac{m_{
m DM}}{m_{A^\prime}}
ight)^4$$

This combination of couplings is fixed to a certain value. The value depends on the nature of DM

(Dirac fermion, Majorana fermion, scalar, ...)

DM freeze-out thermal targets

Dark photon mediated DM:

$$\epsilon B^{\mu
u}A^{\prime}_{\mu
u}$$
A $^{\prime}
ightarrow$ XX

 $m_{A'} > 2m_{DM}$

Signals at **direct detection** experiments can be velocity suppressed (e.g., if DM is a Majorana fermion)

$$\sigma \propto rac{oldsymbol{y}}{m_{
m DM}^2}, \hspace{0.3cm} oldsymbol{y} \equiv \epsilon^2 lpha_D \left(rac{m_{
m DM}}{m_{A^\prime}}
ight)^4$$

This combination of couplings is fixed to a certain value. The value depends on the nature of DM

(Dirac fermion, Majorana fermion, scalar, ...)

DM freeze-out thermal targets

Dark photon mediated DM:

$$\epsilon B^{\mu
u}A^{\prime}_{\mu
u}$$
A $^{\prime}
ightarrow$ XX

 $m_{A'} > 2m_{DM}$

Signals at **direct detection** experiments can be velocity suppressed (e.g., if DM is a Majorana fermion)

> Accelerator experiments and direct detection experiments test different DM regimes (relativistic vs. non-relativistic DM)

This combination of couplings is fixed to a certain value.

The value depends on the nature of DM (Dirac fermion, Majorana fermion, scalar, ...)

Signature at accelerator experiments: invisible decays of the dark photon

DM production and detection at high intensities

https://arxiv.org/abs/2207.00597

DM production and detection at high intensities

https://arxiv.org/abs/2207.00597

DM production and detection at high intensities

https://arxiv.org/abs/2207.00597

Exploring the invisible dark photon

DM secluded / forbidden scenarios

$m_{A'} < 2m_{DM}$

Experimental targets:

Secluded DM scenarios (Pospelov, Ritz, Voloshin, 0711.4866) Forbidden DM scenarios (D'Agnolo, Ruderman, 1505.07107)

DM secluded / forbidden scenarios

S.Gori

The visible dark photon **Production** Decay 0.5 0.4 222 light hadrons E₀ 0.3 brems-Br e⁺e⁻, μ⁺μ⁻ strahlung $c \overline{c}$ 0.2 **Fixed** \mathcal{N} 0.1 targets $b \overline{b}$ $\nu \overline{\nu}$ 0.0 meson decay 10 20 30 50 60 40 m_{Z_D} 20 m 10 $E = 10^{-6}$ с т (m) 10⁻⁴ E= 10-4 e^+ $\sim \sim \sim$ it can be e+elong-lived E= 10-10⁻⁹ colliders $\epsilon B^{\mu u}A'_{\mu}$ 10⁻¹⁴ μι 0.1 1 10 100 m_{Z_D} (GeV)

S.Gori

Curtin, Essig, SG, Shelton, 1412.0018

12

Exploring visible dark photons

This entire parameter space predicts a **dark** sector in thermal equilibrium with the SM

Exploring visible dark photons

This entire parameter space predicts a **dark** sector in thermal equilibrium with the SM

DM models can be more complex

Many models contain more particles (than the DM candidate + the mediator) Examples:

- Inelastic Dark Matter (IDM)
- Strongly interacting massive particles (SIMPs)

DM models can be more complex

Many models contain more particles (than the DM candidate + the mediator) Examples:

- Inelastic Dark Matter (IDM)
- Strongly interacting massive particles (SIMPs)

SIMP

freeze-out through the annihilation

 $3 \rightarrow 2$

 $m_{\mathrm{DM}} \sim lpha_{\mathrm{ann}} (T_{\mathrm{eq}}^2 M_{\mathrm{pl}})^{1/3} \sim 100 \ \mathrm{MeV}$

Possibly realized in a QCD-like theory SU(N_c) with

 $SU(N_f) \times SU(N_f) \rightarrow SU(N_f)$ N_f²-1 Light pions

$$\mathcal{L}_{
m WZW} = rac{2N_c}{15\pi^2 f_\pi^5} \epsilon^{\mu
u
ho\sigma} {
m Tr}(\pi\partial_\mu\pi\partial_
u\pi\partial_
ho\pi\partial_\sigma\pi)$$

Hochberg, Kuflik, Volansky, Wacker, 1402.5143,

Hochberg, Kuflik, Murayama, Volansky, Wacker, 1411.3727

DM models can be more complex

Many models contain more particles (than the DM candidate + the mediator) Examples:

- Inelastic Dark Matter (IDM)
- Strongly interacting massive particles (SIMPs)

(*) Needed to maintain thermalization between the two sectors

SIMP decays of the dark photon

mass	 A'
	 $V_D \ \pi_D$

Berlin, Blinov, SG, Schuster, Toro, 1801.05805

$$\alpha_D = 10^{-2}, \ \epsilon = 10^{-3}$$

SIMP decays of the dark photon

The reach for SIMPs

The reach for SIMPs

The reach for SIMPs

Beyond Dark Matter: dark sector particles at high-intensity experiments

Dark sectors beyond Dark Matter

Beyond the DM motivation, many other open problems in particle physics let us think about dark particles.

Models to address the strong CP problem. Axions and axion-like particles;
 Models to address the gauge hierarchy problem (relaxion);

- SUSY extended models (Next-to-Minimal-Supersymmetric-Standard-Model);
- Models for baryogengesis;
- Models for neutrino mass generation;
- Models addressing anomalies in data;
- $((g-2)_{\mu}, galactic center excess for Dark Matter, B-physics anomalies, ...).$

Some of these particles are naturally light thanks to approximate global symmetries.

From a phenomenological point of view, the signatures to search for are often similar

Dark sectors beyond Dark Matter

Beyond the DM motivation, many other open problems in particle physics let us think about dark particles.

- Models to address the strong CP problem. Axions and axion-like particles;
- Models to address the gauge hierarchy problem (relaxion);
- SUSY extended models (Next-to-Minimal-Supersymmetric-Standard-Model);
- Models for baryogengesis;
- Models for neutrino mass generation;
- Models addressing anomalies in data;
- $((g-2)_{\mu}, galactic center excess for Dark Matter, B-physics anomalies, ...).$

Some of these particles are naturally light thanks to approximate global symmetries.

From a phenomenological point of view, the signatures to search for are often similar

Axion-like-particles (ALPs)

Scalar with an approximate shift symmetry

(Possibly) connected to the Strong CP problem: why is the QCD θ parameter so small?

Mass can be protected by a Peccei-Quinn symmetry ALPs below the EW scale?

Axion-like-particles (ALPs)

Axion-like-particles (ALPs)

by far the most studied

Broad program of ALP searches at high-intensity experiments?

Neutral & charged current meson decays to ALPs

Flavor changing neutral current

They arise in models with

- * ALPs mixed with SM neutral pions (e.g. $K^+ \rightarrow \pi^+ \pi^0 \Rightarrow K^+ \rightarrow \pi^+ a$)
- * ALPs coupling to W or tops

* ALPs coupling to leptons (higher loop) $-\stackrel{e}{\longrightarrow} -\stackrel{e}{\longleftarrow} -\stackrel{e}{\longrightarrow} -\stackrel{e}{\longleftarrow} -\stackrel{e}{\to} -\stackrel{e}{\to} -\stackrel{e}{\to} -\stackrel{e}{\to} -\stackrel{e}{\to} -\stackrel{$

Neutral & charged current meson decays to ALPs

Flavor changing neutral current

They arise in models with

- * ALPs mixed with SM neutral pions (e.g. $K^+ \rightarrow \pi^+ \pi^0 \implies K^+ \rightarrow \pi^+ a$)
- * ALPs coupling to W or tops

Charged current

Altmannshofer, Dror, SG, 2209.00665

Neutral & charged current meson decays to ALPs

Flavor changing neutral current

They arise in models with

- * ALPs mixed with SM neutral pions (e.g. $K^+ \rightarrow \pi^+ \pi^0 \implies K^+ \rightarrow \pi^+ a$)
- * ALPs coupling to W or tops

* Flavor violating ALPs

* ALPs coupling to leptons (higher loop) \ldots $\overset{\alpha}{\leftarrow}$ $\overset{\alpha}{\leftarrow}$

Charged current

Altmannshofer, Dror, SG, 2209.00665

ALPs from charged current interactions

Weak-preserving $2 {g_{ee}} {(\partial_\mu a)\over m} ar e \gamma^\mu P_R e$ $st \Gamma_{\pi^+
ightarrow e^+
u a} \propto g_{ee}^2 rac{m_\pi^3 f_\pi^2}{m_\pi^4}$ $st \Gamma(K^+
ightarrow e^+
u a) \propto g_{ee}^2 rac{m_K^2 f_K^2}{m_{eu}^2}$ Does not happen

Weak-violating $g_{ee}{(\partial_\mu a)\over m_{ee}}ar e\gamma^\mu\gamma_5 e$ $st \Gamma_{\pi^+ o e^+
u a} \propto rac{m_{\pi}^2}{m_e^2} g_{ee}^2 rac{m_{\pi}^3 f_{\pi}^2}{m_W^4}$ $st \Gamma(K^+
ightarrow e^+
u a) \propto rac{m_K^2}{m^2} g_{ee}^2 rac{m_K^2 f_K^2}{m_{ee}^2}$ $st \Gamma(W^+ o e^+
u a) \propto rac{m_W^2}{m_e^2} g_{ee}^2$

The reach on the ALP-lepton parameter space

Altmannshofer, Dror, SG, 2209.00665

The reach on the ALP-lepton parameter space

Altmannshofer, Dror, SG, 2209.00665

The reach on the ALP-lepton parameter space

Altmannshofer, Dror, SG, 2209.00665

Testing off-shell dark sectors

Trident scattering processes

If neutrinos interact through **new forces** beyond the Standard Model, the scattering of a neutrino beam on target (heavy) nuclei will be modified.

Trident scattering processes

If neutrinos interact through **new forces** beyond the Standard Model, the scattering of a neutrino beam on target (heavy) nuclei will be modified.

For example:

A strong energy dependence

A strong energy dependence

Probing new neutrino forces

Z' from gauging L_{μ} - L_{τ}

Take home messages

Dark sector particles in the MeV-GeV range naturally appear in DM models, as well as many wellmotivated extensions of the Standard Model.

Unique role of high-intensity experiments

- Minimal and non-minimal Thermal DM models
- Light New Physics dark particles (e.g. axion-like-particles)

Important complementarity:

- Flavor factories (pions, Kaons, B-mesons)
- Fixed target experiments
- Neutrino experiments

Backup

Complementarity with DM direct detection

A broad experimental program encompassing both accelerator and direct detection searches is necessary

RF6, Dark Sectors at High Intensity

Conveners: SG, Mike Williams

Organization around science goals/questions. We built on what we have learned since 2013 (previous Snowmass).

We defined three Big Ideas each with associated goals for the next decade

1. Dark matter production at intensity-frontier experiments (focus on exploring sensitivity to thermal DM interaction strengths). Editors: G. Krnjaic, N. Toro (https://arxiv.org/abs/2207.00597)

 2. Exploring dark sector portals with intensity-frontier experiments (focus on minimal portal interactions).
 Editors: B. Batell, N. Blinov, C. Hearty, R. McGehee (<u>https://arxiv.org/abs/2207.06905</u>)

3. New flavors and rich structures of the dark sector at intensity-frontier experiments (focus on beyond minimal models) Editors: P. Harris, P. Schuster, J. Zupan (<u>https://arxiv.org/pdf/2207.08990.pdf</u>)

4. Experiments / facilities. Editors: P. Ilten, N. Tran (<u>https://arxiv.org/abs/2206.04220</u>)

Report: https://arxiv.org/pdf/2209.04671.pdf

Additional DM production benchmarks & messages

- * $L_{\mu} L_{\tau}$ mediated
- * B-3L_τ mediated
- B mediated
- Higgs-mixed scalar mediated
- Muon-philic scalar mediated
- Neutrino-philic scalar mediated
- Sterile neutrino mediated (t-channel and s-channel)
- Inelastic Dark Matter
 Strongly interacting massive particle Dark matter (SIMP)
- Millicharged particles

The breadth of ideas for experiments within this program is important for several reasons.

- In the case of discovery the ability to measure dark sector masses and interaction strengths
- * More in general, probe generalizations of thermal freeze-out, such as

- those where a mediator does not couple to electrons but preferentially to μ and/or τ leptons or baryons.

- Models where meta-stable particles in the dark sector play important roles in DM cosmology and enable new discovery techniques

Benchmarks

Messages

1. Addressing anomalies in data, (g - 2)_{\mu}

After the last Snowmass, our community was able to probe minimal dark sector models addressing the $(g - 2)_{\mu}$ anomaly.

Can we fully probe a light explanation of $(g - 2)_{\mu}$ even beyond minimal models?

Additional visible benchmarks & messages

- Dark scalar
- * Electron-mixed sterile neutrino
- * Tau-mixed sterile neutrino
- ALP coupled to photons
- ALP coupled to gluons

Big idea 2

- * $L_{\mu} L_{\tau}$ visible gauge boson
- Big idea 3
- Lµ Lt visible gauge boso
 Inelastic Dark Matter
- (dark photon mediated)
- Strongly interacting massive particle
 Dark Matter (dark photon mediated)
- Flavor violating QCD axion (s-d-ALP coupling)
- * ALP coupled to gluons

S.Gori

- * ALP coupled to SU(2) gauge bosons
- * ALP coupled to up quarks
- * ALP coupled to down quarks

Searching for visible signatures offers a unique access to dark sector physics (minimal mediator, non-minimal mediator, excited DM states).

Sizable gain in sensitivity for all minimal portal models.

Planned and proposal experimental program will remain robust to unexpected final states from non-minimal models.

Interplay between prompt and displaced signatures.

Important complementarity of flavor factories (pion, Kaon, B mesons) and fixed target experiments / auxiliary detectors at colliders

Experiments/facilities

Ilten, Tran et al, 2206.04220

Final states to look for

a. Invisible, non-SM

Dark Matter production

Producing stable particles that could be (all or part of) Dark Matter

S.Gori

DM New Initiatives (DMNI)

Summary of the High Energy Physics Workshop on Basic Research Needs for Dark Matter Small Projects New Initiatives

October 15 – 18, 2018

Success!

Experiments in all 3 PRDs received planning funds through 2019 FOA 8

high intensities

Thrust 1 (near term): Through 10- to 1000-fold improvements in sensitivity over current searches, use particle beams to explore interaction strengths singled out by thermal dark matter across the electron-to-proton mass range. (CCM & LDMX got partial support)

Thrust 2 (near and long term): Explore the structure of the dark sector by producing and detecting unstable dark particles.

Exploring visible dark scalars

This entire parameter space predicts a **dark** sector in thermal equilibrium with the SM

Backup

DM models with metastable particles

Flavor violating ALPs

Backup

Variations of the invisible dark photon scenario

Trident Montecarlo analysis

Starting point: $N_{\text{coherent}} \simeq 103.9$, $N_{\text{proton}} \simeq 39.4$, $N_{\text{neutron}} \simeq 7.5$, $N_{\text{background}} \simeq 1.5 \times 10^8$ (optimized beam) per year

We ask for 2 and only 2 tracks and we optimize the cuts on the following variables:

Backup