14th December 2023

Stochastic Gravitational Waves Backgrounds

Digging for physics in SGWBs

Carlo Contaldi – Imperial College London

IFT Xmas Workshop

Imperial College London

Outline

- GW Astrophysics
- Stochastic gravitational waves backgrounds.
- Physics of SGWBs across the frequency domain.
- Observational Landscape.
- Challenges.
- New directions.

Gravitational Waves

- First direct detection of a BH merger even in 2015.
- BH binary: 36 and 31 solar masses.
- Frequency ~ 100Hz.
- Distance ~ 400 Mpc.

LIGO GW150914 discovery event

IFT Xmas Workshop

LIGO Observatory

LIGO Livingston

LIGO Hanford

IFT Xmas Workshop

Imperial College London

GW Astronomy

- Routine observations of transient BH-BH and BH-NS, merger events mean we are in the age of GW astronomy.
- Ongoing efforts to constrain fundamental properties of gravity, source populations, and neutron stars.
- Not yet in the "statistical age" but this is certain for transient phenomena.

Fundamental constraints (transient events)

- Hubble rate constraints.
- Standard sirens.
 - EM counterparts.
 - BH-NS or NS-NS?
- Dark sirens.
 - Mass distributions.
 - Galaxy redshift crosscorrelations.

Fundamental constraints (transient events)

Tests of GR. •

Imperial College

London

- Parametrised models for deviation from • General Relativity e.g.
 - Inspiral-Merger-Ringdown _ consistency (binary \rightarrow final product?)
 - Post-Newtonian generalisations. _
 - Dispersion relation. _
 - Polarisations. _
 - BH spectroscopy (ringdown analysis)

1.5

0.5

0.5

 $\Delta M_{\rm f}/\bar{M}_{\rm f}$

1.0

 $P(\Delta M_{\rm f}/\bar{M}_{\rm f})$

0.5

-0.5

-1.0<u>0</u>5 0.0

 $\Delta \chi_{\rm f}/$

1.0

25

-1.0

-1.5

 $0.0 \ 0.5 \ 1.0$

3.0 3.5 4.0

 $1.5 \ 2.0 \ 2.5$

α

Astrophysics (transient events)

- Constraints on BH and NS mass distributions and merger rates.
- Impact forecasts on future fundamental constraints.

[LVK O3 results (Abbot et al. 2021)]

3.0

2.5

 $M_{10}^{-0}M_{10}^{-0}M_{10}^{-0}M_{10}^{-0}$

0.5

0.0

Transients → Stochastic Backgrounds

- What about the stochastic regime?
 - Signal from unresolved points sources.
 - Confusion limited.
 - Extended sources (angularly correlated).
 - Cosmological backgrounds.

 $h(t) \to \langle h(t)h(t') \rangle$

 $A_{\mu}(t) \rightarrow \langle A_{\mu}(t) A^{\mu}(t') \rangle$

IFT Xmas Workshop

Imperial College London

Stochastic GW Backgrounds (SGWBs)

- What signals can we expect?
- What physical mechanisms generate SGWBs?
- How well can we observe these signals?
- Can we "mine" SGWBs for statistical constraints?

Satellite.

IFT Xmas Workshop

IFT Xmas Workshop

Imperial College London

Cosmic Infrared Background

- Monopole = 1 number
- Dipole = 3 numbers
- COBE ~ 1000 numbers!

Stochastic GWs

- Deterministic
 - Amplitude and phase carry information.
- Stochastic
 - Superposition of waves with stochastic amplitudes and uncorrelated phases.

Waves:
$$h_{\mu\nu}(\mathbf{x},t) = h_P(f,\hat{\mathbf{k}})\epsilon^P_{\mu\nu}(\hat{\mathbf{k}})e^{i2\pi f(t-\hat{\mathbf{k}}\cdot\mathbf{x}/c)}$$

TT-gauge tensor Polarisation:

$$\epsilon_{\mu\nu}^{+} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
$$\epsilon_{\mu\nu}^{\times} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$h_{ij}(\mathbf{x},t) = \sum_{P=+,\times} \int d\Omega_{\hat{\mathbf{k}}} \int_{-\infty}^{\infty} df h_P(f,\hat{\mathbf{k}}) \epsilon_{ij}^P(\hat{\mathbf{k}}) e^{i2\pi f(t-\hat{\mathbf{k}}\cdot\mathbf{x}/c)}$$

Stochastic GWs

- Assumptions:
 - Superposition of waves with stochastic amplitudes and uncorrelated phases.

$$h_{ij}(\mathbf{x},t) = \sum_{P=+,\times} \int d\Omega_{\hat{\mathbf{k}}} \int_{-\infty}^{\infty} df h_P(f,\hat{\mathbf{k}}) \epsilon_{ij}^P(\hat{\mathbf{k}}) e^{i2\pi f(t-\hat{\mathbf{k}}\cdot\mathbf{x}/c)}$$

$$\langle h_{ij}(\mathbf{x},t)\rangle = 0$$

$$\langle h_{ij}(\mathbf{x},t)h^{ij}(\mathbf{x}',t')\rangle \neq 0$$

$$\langle h_P(f,\hat{\mathbf{k}})h_{P'}^{\star}(f',\hat{\mathbf{k}}')\rangle = \delta(P-P')\delta(f-f')\delta^{(2)}(\hat{\mathbf{k}}-\hat{\mathbf{k}}')I(f,\hat{\mathbf{k}})$$

[Stationary, statistically isotropic, gaussian, intensity]

IFT Xmas Workshop

Stochastic GWs

[http://gwplotter.com]

IFT Xmas Workshop

$$\langle h_P(f, \hat{\mathbf{k}}) h_{P'}^{\star}(f', \hat{\mathbf{k}}') \rangle = \delta(P - P') \delta(f - f') \delta^{(2)}(\hat{\mathbf{k}} - \hat{\mathbf{k}}') I(f, \hat{\mathbf{k}})$$

$$= \frac{\delta(P - P')}{2} \frac{\delta(f - f')}{2} \frac{\delta^{(2)}(\hat{\mathbf{k}} - \hat{\mathbf{k}}')}{4\pi} S_h(f, \hat{\mathbf{k}})$$

One-sided Power Spectrum:

$$S_h(f, \hat{\mathbf{k}}) = 16\pi I(f, \hat{\mathbf{k}})$$

$$\rho_{\rm GW} = \frac{c^2}{32\pi G} \langle \dot{h}_{ij} \dot{h}^{ij} \rangle \equiv \frac{\pi c^2}{2G} \int d\Omega_{\hat{\mathbf{k}}} \int_0^\infty df \, f^2 I(f, \hat{\mathbf{k}})$$

Energy density:

$$\Omega_{\rm GW}(f,\hat{\mathbf{k}}) = \frac{32\pi^3}{3H_0^2} f^3 I(f,\hat{\mathbf{k}})$$

- LVK prediction of isotropic SGWB from binary mergers.
- The limit is close to expected level.
- Detection in O4?
- Statistical era of population studies.

[LVK O3 2021]

IFT Xmas Workshop

SGWB constraints

[LVK O3 2021]

	Uniform prior			Log-uniform prior		
α	O3	O2 [43]	Improvement	O3	O2 [43]	Improvement
0	1.7×10^{-8}	6.0×10^{-8}	3.6	5.8×10^{-9}	3.5×10^{-8}	6.0
2/3	1.2×10^{-8}	4.8×10^{-8}	4.0	3.4×10^{-9}	3.0×10^{-8}	8.8
3	1.3×10^{-9}	7.9×10^{-9}	5.9	3.9×10^{-10}	5.1×10^{-9}	13.1
Marg.	2.7×10^{-8}	1.1×10^{-7}	4.1	6.6×10^{-9}	3.4×10^{-8}	5.1

Polarization	O3	O2 [43]	Improvement
Tensor	6.4×10^{-9}	3.2×10^{-8}	5.0
Vector	7.9×10^{-9}	2.9×10^{-8}	3.7
Scalar	2.1×10^{-8}	6.1×10^{-8}	2.9

GWB Type	α
Astro	3
Inspiral	2/3
Cosmo	0

SGWB sources

- Inflation sets up a primordial, super-horizon, near-scale-invariant background of GWs.
- Similar to curvature perturbations.
- Squeezed travelling waves (zero-momentum) until horizon re-entry.
- Radiation-matter equality imprinted in subhorizon evolution.

$$\Omega_{\rm GW}(f) \sim \frac{16}{9} \frac{V\phi}{M_{Pl}^4} (1 - z_{eq})^{-1}$$

$$\Omega_{\rm GW}(f > f_{eq}) \sim f^{n_t}$$

GWB Type	α
Astro	3
Inspiral	2/3
Cosmo	0

IFT Xmas Workshop

Imperial College London

Coherent vs Incoherent?

Coherent vs Incoherent?

- Squeezed super-horizon modes will be coherent on re-entry.
- "Standing Waves" (Grischuk 1974) correlated left and right moving travelling waves.
- Could be detected using coherent GW detectors [CC & Magueijo 2018].
- Phase coherence in h → bispectrum <h³>? [Bartolo 2018]
- cf. angular coherence of CMB acoustic peaks.
- Large-scale structure "decoheres" primordial SGWB at observable frequencies [Margalit, Pieroni, & CC 2020].

$$\delta\varphi(\hat{\mathbf{n}}) = 2\pi f \int_{\text{l.o.s.}} \left[\Phi(\eta, \mathbf{x}) + \Psi(\eta, \mathbf{x})\right] \,\mathrm{d}\eta$$

[Mark Hindmarsh]

Imperial College London

SGWB sources (Phase Transitions)

- First-order phase transitions at early times.
- E.g. QCD, EW, phase transitions.
 - Nucleate bubbles of vev.
 - Turbulent motion.
 - Bubble collision
 - Non-linear dynamics
- MeV scale \rightarrow Pulsar Timing Arrays.
- GeV-TeV scale → LISA
- > TeV → AEDGE, ET?

[Roper et al 2023]

[P. Simakachorn, CERN]

IFT Xmas Workshop

SGWB sources (Inspirals)

- Signal from binary inspirals.
- Galactic and extra-galactic.
- Solar masses \rightarrow Super-massive.

$$\Omega_{\rm GW}(f) \sim f^{2/3} \int_0^\infty dz \int_0^\infty d\mathcal{M} \frac{dN}{dz d\mathcal{M}} \frac{1}{d_L^2(z)} \left(\frac{\mathcal{M}^5}{1+z}\right)^{1/3}$$

LISA Observations

THE SPECTRUM OF GRAVITATIONAL WAVES eesa Observatories Ground-based experiment Space-based observatory Pulsar timing array Cosmic microwave background polarisation & experiments 11.14 Timescales second Frequency (Hz) **Cosmic Ructuations in the early Universe** Cosmic sources Compact object falling onto a supermassive black hole Pulsar Merging supermassive black holes Merging stellar-mass black holes in other galaxies Merging white dwarfs Merging neutron tars in other galaxis

- LISA SGWB
 - Huge signal from resolved and unresolved galactic binaries.
 - Unresolved signal \rightarrow SGWB.
 - Superimposed over extra-galactic SGWB signal
- Foreground separation problem
 - Frequency
 - Time
 - Angular

IFT Xmas Workshop

Beyond the monopole...

[6df Redshift]

IFT Xmas Workshop

[Planck CMB]

[Planck lensing]

IFT Xmas Workshop

Imperial College London

SGWB anisotropies

- SGWBs are anisotropic
 - Kinematic dipole.
 - Doppler.
 - Intrinsic.
 - SW and ISW effects.
- Line of sight calculation cf. CMB [CC 2016].
- SGWB all tracers of inhomogeneities.
 - Primordial.
 - Cosmological.
 - Inspiral.

 $\langle h_P(f,\hat{\mathbf{k}})h_{P'}^{\star}(f',\hat{\mathbf{k}}')\rangle = \delta(P-P')\delta(f-f')\delta^{(2)}(\hat{\mathbf{k}}-\hat{\mathbf{k}}')I(f,\hat{\mathbf{k}})$

$$C_{\ell}^{I} = \frac{2}{\pi} \int k^{2} dk P_{\Phi}(k) |\Delta_{\ell}^{GW}(k,\eta_{0})|^{2}$$

[CC 2016, Uzan et al 2017, Bartolo et al 2018]

NSBH

Cross

--- Auto

CMB lensing

[Capurri et al. 2022]

SGWB map-making

IFT Xmas Workshop

[Renzini & CC 2019]

SGWB map-making

- We know how to do it (radio-astronomy).
- Complications (observing):
 - Non-compact beams.
 - Few baselines.
 - Fixed scanning patterns.
 - Low resolution.
- Complications (signal):
 - Non-stationarity (transients).
 - Shot-noise.
 - Frequency dependence.

[LISA CosmoWG: CC et al. 2020]

[[]ESA 2050 Voyage 2019]

Ground-based

- Non-trivial frequency domain structure of overlap functions make realistic map-making challenging.
- Einstein Telescope (ET) + Cosmic Explorer (CE) + 4G LVK.
- Will detect kinematic dipole but struggle to detect anisotropy of inspiral SGWB.
- But sub-percent level constraint on SGWB monopole!

[Mentasti, CC, & Peloso 2023]

IFT Xmas Workshop

Space-based

- Milli Hz frequencies.
- 10⁶ km baselines.
- Galactic foreground of resolved and unresolved binaries.
- Extra-galactic SGWBs?
- Can we separate the galactic from the extragalactic background?
- LISA and Taiji?

[Mentasti, CC, & Peloso in prep.]

Space-based

[[]Mentasti, CC, & Peloso in prep.]

IFT Xmas Workshop

Space-based

- Template (morphology) based analysis.
- Assuming LISA noise is well understood then a full time-frequency analysis will distinguish between galactic and SGWB (cosmo Ω~10⁻⁹) amplitudes.
- If LISA self-correlations are too big:
 - LISA-Taiji combination frequency only <u>difficult</u>.
 - LISA-Taiji combination time-frequency <u>OK</u>.

[[]Mentasti, CC, & Peloso in prep.]

Pulsar Timing Arrays

- PTAs are detecting something!
- Hellings-Down correlation must be confirmed.
- Single source (SMBHs) or SGWB?
- Integration continues.
- Can "map-make" but sparse reconstruction.
- Next generation surveys using radio telescope arrays – SKA.

IFT Xmas Workshop

[NANOGrav 2023]

Astrometry

- Distortion of apparent position vs timing redshift (PTAs).
- Micro arcsecond resolution with 10⁹ galactic sources many baselines...

Astrometry

- Vera C. Rubin (LSST).
- 50 micro arcsec astrometry with 10⁶ solar system objects (asteroids).
- Short-distance limit of astrometry.
- Correlations similar to Hellings-Down curves.

σ [mas]	$N = 1 \times 10^5$	$N = 5 \times 10^6$
50.0	9.9×10^{-1}	2.0×10^{-2}
0.1	3.9×10^{-6}	7.9×10^{-8}
0.01	3.9×10^{-8}	7.9×10^{-10}

[Mentasti & CC 2023]

Cold atoms

- Atom Interferometry.
- Optical lattice atomic clocks.
- Phase and/or doppler shift measurements at tunable frequencies.
- AION, AEDGE, MAGIS, etc. proposals.
- Ground and space-based proposals.
- Track inspirals across 4 decades in frequency?

Summary

- Foothills of the stochastic era for GWs.
- Detection of SGWB (inspirals) in LVK O4 run (late 2024?).
- Lots of physical mechanisms generate SGWBs. Rich landscape.
- Characterising angular distribution with 1st/2nd Gen detectors will be difficult.
- Next generation of detectors will exploit new methods and frequencies.
- Frequencies > kHz?