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Outline: 

• Kerr-AdS, superradiance,  
             missing CFT states & resonators 

• Localized black holes  
           in Gravity & Supergravity 

• More missing CFT states  
       in N=4 SYM / IIB Sugra 

• Black hole binaries  
     in an expanding Universe

Black holes with a single Killing vector field

Geons as special solutions

Geons - Horowitz and JES ’14

Geons are regular horizonless solutions of the Einstein equation,
which from the QFT perspective do not seem to thermalize.
The boundary stress-tensor contains regions of negative and positive
energy density around the equator:

It is invariant under
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which is timelike near the poles but
spacelike near the equator.

It satisfies the first law m dE = ! dJ .

Unclear if they can have the same energy, i.e. coexist, with large
AdS black holes!
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Figure 1: A pictorial representation of the S5 for some black hole solutions that asymptote to
global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.
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• Gravitational  turbulent  instability  of  Anti-de Sitter (AdS):

For  any  initial  perturbation perturbation,  AdS  has  a  non-linear instability  that 
transfers  energy  from  low  to  high  frequency modes  &  eventually  leads  to  black  hole  formation. 

Energy  cascade  is  similar  to familiar  process  of  turbulence. 

→  Gravitational  description  of  turbulence ?

    →  The  BH  that  might  form  has  a single  isometry:  

           Kerr-AdS  BHs  might  then  not  be  the  only  rotating  BHs  of  Einstein  theory !   →  unexpected !
 

 Technically,  challenging  problem:

       We  had  to  solve  in  perturbation  theory  a  system  of   ~ 70   ODEs  !

Some Concrete  contributions  to  the  programme:

1)   Ultraspinning  instability:

?

?• Evolution along  the  parameter  space  of  solutions:

• Construct  non-linearly  (numerically)  

a1

a2

• Construct  non-linearly  (numerically)  
the  new  branch  of  axisymmetric BHs:

• Stability of   black   rings ?   

• Ultraspinning in  AdS systems.  AdS Black  rings. 

• Holographic   interpretation  of   BH  solutions / instabilities : 

BH  with  temperature  T QFT  at  finite   T

⤹
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➙ Kerr-AdS4 black holes & their Superradiant  instability 
           2 parameters:    ( m/L, a/L )   ⇔  ( R+/L, ΩHL )  

Black holes with a single Killing vector field

Seemingly di↵erent instabilities in AdS

Superradiance Instability - 3/3:
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Kerr-AdS with |⌦HL|  1:
likely to be stable - Hawking and Reall ’00.
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Kerr-AdS with  ΩHL  ≤ 1: 

K= ∂t + ΩH ∂φ  is  timelike everywhere 
 in the outer domain 
 
Should be stable   
     [ Hawking, Reall ’00 ]  

Extremality of Kerr-AdS



Modes  with m>0 are unstable (Im ω >0) to superradiance if Re ω ≤ m ΩH  


Onset, Im ω =0, saturates inequality 

There is no Killing vector that is timelike everywhere in the outer domain 

∂t and ∂φ are Killing fields  =>  δg = e−i ω t + i m φ

 What about  BHs  with   ΩHL  > 1 ??Black holes with a single Killing vector field

Seemingly di↵erent instabilities in AdS

Superradiance Instability - 3/3:
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Perturbations with m 6= 0 are unstable if Re(!)  m⌦H :
onset saturates inequality - Cardoso et al. ’14.
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Extremality
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• Higher m modes appear closer to ΩHL = 1  

• ΩHL = 1  is  reached  as  m → +∞  

Black holes with a single Killing vector field

Seemingly di↵erent instabilities in AdS

Superradiance Instability - 3/3:
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Higher m modes appear closer to ⌦HL = 1 :
⌦HL = 1 is reached m ! +1 - Kunduri et. al. ’06.
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ΩHL = 1

ExtremalityOnset m = 2
Onset m = 5

Unstable

E / L

J / L2



➙ Geon (horizonless solution) also present
• Key player:  Geon

      - Backreaction of a (single) normal mode of AdS  


      - Stationary solution (no formation of BH)


      - Centrifugal  force  balances  self  gravity  against  collapse. 

Black holes with a single Killing vector field

Seemingly di↵erent instabilities in AdS

Superradiance Instability - 3/3:
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In the microcanonical ensemble:
natural variables are (J, E).
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ΩHL = 1

Extremality

Geon (m = l = 2)

Unstable

E / L

J / L2



• In the limit  m → +∞  geons  approach  E = J/L 

• CFT states are expected to saturate the bound E ≥ J/L, …  but Kerr-AdS BHs do not,  

    =>  suggests that another BH should fill the gap  —>  these are the black resonators

Black holes with a single Killing vector field

Seemingly di↵erent instabilities in AdS

Superradiance Instability - 3/3:
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ΩHL = 1
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Geon (m = l = 2)

E = J/L
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• Geon: regular horizonless solutions of Einstein-AdS  

• Geon: Obeys the first law:   m dE = ω dJ 

• Both Invariant under single helical Killing vector field: 

       which is timelike near the poles but spacelike near the equator.  

• Time periodic but  NOT  time independent neither axisymmetric 

• Boundary stress-tensor has regions of  negative and positive energy density around the equator: 

K = @t +
!

m
@'

• Gravitational  turbulent  instability  of  Anti-de Sitter (AdS):

For  any  initial  perturbation perturbation,  AdS  has  a  non-linear instability  that 
transfers  energy  from  low  to  high  frequency modes  &  eventually  leads  to  black  hole  formation. 

Energy  cascade  is  similar  to familiar  process  of  turbulence. 

→  Gravitational  description  of  turbulence ?

    →  The  BH  that  might  form  has  a single  isometry:  

           Kerr-AdS  BHs  might  then  not  be  the  only  rotating  BHs  of  Einstein  theory !   →  unexpected !
 

 Technically,  challenging  problem:

       We  had  to  solve  in  perturbation  theory  a  system  of   ~ 70   ODEs  !

Some Concrete  contributions  to  the  programme:

1)   Ultraspinning  instability:

?

?• Evolution along  the  parameter  space  of  solutions:

• Construct  non-linearly  (numerically)  

a1

a2

• Construct  non-linearly  (numerically)  
the  new  branch  of  axisymmetric BHs:

• Stability of   black   rings ?   

• Ultraspinning in  AdS systems.  AdS Black  rings. 

• Holographic   interpretation  of   BH  solutions / instabilities : 

BH  with  temperature  T QFT  at  finite   T

⤹
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Some properties of geons & black resonators:




⌦H =
!

m

• Leading  order  thermodynamics:  model  black resonator 

               as  a  non-interacting  mixture  of  a  Kerr  BH  and  a  geon. 

• Assume absence  of  interaction:  E, J   of  resonator  are  simply  the 

   sum  of  the  charges  of  individual  constituents:  

                                                                                                                                      

•  Geon’s  KVF  must  coincide  with  the  horizon  generator  of  the  black resonator:   

                 angular  velocity  of  the  later  must  be   

•  This equilibrium  condition  also  follows  from   maximizing entropy  for  a  given  total   E, J.  

•  Combine  these  conditions  with  the  leading  order  thermodynamics  of  the  two  components.   

   At  leading  order,   geon  component  carries  all  J  &   Kerr  component  stores  all S.

➙ Constructing  black resonators  using  a  thermodynamic  model

• Gravitational  turbulent  instability  of  Anti-de Sitter (AdS):
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E = EK +Eg ,     J = JK + Jg 
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➙ What is the endpoint of superradiant instability ?

•  Sresonator | m=2  >  SKerr-AdS  for  same  {E, J}   but  all  black resonators  have  ΩHL > 1:    

        they  are  still  superradiantly  unstable  to  higher  m-modes     

• Two  possibilities for the endpoint of  superradiant  instability: 

   1)  there  is  a limiting black resonator with   ΩHL = 1 ?  
         =>  perturbatively construct it as:  Kerr-AdS at the core of a limiting geon with Ω L =1. 

        Such geon would saturate the minimum energy bound,   E=J/L  => it is a  SUSY solution.  
        BUT  (regular) geon cannot exist: only SUSY vacuum solution with AdS asymptotics is … AdS 

       … no other classical candidate solution for the endpoint of superradiance so we conjectured: 

   2)  Time  evolution  develops cascade of  higher & higher  m-structure  ( m k => Sresonator  k )  

         till GR breaks down & quantum effects kick-in   =>    cosmic  censorship  violation ! 

Available time evolutions are consistent with this conjecture (but only see early cascade)  

Grey Galaxy: Endpoint seems to be Rotating BH at core region + quantum gas of gravitons in far-region

Niehoff, Santos, Way, 1510.00709

Chesler, 1801.09711, 2109.06901

Minwalla et al, 2305.08922 

OD, Horowitz, Santos, 1105.4167



2. Localized black holes  
           in Gravity & Supergravity

AdS5 xS5 black holes of  sugra IIB
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Figure 1: A pictorial representation of the S5 for some black hole solutions that asymptote to
global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.
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➙ Recalling   the  primordial   days:   AdS5 / CFT4

•  Type IIB  supergravity ( only with g and F(5) ):
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1 Introduction

Gauge-gravity duality [1] provides a unique arena to study quantum gravity in its most extreme
regimes. Its best understood formulation stipulates an equivalence between ten dimensional
IIB String Theory on AdS5 ⇥ S5 and four-dimensional N = 4 Super-Yang-Mills (SYM) with
gauge group SU(N). This AdS5/CFT4 duality is the most concrete example of the holographic
principle and provides a non-perturbative definition of string theory.

States of the field theory at large N and large t’Hooft coupling correspond to solutions of
classical gravity in the bulk. In particular, bulk black holes describe thermal states on the field
theory, with the field theory temperature T identified with the Hawking temperature of the AdS
black hole. We thus expect black holes in AdS5⇥S5 to play an important role in understanding
the phase diagram of N = 4 SYM.

According to the correspondence, the background spacetime for the field theory is specified
by the four-dimensional boundary of AdS5. Since N = 4 SYM is a conformal field theory, it
does not exhibit phase transitions on a scale-invariant background like Minkowski space M1,3.
Instead, a di↵erent background spacetime can be chosen which allows for a more interesting
phase structure. The phase structure of such solutions is a well-studied topic (see, e.g. the
review [2] and references therein). However, much of this study neglects e↵ects set by the
curvature scale of the S5.

In this manuscript, we construct new thermal phases where the S5 plays an important role.
One of the most well-studied backgrounds for the field theory is the Einstein static universe
Rt⇥S3. We will therefore be concerned with solutions that are asymptotically global AdS5⇥S5.
These solutions must satisfy the type IIB SUGRA equations of motion. With only the metric
g and Ramond-Ramond 5-form F(5) = dC(4) turned on, these equations are given by:
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Figure 1: A pictorial representation of the S5 for some black hole solutions that asymptote to
global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.
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•  Recall  Gregory-Laflamme  instability  on  a  black  string  Mink 4 x S1  with r+ << L

•  Hierarchy of scales  =>  GL instability  =>  new phases:
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FIG. 1: Sketch of the phase diagram of solutions associated with the Gregory-Laflamme (GL)

instability of the black string (taken from Fig. 4 of [105] and recently updated in [74]). These

solutions asymptote to Mink4⇥S1. The vertical axis shows the entropy S of the solutions normal-

ized by the entropy of the uniform string Sus with the same energy. The horizontal axis describes

the energy normalized by the energy EGL of the uniform string where the latter becomes unstable

to the GL instability. The horizontal line with S/Sus = 1 represents the uniform black string.

The onset of the instability is at point A. Uniform strings to the left of point A (dashed line) are

GL unstable while those to the right of A (continuous line) are GL stable. The onset A signals a

bifurcation to a new family of solutions represented by the branch AB that describe non-uniform

strings, still with horizon topology S2⇥S1, but not translationally invariant along the S1. Point B

represents a conical singularity where a transition to a new branch that describes localized black

holes on S1, with horizon topology S3 (as we approach region C the solution looks progressively

similar to a small - compared with the S1 radius - Schwarzschild black hole in 5 dimensions). This

is the branch that extends from point B, through the regular cusp, and all the way up to region

C.
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Figure 1: A pictorial representation of the S5 for some black hole solutions that asymptote to
global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.
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global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.
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Horizon topology S8

•  Expect  that  for  r+ << L   Schwarzschild-AdS5 xS5:

Horizon topology S2 × S1 Horizon topology S3 

L

r+

[ Banks, Douglas, Horowitz, Martinec, 1998 ] 
[ Peet, Ross, 1998 ]

Lumpy BHs
Localised

 BHs



Use patching technique, ie an ansatz that:  

        1) near the horizon it’s adapted to S8 horizon topology (10D Schw in isotropic coord) 

        2) asymptotes to AdS5 xS5   with  Rt x SO(4) x SO(5) symmetry  
                                                                             [largest subgroup of SO(6)] 
             ie it’s adapted to S3 × S5  topology 

x = 0 x = 1

ξ = 0

ξ = 1
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Near-horizon region ( S8 ):

1) f̃2, f̃4, f̃6 are fns of {⇢, ⇠} (other fj’s transform as scalars). {f̃2 = f̃4 = 1, f̃6 = 0}reference.

2) Map uniquely fixes G1, G2, and relates M and G3 directly with H1.

3) Blackening factor : (⇢7 � ⇢
7
0)

2
/(⇢7 + ⇢

7
0)

2 ) horizon at ⇢ = ⇢0 .

4) Set H2 = (1 + ⇢
7
0/⇢

7)4/7 (consistent with H2 = 1 at y = 1 i.e. ⇢ ! 1).

5) At small ⇢, ⇢0 : G1 ⇡ G2 ⇡ 1, so if M ⇡ 1, reference metric ⇠ Schw10

��
isotropic coord

) suggests choosing H1 s.t. H1

��
y=1

= 1 (⇢ ! 1) and M is + definite with M
��
⇢=⇢0

= 1.

6) M
��
⇢=⇢0

= 1 also fixes T and ensures regularity on the horizon

horizon ⇢ = ⇢0

asymptotic infinity y = 1 (⇢ ! 1)

S
3 axis y = 0 (⇠ = 0)

S5 North pole

x = 1 (⇠ = 1)

S5 South pole x = 0

� At infinity, global AdS5 ⇥ S5 asymptotics ) f1,2,3,4,5,7 = 1, f6 = 0.

� Remaining BCs fixed by regularity: fi and f̃i to remain finite bdries
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2

where L is the curvature scale of the boundary S3,
f1, . . . , f7 are unknown functions of x and y, and H1,
H2 are known functions which we will describe shortly.
The function W can be algebraically eliminated from
the equations of motion, and can be computed after
f1, . . . , f7 are known [47]. This is a general ansatz con-
sistent with the required symmetries. Further note that
if we set f6 = 0, and fi = 1 for i 6= 6, as well as
H1 = H2 = 1, we recover global AdS5 ⇥ S5 [6] .

Accordingly, we will define our reference metric by set-
ting f6 = 0, and fi = 1 for i 6= 6. It remains for us to
supply H1 and H2 to fully specify the reference metric.
These must approach H1 = H2 = 1 at y = 1 in order
to recover global AdS5 ⇥ S5 asymptotically. They must
also be chosen so that the reference metric describes a
regular S8 black hole. To aid in finding the solution, we
would like the geometry near the horizon to be that of 10-
dimensional asymptotically flat Schwarzschild (Schw10)
when the black hole is small (high temperature).

To accomplish this, perform a change of coordinates

y =

r
1� sech

⇣
⇢ ⇠

p
2� ⇠2

⌘
,

x =

s

1� sin

✓
1

2
⇢ (1� ⇠2)

◆
. (5)

This is essentially a Cartesian to polar map. To see
this, the transformation y =

p
1� sech(Y) and x =p

1� sin(X/2) maps the dx2 and dy2 components in the
reference metric to L2H2(dX2 + dY 2), which is confor-
mal to Cartesian coordinates. Finally, X = ⇢⇠

p
2� ⇠2

and Y = ⇢(1� ⇠2) give the usual Cartesian to polar map
with a di↵erent angular coordinate.

In these new coordinates, we rewrite our ansatz

ds2 = �Mf1

�
⇢7 � ⇢70

�2

(⇢7 + ⇢70)
2 dt

2+

+ L2H2
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2
4
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(6a)

C(4) = L3 ⇠
4
�
2� ⇠2

�2
⇢4

p
2

MG3f7 dt ^ dS(3) + L4W dS(4),

(6b)

where f̃2, f̃4, f̃6 are new unknown functions of ⇢ and
⇠ (the other fi’s transform as scalars). On the refer-
ence metric, these new functions are f̃2 = f̃4 = 1 and
f̃6 = 0. The map (5) uniquely determines G1 and G2,
and relates M and G3 directly with H1. The factor of
(⇢7 � ⇢70)

2/(⇢7 + ⇢70)
2 is chosen in anticipation of placing

a black hole horizon in the reference metric. Now set

H2 = (1+ ⇢70/⇢
7)4/7. This is consistent with our require-

ment that H2 = 1 at y = 1 (⇢ ! 1). At small ⇢ and ⇢0,
we have G1 ⇡ G2 ⇡ 1, so if M ⇡ 1, the reference met-
ric would approximate Schw10 in isotropic coordinates.
This guides our choice for H1 (and consequently M and
G3). We choose H1 so that H1 = 1 at y = 1 (⇢ ! 1)
and M is positive definite with M = 1 at ⇢ = ⇢0. The
last requirement also fixes the temperature and ensures
regularity on the horizon of the reference metric. Our
specific choice for H1, and explicit expressions for the
other known functions are given in the Appendix.

Our integration domain contains five boundaries: the
horizon ⇢ = ⇢0, asymptotic infinity y = 1 (⇢ ! 1), the
S3 axis y = 0 (⇠ = 0), the S5 ‘north’ pole x = 1 (⇠ = 1),
and the ‘south’ pole x = 0. For boundary conditions
at infinity y = 1 (⇢ ! 1), we require global AdS5 ⇥

S5 asymptotics: f1 = . . . = f5 = 1, f6 = 0, f7 = 1.
The remaining boundary conditions are determined by
regularity. As we have written our functions, we only
require fi and f̃i to remain finite on these boundaries, and
more specific boundary conditions can be found through
a series expansion of the equations of motion [14].

To handle the five boundaries numerically, we divide
the integration domain into a number of non-overlapping
warped rectangular regions or ‘patches’ as shown in
Fig. 1. The four patches far away from the horizon
use {x, y} coordinates, while the remaining patch near
the horizon use {⇢, ⇠} coordinates. We must supplement
our boundary conditions with additional ‘patching con-
ditions’: the metric g and the form C(4) and their first
derivatives must match across patch boundaries.

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

�

�

FIG. 1: Integration domain in {x, y} coordinates. The green
patch near the horizon is mapped from {⇢, ⇠} coordinates.

We therefore have a boundary value problem for 7 func-
tions in two dimensions. L drops out of the equations
of motion, so the system is parametrised by ⇢0 which
fixes the temperature [48]. We solve the system with
Newton-Raphson using the reference metric and f7 = 1
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3

at ⇢0 = 0.1 as a first seed. We use pseudospectral
collocation with transfinite interpolation of Chebyshev
grids in each patch, and the linear systems are solved by
LU decomposition. All solutions we have found satisfy
⇠2 < 10�10. See Appendix for convergence tests.

3. Results – In Fig. 2 we show the radii R⌦3 , R⌦4

of the geometrically preserved S3 and S4 along the hori-
zon. This curve at small ⇢0 (high temperatures) is ap-
proximated by R2

⌦3
+R2

⌦4
⇡ 24/7 ⇢20 L

2, implying that the
horizon is nearly spherical. At larger ⇢0 (lower tempera-
tures), the horizon is much more deformed.

FIG. 2: Radii of the S
3 and S

4 along the horizon. From the
bottom-left to the top-right T = {1.90, 0.945, 0.708, 0.538}.

Now we compute thermodynamic quantities. The tem-
perature T is fixed by ⇢0. The entropy S is found by
integrating the horizon area. The energy E is com-
puted using the formalism of Kaluza-Klein holography
and holographic renormalisation [12, 17–24] (see [12] and
Appendix for details). The AdS/CFT dictionary relates
the 10 and 5 dimensional Newton constants to the num-
ber of colours N of N = 4 SYM via G10 = ⇡4

2
L8

N2 and

G5 = G10
⇡3L5 . These yield the expressions
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N2
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512

⇣
@(4)
y f3 � @(4)

y f1
⌘ ����

y=1

. (7c)

These quantities numerically satisfy the first law dE =
TdS to < 0.1% error.

In the microcanonical ensemble, the energy is fixed,
and the dominant solution maximises the entropy. In

Fig. 3, we show S/N2 vs EL/N2 for various competing
solutions. The entropy is shown with respect to the en-
tropy of AdSSchw5⇥S5 [5, 6]. For small energies, the en-
tropy of the localised black hole is well-approximated by
that of Schw10 and is larger than that of AdSSchw5⇥S5.
For EL/N2 . 0.173, AdSSchw5 ⇥ S5 black holes are

unstable. We have found localised black holes for this en-
ergy range and determined that they have more entropy
than AdSSchw5⇥S5, indicating that localised black holes
are a plausible endpoint to this instability.
At higher energies, the entropy of localised black holes

approaches that of AdSSchw5⇥S5, where we believe they
will eventually meet in a first-order phase transition. Un-
fortunately, we were unable to reach this phase transition
with our current numerical resources. An extrapolation
of data (see Appendix for details) places the phase tran-
sition at {EL/N2, S/N2

} ⇡ {0.225, 0.374}.
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FIG. 3: Microcanonical phase diagram: entropy with respect
to that of AdSSchw5⇥S5 vs energy. The dotted red line is the
AdSSchw5 ⇥ S5 phase, while the blue squares are the ` = 1
lumpy black holes. The green diamond and magenta square
mark the onset of the ` = 1 and ` = 2 Gregory-Laflamme
instability, respectively. The solid purple curve and its points
describe the localised black holes and a fit of its data. The
brown dashed line is the lowest-order Schw10 approximation.

The localised black holes dominate the microcanon-
ical ensemble at low energies, but do not respect the
full asymptotic SO(6) symmetry of the S5. This is dual
to a spontaneous symmetry breaking of the SO(6) R-
symmetry of the scalar sector of N = 4 SYM down to
SO(5). This results in a condensation of an infinite tower
of scalar operators with increasing conformal dimension.
The lowest conformal dimension is 2, and the associated
scalar operator can be written as

O2 =
2

g2YM

r
5

3
Tr


(X1)2 �

1

5

⇣
(X2)2 + . . .+ (X6)2

⌘�
,

(8)
whereXi the are the six real scalars ofN = 4 SYM in the
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Figure 1: A pictorial representation of the S5 for some black hole solutions that asymptote to
global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.
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➙ CFT dual  interpretation ?   Spontaneous symmetry breaking  
   of the SO(6) R-symmetry of the scalar sector of N=4 SYM down to SO(5). 

=> condensation of an infinite tower of scalar operators with increasing Δ.  

       Lowest has  Δ = 2  and  vev: 

7

where Y`(x) , with ` = 0, 1, 2, · · · are the (regular) scalar harmonics of S5 given by

Y`(x) =

p
3⇡2

1
2 (�`�5)

p
(`+ 2)(`+ 3)

x3/2 (1� x2)3/2 (2� x2)3/4
P

� 3
2

`+ 3
2

�
�2x4 + 4x2

� 1
�
, (13)

S(`)
x (x) is the first component of the scalar derived vector harmonic S(`)

a , and Y x
x (`)(x) and Y ⌦

⌦ (`)(x) are components

of the scalar derived tensor harmonic Y a
b (`)(x) defined as

S(`)
a = �

1p
`(`+ 4)

DaY`, Y a
b (`)(x) =

1

`(`+ 4)
DaDbY` +

1

5
�a

bY`, (14)

with �ab being the metric of the S5.
In the above expansion we have already imposed the boundary conditions. The harmonic coe�cients depend

on six undetermined constants {�2, �1, �3, �0, �̃0, �4}. Two of these are gauge modes: �1 can be eliminated using
di↵eomorphisms while �̃0 can be removed by a gauge transformation of C(4). Accordingly, no physical observable

depends on �1, �̃0. On the other hand, {�2, �3, �0, �4} are determined only after solving the entire boundary value
problem. They vanish for AdSSchw5 ⇥ S5 and other solutions that preserve the full symmetries of the S5, but not
for solutions that break these symmetries. The reader interested on more details about these constants and their
relation with the conformal dimensions of the holographic dual operators of the system is invited to read the detailed
discussion in Appendix A.5 of [12].

With the above asymptotic expansion of the fields at the holographic boundary, we can compute the holo-
graphic stress tensor, the associated energy and expectation values of dual operators, which depend on the con-
stants {�2, �3, �0, �4}. We can do so using the formalism of Kaluza-Klein holography and holographic renormalisation
[12, 17] (see also [18–24]). In particular, a detailed discussion of the formalism and expectation value computations
for a system like ours that breaks the SO(6) symmetry group of S5 down to SO(5) can be found in Appendix A of
[12].

The expectation value of holographic stress tensor of our solutions is

hTiji =
N2

2⇡2


3

16
+

3

4
�

1

3072

✓
30�2

2 + 5�2 + 12(16�0 + �4 � 192)

◆�
diag

⇢
1,

1

3
⌘îĵ

�
, (15)

with ⌘îĵ being the metric components of a unit radius S3. This holographic stress tensor is conserved, rihT ij
i = 0,

and traceless, hT i
i i = 0.

As usual in holographic renormalization, we can now use (15) to read the energy of the solution of our black holes
(measured with respect to the global AdS5⇥S5 solution):

E =
N2

3072


4608�

✓
5�2 + 30�2

2 + 12 (16 �0 + �4)

◆�
, (16)

which, using (12a), can be rewritten as (7), namely EL
N2 = 1

512

⇣
@(4)
y f3 � @(4)

y f1
⌘ ��

y=1
. Note that we have a static

solution with a boundary metric that contains a symmetric S3. By symmetry and the tracelessness of the stress
tensor, all components of the stress tensor can be written in terms of the energy.

Kaluza-Klein holography also allows us to compute the expectation values of the scalar operators that condensate on
the boundary theory when the SO(6) R-symmetry of the scalar sector of N = 4 SYM is spontaneously broken. There
is an infinite tower of such operators but one of them has the lowest conformal dimension, � = 2. The expectation
value of this operator O2 is

hO2i = �
N2

⇡2

1

8

r
5

3
�2, (17)

and this is the expectation value that we that we show in Fig. 4.
We can relate this expectation value to quantities in N = 4 SYM. Recall that the bosonic sector of N = 4 SYM

contains six scalars Xi, here in the 6-dimensional rank-2 antisymmetric tensor representation of SU(4) (recall that
the groups SU(4) and SO(6) have isomorphic Lie algebras). There is also a spin-1 gauge field Aµ. The Lagrangian
of this sector of the theory is given by [25]

L
(bosonic)
SYM = Tr

0

@�
1

2 g2YM

Fµ⌫F
µ⌫

�

X

i

DµX
iDµXi +

1

2
g2YM

X

i,j

⇥
Xi, Xj

⇤2
1

A , (18)

3

at ⇢0 = 0.1 as a first seed. We use pseudospectral
collocation with transfinite interpolation of Chebyshev
grids in each patch, and the linear systems are solved by
LU decomposition. All solutions we have found satisfy
⇠2 < 10�10. See Appendix for convergence tests.

3. Results – In Fig. 2 we show the radii R⌦3 , R⌦4

of the geometrically preserved S3 and S4 along the hori-
zon. This curve at small ⇢0 (high temperatures) is ap-
proximated by R2

⌦3
+R2

⌦4
⇡ 24/7 ⇢20 L

2, implying that the
horizon is nearly spherical. At larger ⇢0 (lower tempera-
tures), the horizon is much more deformed.

FIG. 2: Radii of the S
3 and S

4 along the horizon. From the
bottom-left to the top-right T = {1.90, 0.945, 0.708, 0.538}.

Now we compute thermodynamic quantities. The tem-
perature T is fixed by ⇢0. The entropy S is found by
integrating the horizon area. The energy E is com-
puted using the formalism of Kaluza-Klein holography
and holographic renormalisation [12, 17–24] (see [12] and
Appendix for details). The AdS/CFT dictionary relates
the 10 and 5 dimensional Newton constants to the num-
ber of colours N of N = 4 SYM via G10 = ⇡4

2
L8

N2 and

G5 = G10
⇡3L5 . These yield the expressions

TL =
7

216/7⇡

1

⇢0
, (7a)

S

N2
=

244/7⇢80
3

⇥

⇥

Z 1

0
d⇠ ⇠3(2� ⇠2)(1� ⇠2)4f3/2

3 f̃1/2
4 f2

5G
3/2
1 G2

2

����
⇢=⇢0

,

(7b)

EL

N2
=

1

512

⇣
@(4)
y f3 � @(4)

y f1
⌘ ����

y=1

. (7c)

These quantities numerically satisfy the first law dE =
TdS to < 0.1% error.

In the microcanonical ensemble, the energy is fixed,
and the dominant solution maximises the entropy. In

Fig. 3, we show S/N2 vs EL/N2 for various competing
solutions. The entropy is shown with respect to the en-
tropy of AdSSchw5⇥S5 [5, 6]. For small energies, the en-
tropy of the localised black hole is well-approximated by
that of Schw10 and is larger than that of AdSSchw5⇥S5.
For EL/N2 . 0.173, AdSSchw5 ⇥ S5 black holes are

unstable. We have found localised black holes for this en-
ergy range and determined that they have more entropy
than AdSSchw5⇥S5, indicating that localised black holes
are a plausible endpoint to this instability.
At higher energies, the entropy of localised black holes

approaches that of AdSSchw5⇥S5, where we believe they
will eventually meet in a first-order phase transition. Un-
fortunately, we were unable to reach this phase transition
with our current numerical resources. An extrapolation
of data (see Appendix for details) places the phase tran-
sition at {EL/N2, S/N2

} ⇡ {0.225, 0.374}.
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FIG. 3: Microcanonical phase diagram: entropy with respect
to that of AdSSchw5⇥S5 vs energy. The dotted red line is the
AdSSchw5 ⇥ S5 phase, while the blue squares are the ` = 1
lumpy black holes. The green diamond and magenta square
mark the onset of the ` = 1 and ` = 2 Gregory-Laflamme
instability, respectively. The solid purple curve and its points
describe the localised black holes and a fit of its data. The
brown dashed line is the lowest-order Schw10 approximation.

The localised black holes dominate the microcanon-
ical ensemble at low energies, but do not respect the
full asymptotic SO(6) symmetry of the S5. This is dual
to a spontaneous symmetry breaking of the SO(6) R-
symmetry of the scalar sector of N = 4 SYM down to
SO(5). This results in a condensation of an infinite tower
of scalar operators with increasing conformal dimension.
The lowest conformal dimension is 2, and the associated
scalar operator can be written as

O2 =
2

g2YM

r
5

3
Tr


(X1)2 �

1

5

⇣
(X2)2 + . . .+ (X6)2

⌘�
,

(8)
whereXi the are the six real scalars ofN = 4 SYM in the
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Figure 1: A pictorial representation of the S5 for some black hole solutions that asymptote to
global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.

4

Page 1
Page 1

Figure 1: A pictorial representation of the S5 for some black hole solutions that asymptote to
global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.

4

Page 1
Page 1

Figure 1: A pictorial representation of the S5 for some black hole solutions that asymptote to
global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.

4

1) f̃2, f̃4, f̃6 are fns of {⇢, ⇠} (other fj’s transform as scalars). {f̃2 = f̃4 = 1, f̃6 = 0}reference.

2) Map uniquely fixes G1, G2, and relates M and G3 directly with H1.

3) Blackening factor : (⇢7 � ⇢
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0)
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/(⇢7 + ⇢
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2 ) horizon at ⇢ = ⇢0 .

4) Set H2 = (1 + ⇢
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0/⇢

7)4/7 (consistent with H2 = 1 at y = 1 i.e. ⇢ ! 1).

5) At small ⇢, ⇢0 : G1 ⇡ G2 ⇡ 1, so if M ⇡ 1, reference metric ⇠ Schw10
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isotropic coord

) suggests choosing H1 s.t. H1

��
y=1

= 1 (⇢ ! 1) and M is + definite with M
��
⇢=⇢0

= 1.

6) M
��
⇢=⇢0

= 1 also fixes T and ensures regularity on the horizon

horizon ⇢ = ⇢0

asymptotic infinity y = 1 (⇢ ! 1)

S
3 axis y = 0 (⇠ = 0)

S5 North pole

x = 1 (⇠ = 1)

S5 South pole x = 0

� At infinity, global AdS5 ⇥ S5 asymptotics ) f1,2,3,4,5,7 = 1, f6 = 0.

� Remaining BCs fixed by regularity: fi and f̃i to remain finite bdries

AdS/CFT dictionary: G10 =
⇡4

2
L8

N2 , G5 =
G10
⇡3L5 [ number of colours N of N = 4 SYM ]

⇢
EL

N2
,
S

N2

�
⇡ {0.225, 0.374}

2

4

vector representation of SO(6) and gYM is the coupling
constant (see e.g. [25] for the action of N = 4 SYM). The
expectation value hO2i in the broken phase can be found
from the supergravity solution through the formalism of
Kaluza-Klein holography [12, 17–24] (see Appendix for
details). We show hO2i for a range of energies in Fig. 4.
Because the symmetry breaking transition is first order,
hO2i will have a nonzero value at the phase transition.
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FIG. 4: Dimension 2 scalar condensate vs energy.

In the canonical ensemble, the temperature is fixed
and the solution with lowest Helmholtz free energy
F = E � TS dominates. In this ensemble, there is a
first order phase transition at the Hawking-Page point
{FL/N2, TL} = {0, 3/(2⇡)} between large AdSSchw5 ⇥

S5 black holes at higher temperatures and thermal
AdS5 ⇥ S5 at lower. All other known solutions, includ-
ing localised black holes never dominate the canonical
ensemble. (See the Appendix for a phase diagram.)

4. Discussion – To summarise, we have numerically
constructed asymptotically global AdS5 ⇥ S5 localised
black holes in type IIB supergravity. These black holes
are topologically S8 and are more entropic than any other
known solution at low energies. At higher energies near
EL/N2

⇡ 0.255, there is a first order phase transition to
AdSSchw5⇥S5 black holes. By the AdS/CFT correspon-
dence, these localised black holes are dual to a sponta-
neously broken thermal state of N = 4 super Yang Mills
with large N gauge group and large t’Hooft coupling.
The scalar sector with the broken symmetry contains a
dimension-2 operator with an expectation value shown in
Fig. 4 and preserves a SO(5) subgroup of SO(6).

Since lattice simulations of field theories with holo-
graphic duals rely on finite temperature, numerical tests
of AdS/CFT on both sides of the duality have been re-
stricted to the canonical ensemble [26–32]. However,
there has been recent progress in understanding first or-
der phase transitions in several ensembles [33–35]. We
emphasise that such field theory calculations on N = 4

SYM, at large t’Hooft coupling and large N , should re-
produce both Fig. 3 and Fig. 4.
The completion of the phase diagram in Fig. 3 can be

conjectured from other systems with Gregory-Laflamme
instabilities [15, 36–41] (see reviews [14, 39]). There is a
family of ‘lumpy’ black holes [12] (blue squares in Fig. 3)
connected to the onset of the Gregory-Laflamme insta-
bility (green diamond in Fig. 3). Lumpy black holes have
horizon topology S3

⇥ S5, but have nontrivial deforma-
tions along the S5. We expect the localised black holes
to meet with the lumpy black holes in the space of solu-
tions. For this to happen without violating the first law,
there must be a cusp somewhere in the S/N2 vs EL/N2

curve. There must also be a topological transition point,
which would be a solution containing a naked curvature
singularity. Analogous systems with Gregory-Laflamme
instabilities suggest that this topological transition point
is closer to the lumpy black hole side of the curve. That
is, that the cusp would be a topologically S8 black hole.
Let us now comment on dynamical evolution. En-

tropy arguments suggest that the evolution of unstable
AdSSchw5 ⇥ S5 black holes would proceed towards the
most dominant solution, which are the localised S8 black
holes. This entails a violation of cosmic censorship, much
like in the evolution of the black string [42] or black ring
[43]. Whether or not the evolution proceeds in this way,
and the implications for N = 4 SYM if cosmic censorship
is violated remain important open problems. Interest-
ingly, there is a range of energies 0.173 . EL/N2 . 0.225
where AdSSchw5⇥S5 is subdominant in entropy but nev-
ertheless dynamically stable. In the field theory, this
means that the time scale for spontaneous symmetry
breaking at these energies is exponentially suppressed
compared to those at lower energies.
Many localised solutions dual to N = 4 SYM states

remain to be studied. In global AdS5 ⇥ S5, there are lo-
calised solutions that break more symmetries, but these
are likely less entropic than the ones preserving SO(5).
There are other localised solutions arising from higher
harmonics of the Gregory-Laflamme instability. In par-
ticular, the ` = 2 mode (whose onset is shown in Figs. 3)
leads to double S8 black holes and S4

⇥ S4 ‘black belts’
[12]. However, these require delicate balancing of forces
and are likely unstable. Rotational e↵ects remain largely
unexplored except for the onset of the Gregory-Laflamme
instability for equal spin black holes [14]. Beyond global
AdS5 ⇥ S5, there is freedom to choose a di↵erent gauge
theory background than one conformal to R(t)

⇥S3. This
can yield novel physics like plasma balls and boundary
black holes (see [44] for a review), but none of these stud-
ies have included the e↵ects of localisation.
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Type IIB supergravity theory on AdS5xS5 with radius L and N units of F(5) flux on S5 
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• We should find all the BHs and map them into thermal states in the dual SYM 
   => identify the dominant phases (as saddle points) in the thermodynamic ensembles. 

• Necessary to reproduce microscopically the Bekenstein-Hawking entropy of AdS BHs. 

• Contribute to understand a puzzle of SO(6) gauged supergravity: its most general 
SUSY BH known so far — Kunduri-Lucietti-Reall BH — has only 4 independent 
parameters.     
• However, asymptotically AdS5xS5 BHs are characterized by 6 conserved charges   

   with the BPS relation constraint E= Q1+Q2+Q3+J1/L+J2/L 

             => the most general SUSY BH should be a 5-parameter solution.  
   From dual CFT perspective, most general SUSY states also expected to be   
   characterized by 5 parameters.  

   So, what is the missing gravitational parameter?

➙ Motivations

➙ AIM: can we identify new thermal phases with a finite chemical potential  
                        that can dominate some thermodynamic ensembles ?

[ See Benini’s review talk at Strings 2022] 

[ Gutowski, Reall ’04 ] 
[ Kunduri, Lucietti, Reall ’06 ] 



• The massless bosonic fields of type IIB supergravity: 
    metric tensor gab, dilaton Φ, axion C, NS-NS antisymmetric 2-tensor B(2),  
    RR 2-form potential C(2), and RR 4-form C(4) with a 5-form field strength F(5) =dC(4)    
    satisfying a self-duality condition.                                                                 .  
    Fermionic superpartners: complex Weyl gravitino &  complex Weyl dilatino. 

• Useful: dimensional reduction of IIB along S5 yields 5d N=8 gauged supergravity.  

   It’s believed (not proven) to be a consistent reduction of IIB on AdS5xS5.  
                                                                                                                             Gunaydin, Romans, Warner (1986)

• But IIB with only gab,F(5) (relevant for AdS/CFT: source D3’s) can be 

consistently dim reduced along the S5 to yield 5d SO(6) gauged supergravity. 
                                                                                                               Cvetic-Lü-Pope-Sadrzadeh-Tran [hep-th/0003103]   

• It’s itself a consistent truncation of gauged N =8 SUGRA where we set to 0 some 
5D scalars and gauge fields.  

  5D Bosons that  survive (graviton gab,  15 gauge fields Aij   &  20 scalars)  
                                        descend uniquely from 10D {gab,F(5)} of IIB

➙ Strategy to find more BHs dual to thermal SYM phases



“Cut even more (no mercy!)”: 

Consistent truncation of SO(6) gauged SUGRA down to the U(1)3 Cartan subgroup 
of SO(6) with associated gauge fields {A(1)K}  (K=1,2,3): U(1)3 gauged supergravity.  
   

The 5D field content [ that descend from {gab,F(5)} of IIB ] :  
        Graviton gab + 2 neutral scalars {φ1, φ2} + 3 U(1)’s gauge fields {A(1)K},  
      + 3 complex scalar fields {ΦK} minimally coupled to {A(1)K} with charge qL =2.  

All 5 scalars have mass m2L2 =-2 => saturate AdS5 Breitenlöhner-Freedman (BF) bound. 

➙ U(1)3 gauged supergravity:

AdS/CFT dictionary: these fields are dual to operators of conformal dimension ∆. 

[ Bhattacharyya, Minwalla, Papadodimas (2011) ]  
[ Markeviciute, Santos (2016, 2018)] 
[ OD, Mitra, Santos 2022 + 2024 ] 

a.k.a.



➙ Microcononical  phase diagram  (of truncation with three equal Q’s and equal J’s) 

• Set Q1=Q2=Q3=Q. When J1=J2=J: co-homogeneity one (coupled nonlinear ODEs) 
• BPS relation is  E = 3Q + 2J/L

GR

Charting the (many) phases of N = 4 SYM

Adding rotation

Results - 1/2

Known SUSY black holes - Gutowski, Reall ’04 - form a one-
parameter family of solutions.
Are there other solutions that can generalise Gutowski, Reall ?

Smooth CLP: E Ø Qext(E, J).
CLP are non-singular and
extremal at E = Qext.
At fixed J , there is a single
point where extremal CLP
becomes SUSY.
Hairy black holes condense just
as for the static case!

BHs with �1 = �2 ”= 0 exist in
red region and S > SCLP!
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Non-singular  
Extremal CLP 

BPS
 lim

Onset of CLP 
instability

CLP BH

• (S > 0,T=0)
UNSTABLE

GR

• Φ1,2,3 =0: “Kerr-Newman—AdS5” (CLP) BHs of theory but with non-trivial neutral scalar 
fields  {φ1, φ2} supporting them. 

• At fixed J, ∃ a single point GR where  
   extremal CLP is SUSY:  
   the (1-parameter)  Gutowski, Reall ’04 BH. 
   (Kunduri-Lucietti-Reall BH: arbitrary Q1,2,3 ,J1,2)  

• Scalar condensation instability  

  of ‘Bald’ CLP BHs (Φ = 0): 

      

  => Unstable when Im (ω L) >0


    Due to the violation of the near-horizon AdS2 
    Breitenlöhner-Freedman (BF) bound  

   => Suggests  ∃ of hairy BHs that have 
         a charged scalar field condensate:
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Behrndt-Cvetic-Sabra 1998,  
Cvetic-Lü-Pope (CLP) 2004,  
Wu 2011



Charting the (many) phases of N = 4 SYM

Adding rotation

Results - 1/2

Known SUSY black holes - Gutowski, Reall ’04 - form a one-
parameter family of solutions.
Are there other solutions that can generalise Gutowski, Reall ?

Smooth CLP: E Ø Qext(E, J).
CLP are non-singular and
extremal at E = Qext.
At fixed J , there is a single
point where extremal CLP
becomes SUSY.
Hairy black holes condense just
as for the static case!
BHs with �1 = �2 ”= 0 exist in
red region and S > SCLP!

15 / 17

Non-singular  
Extremal CLP 

SUSY lim E = 3Q + 2J

Onset
 of 

CLP
 

inst
abil

ity

CLP BH

• Hairy BHs with a charged scalar condensate    
                     have higher entropy S than CLP for given {E,Q,J}.  
• Hairy BHs have a non-singular (?) BPS lim (where T L → 0, µ →1+, Ω L →1-):  
  might be novel SUSY BHs (this time with hair) => can be missing grav parameter! 

GR

• Work at finite temperature & approach T →0: find (evidence for) novel SUSY BHs ! 

➙ Microcononical  phase diagram  (of truncation with three equal Q’s and equal J’s) 



• Hairy BHs with a charged scalar condensate    
                     have higher entropy S than CLP for given {E,Q,J}.  
• Hairy BHs have a non-singular (?) BPS lim (where T L → 0, µ →1+, Ω L →1-):  
  might be novel SUSY BHs (this time with hair) => can be missing grav parameter! 



Our Universe appears to be expanding due to the presence of a positive cosmological constant… 

So we should ask: 

What is the phase space of stationary black hole solutions  
                                of the Einstein equation in de Sitter? 

Are there other solutions besides de Sitter Schwarzschild and  de Sitter  Kerr?

4. Black hole binaries  
     in an expanding Universe

    OD,  Gary Gibbons, Jorge  Santos, Benson Way,  2303.07361



Start with Newtonian analysis: consider a configuration of N small BHs in de Sitter space

• Newton-Hooke equations of motion: 

• Static solutions exist when:  

• Two equal mass BHs aligned along z axis and separated by a distance d: 

• Then (1) yields:  

• Require validity of Newton + Hooke approxs + BHs inside a single cosmological horizon: 

  

• If the distance between BHs is (2), first 2 conditions are obeyed if we assume the 3rd  

  => static de Sitter binaries with small BHs are consistent with Newton-Hooke theory. 
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r+ = 2M

 (1) 

 (2) 



• On the other hand, some mathematical theorems in the literature claim  
  uniqueness of Schwarzschild/Kerr solutions in de Sitter! 
   
• Solve the Einstein equations to settle the issue!  

• Use patching technique, ie an ansatz that:  
  1) near the two event horizons looks like the Israel-Khan solution  
                                                      (but without conical singularity) & 
  2) near the (single) cosmological horizon looks like de Sitter space (in the static patch) 

• We find that regular static BH binaries do exist in de Sitter. 

• Not in conflict with available Uniqueness theorems: 

       we have (explicitly identified) assumptions of these theorems that can be evaded 



Proper distance between the BH horizons  
versus the BH temperature:

Total BH entropy versus the  
cosmological horizon entropy: 
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