THE SEARCH FOR NEW PHYSICS AND SMEFT

S. Dawson, BNL IFT Christmas Workshop December 13, 2023

Complaints, suggestions to dawson@bnl.gov

WE KNOW THERE MUST BE NEW PHYSICS

- What is dark matter?
- Why is there a matter-antimatter asymmetry?
- What sets the pattern of fermion masses?
 - Why is the top so heavy and why are neutrinos so light?
- Why are the W and Higgs so much lighter than the Planck scale?
- Why is the Standard Model so simple with only one Higgs doublet?

Many possibilities for new physics that attempts to answer these questions

S. Dawson

WHERE TO LOOK FOR NEW PHYSICS? S. Dawson, BNL

NEW PHYSICS Hard to know what we expect **Direct Searches** ٠ Can we determine source of new physics? • **Depends on** collider environment Precision measurements Future HE LHC colliders Coupling to SM Higgs No resonance or light resonance or new More Energy Factory signatures More uminosity **Mass Scale** Find resonance! Current knowledge will be strengthened at HL-LHC

Top quark physics

Di-boson physics

 Suggests that the SM is a good approximation to physics at the weak scale and in many different sectors

IT APPEARS THAT NEW PHYSICS IS HEAVY (> I TEV) [OR VERY LIGHT AND WEAKLY COUPLED]

Searching for new physics as an expansion around the SM assuming no new light particles is reasonable

S. Dawson, BNL

START FROM THE IDEA OF HIGH SCALE DECOUPLING

• Suppose there is a new particle X, with mass $M_X >> M_W$

If UV theory is nondecoupling, then expansion in powers of $1/M_X^2$ will fail at some point

Effects of X vanish as $1/M_X^2$ for weak coupling This is implicit assumption as we construct SMEFT

*Note: Higgs is example of non-decoupling particle

INDIRECTLY DISCOVER NEW PHYSICS

• Fermi theory ($\mu \rightarrow \nu \nu e$) becomes nonperturbative at E ~ 600 GeV

• W boson saves the day

Indirectly discover new physics Goal is to apply this lesson to TeV scale physics

S. Dawson

ASSUME A HIERARCHY OF SCALES

Learn about high scale physics by measuring deviations from SM predictions

S. Dawson

SMEFT: SM EFFECTIVE FIELD THEORY

- Assumptions: New physics decouples at $\Lambda >> v$, E
- At the weak scale: SM SU(3) \times SU(2) \times U(1) symmetry and SM particles only
- New physics described by

$$L_{SMEFT} = L_{SM} + \frac{L_5}{\Lambda} + \frac{L_6}{\Lambda^2} + \frac{L_7}{\Lambda^3} + \frac{L_8}{\Lambda^4}$$
$$L_n = \sum_i C_i^n O_i^n$$

Assume Higgs is in an SU(2) doublet

10

- New physics contributions contained in coefficients C (can calculate in specific models)
- Operators form a complete basis (not unique)
- L_5 and L_7 are lepton number violating

Learn about high scale physics by measuring coefficients of effective operators with global fits S. Dawson

MY GOAL TODAY:

- Examine assumptions that go into SMEFT studies
- To what extent does SMEFT give "model independent" predictions?
- What needs doing from a theoretical perspective in order to draw firm conclusions about UV physics from SMEFT?

CHOOSING OPERATORS FOR A FIT

- We now know complete dimension-6 and dimension-8 basis
- Too many operators to be useful for global fits
 - At dimension-8, 895 (36,971) baryon number preserving for 1 (3) generation
 - At dimension-6, 59 (2499) baryon number preserving for 1 (3) generation
- Study impact of cherry picked operators
 - Assumptions worm their way in here
- Try to limit number of operators by assuming specific structures for UV scenarios

DIMENSION-6 VS DIMENSION-8?

$$L \to L_{SM} + \Sigma_i \frac{C_{6i}}{\Lambda^2} O_{6i} + \Sigma_i \frac{C_{8i}}{\Lambda^4} O_{8i} + \dots$$

• SMEFT

$$A^2 \sim |A_{SM} + \frac{A_6}{\Lambda^2} + \dots |^2 \sim A_{SM}^2 + \frac{A_{SM}A_6}{\Lambda^2} + \frac{A_6^2}{\Lambda^4} + \dots$$

- Problem is that $(A_6)^2$ terms are the same order as A_8 terms that we have dropped when counting in $1/\Lambda$
- If we only keep A_6/Λ^2 terms and drop $(A_6/\Lambda^2)^2$, the cross section is not guaranteed to be positive-definite
- Corrections are $O(s/\Lambda^2)$ or $O(v^2/\Lambda^2)$

WHICH TERMS TO INCLUDE?

- Loops generate dependence on new operators
- Are logarithms good approximation to loop effects?

DOUBLE INSERTIONS OF DIM-6 OPERATORS

$$A \sim A_{SM} + a_i \frac{C_{6i}}{\Lambda^2} + a_{ij} \frac{C_{6i}C_{6j}}{\Lambda^4} + b_i \frac{C_{8i}}{\Lambda^4} + \frac{1}{16\pi^2} \left[c_i \frac{C_{6i}}{\Lambda^2} + d_i \log\left(\frac{\mu^2}{\Lambda^2}\right) \right]$$

S. Dawson

- Consider double insertions in gluon fusion
- Consider models where $C_{\phi G}=0$ ($O_{\phi G}=(\phi^{+}\phi) G^{\mu\nu}G_{\mu\nu}$ contributes at tree level and complicates counting)

* Double insertions for tree level processes straightforward

When top data is included, double insertions irrelevant for gg \rightarrow H in C_{ϕG}=0 limit

2212.03258

HIGHER ORDER CORRECTIONS

- Progress in computing SMEFT processes to NLO
- NLO SMEFT QCD at dimension-6 is automated: 2008.11743
- QCD effects matter!

DIMENSION-6 EW CORRECTIONS

- These are not automated:
 - One-loop EW SMEFT calculations done on a case by case basis
- Not all observables that are relevant for LHC data are known at NLO EW SMEFT
- NLO EW introduces dependence on operators that don't contribute at LO
 - Does this affect global fits?

Still work to do.....

S. Dawson, BNL

HOW BIG ARE NLO EW EFFECTS?

Fit to precision EW data: LEP / SLC / M_W / Γ_W

8 coefficients that contribute at tree level

[Giardino, HEFT2020]

FUTURE LIMITS NEED NLO EW SMEFT

Note that including NLO EW changes the fits in a significant way

S. Dawson, BNL

2304.00029

FLAVOR AND THE SMEFT

 $L_{YUK} = -\overline{q}_L V^{\dagger} Y_u \tilde{H} u_R - \overline{q}_L Y_d H d_R - \overline{l}_L Y_e H e_R + h.c$

• Flavor is poorly understood in the SM

- Large hierarchy of masses: Y_u, Y_d, Y_e
- Approximate alignment of CKM matrix:

 $V_{CKM} \sim \begin{pmatrix} 1 & .2 & (.2)^3 \\ .2 & 1 & (.2)^2 \\ (.2)^3 & (.2)^2 & 1 \end{pmatrix}$

- Do SMEFT operators follow a similar flavor pattern?
- Imposing global flavor symmetries reduces number of operators

European Strategy, 1910.11775

INCLUDE FLAVOR STRUCTURE IN EWPO STUDY

- Consider CKM diagonal, which implies specific flavor structures
- In Warsaw basis:
 - 4-fermion operators

 $(\overline{f}_i \gamma^\mu f_j)(\overline{f}_k \gamma_\mu f_l)$

• 2-fermion operators

$$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{q}_{i}\gamma^{\mu}q_{j}) \to C_{X}[ij] = E_{X}\delta_{ij}$$

- Bosonic operators
- Most general case: NLO EWPO calculation involves 178 independent coefficients (6 from bosonic, 23 from 2-fermion, 149 from 4-fermion)

Not all combinations of flavor indices arise in EWPOs

WHAT ABOUT FLAVOR ASSUMPTIONS?

- Global fits often done assuming flavor universality
- SM has U(3)⁵ global symmetry that is broken only by Yukawas $(q_L)^T = (u_L, d_L), \ (l_L)^T = (\nu_L, e_L), \ u_R, \ d_R, \ e_R$
- 3rd generation is different
 - Do fits with $U(2)^5$ global symmetry
- MFV assumption assumes top Yukawa is only source breaking U(3)⁵ symmetry (since we assume all other fermions are massless)

Do flavor assumptions make significant differences to SMEFT fits?

FLAVOR ASSUMPTIONS REDUCE POSSIBILITIES

	Operators that contribute to EWPO at NLO								
	Operator	$U(3)^{5}$	MFV	$U(2)^{5}$	3 rd gen specific	3^{rd} gen phobic	3^{rd} gen phobic + $U(2)^5$	Flavorless	
2-fermion 4-fermion with identical representations Remaining 4-fermion	Class A	7	12	16	9	14	7	9	
	Class B	11	17	27	5	23	11	6	
	Class C	11	21	44	11	44	11	11	
	Total	29	50	87	25	81	29	26	

- NLO SMEFT EW fits done with coefficients evaluated at $\ensuremath{M_Z}$
- Input parameter dependence? Results use $G_{\text{F}}\,M_{\text{Z}},\alpha$
- After separating out dominant scheme independent contributions, residual scheme dependent contributions similar in commonly used schemes [Biekotter, Pecjak, Scott, Smith, <u>2305.03763</u>]

FLAVOR MATTERS!

- Take-away: Neglecting flavor gives overly aggressive limits
- Strong correlations in flavor space
- NLO can have large effects

* Coefficients are related by flavor assumptions

2304.00029

FLAVOR MATTERS

Flavorless assumption yields more stringent bounds than flavor scenarios

Can also limit these coefficients with fits to LHC dijets. More stringent limits for gens 1 and 2 from dijets (tree level process) [Bruggisser,Westhoff: 2212.02532]

FLAVOR IN EWPO AND TOP PHYSICS

- Some operators contribute both to top pair production at the LHC and to EWPO at 1loop
- For some operators, similar sensitivity

t

2201.09887 1802.07237

h

S. Dawson

95% CL limits on 3rd generation 4-fermion operators

SO.... WHO CARES?

• SMEFT fits provide a comparison point to quantify deviations from the SM

I have highlighted the many assumptions that go into SMEFT fits and shown the importance of NLO corrections and flavor assumptions

• Interest in SMEFT is the hope that it will provide insight into high scale physics that cannot be directly probed.

GOAL IS TO INFER BSM PHYSICS FROM PATTERNS OF COEFFICIENTS

- Compare models with one new heavy particle
- Do global fits to just the sets of operators generated in these models
- Fits can restrict high scale models
- Need to study complete models

* Mass limits assume C=1

2HDM IS A GOOD TESTING GROUND

- Consider model with 2 Higgs doublets, Φ_1 and Φ_2 with a softly broken Z_2 symmetry: $\Phi_1 \rightarrow \Phi_1$ and $\Phi_2 \rightarrow - \Phi_2$
- 5 physical Higgs bosons, h₁₂₅, H₀, A, H[±]
- Rotate to the Higgs basis In this basis $\langle H_2 \rangle = 0, \langle H_1 \rangle = v/\sqrt{2}$ $\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix},$
- Very convenient for SMEFT studies

$$\begin{split} V = & Y_1 H_1^{\dagger} H_1 + Y_2 H_2^{\dagger} H_2 + \left(Y_3 H_1^{\dagger} H_2 + \text{h.c.} \right) + \frac{Z_1}{2} \left(H_1^{\dagger} H_1 \right)^2 \\ & + \frac{Z_2}{2} \left(H_2^{\dagger} H_2 \right)^2 + Z_3 \left(H_1^{\dagger} H_1 \right) \left(H_2^{\dagger} H_2 \right) + Z_4 \left(H_1^{\dagger} H_2 \right) \left(H_2^{\dagger} H_1 \right) \\ & + \left\{ \frac{Z_5}{2} \left(H_1^{\dagger} H_2 \right)^2 + Z_6 \left(H_1^{\dagger} H_1 \right) \left(H_1^{\dagger} H_2 \right) + Z_7 \left(H_2^{\dagger} H_2 \right) \left(H_1^{\dagger} H_2 \right) + \text{h.c.} \right\} \end{split}$$

• Z's can be written in terms of physical parameters $v,\,eta\!-\!lpha,\,m_{h_{125}},\,Y_2,\,m_{H_0},\,m_A,\,m_{H^\pm}$ S. Dawson, BNL

2HDM CONTINUED

• 4 choices for fermion Yukawas (avoid tree level FCNC)

 $\mathcal{L}_{Y} \sim -\lambda_{u}^{(1)} \bar{u}_{R} \tilde{H}_{1}^{\dagger} q_{L} - \lambda_{u}^{(2)} \bar{u}_{R} \tilde{H}_{2}^{\dagger} q_{L} - \lambda_{d}^{(1)} \bar{d}_{R} H_{1}^{\dagger} q_{L} - \lambda_{d}^{(2)} \bar{d}_{R} H_{2}^{\dagger} q_{L} + h.c.$

$$\lambda_f^{(1)} = \frac{\sqrt{2}}{v} m_f \qquad \lambda_f^{(2)} = \frac{\eta_f}{\tan\beta} \lambda_f^{(1)}$$

	Type-I	Type-II	Type-L	Type-F
η_u	1	1	1	1
Jd	1	$-\tan^2\beta$	1	$-\tan^2\beta$
η_l	1	$-\tan^2\beta$	$-\tan^2\beta$	1

- Type II is MSSM-like
- Type I has enhanced (suppressed) couplings to b quarks at small (large) tan β

MATCH TO SMEFT AT DIMENSION-6

- At dimension-6, observables depend on C/Λ^2 (ie you can't determine a scale independently of assumptions about coefficients, C)
- Decoupling limit: (Y₃/Y₂)<<1
- At tree level dimension-6, 2HDM SMEFT matching generates:

$$\frac{v^2 C_H}{\Lambda^2} = \frac{\cos^2(\beta - \alpha)M^2}{v^2} \qquad \qquad \frac{v^2 C_{tH}}{\Lambda^2} = -\frac{\eta_t \sqrt{2}m_t \cos(\beta - \alpha)}{v \tan \beta}$$
$$\frac{v^2 C_{bH}}{\Lambda^2} = -\frac{\eta_b \sqrt{2}m_b \cos(\beta - \alpha)}{v \tan \beta} \qquad \qquad \frac{v^2 C_{\tau H}}{\Lambda^2} = -\frac{\eta_\tau \sqrt{2}m_\tau \cos(\beta - \alpha)}{v \tan \beta}$$

Dimension-6 matching does NOT generate 2HDM VVh₁₂₅ couplings!

$$O_{fH} = (H^{\dagger}H)(\overline{q}_L \tilde{H} f_R) \qquad O_H = (H^{\dagger}H)^3 \qquad \frac{C_H}{\Lambda^2} \sim (...)\delta\lambda_3$$

S. Dawson, BNL

* M is common mass of heavy scalars

2HDM SMEFT AND RGE

- Operators generated from 2HDM matching don't contribute to EWPOs at tree level
- Limits from Higgs data
- Matching done at high scale, then coefficients evolved to M_Z using renormalization group running
- This generates new operators which contribute to di-boson production
- Effect of RGE running small for O_{fH} operators

SMEFT matching to type-II 2HDM

38

MATCH 2HDM TO DIMENSION-8

- Matching generates new operators, some with new kinematic structures
- Dimension-8 coefficients can all be written in terms of parameters of 2HDM
- Also need relations between gauge couplings and input parameters $(G_{\mbox{\tiny F}}\,M_{\mbox{\tiny VV}},\,M_{\mbox{\tiny Z}})$ to dimension-8

$$\begin{split} \tilde{J}_{28} &\sim \frac{1}{\Lambda^4} \left\{ C_{H^8} (H^{\dagger} H)^4 + C_{H^6}^{(1)} (H^{\dagger} H)^2 \left(D_{\mu} H \right)^{\dagger} (D^{\mu} H) + \left\{ C_{quH^5} (H^{\dagger} H)^2 \bar{q}_L u_R \tilde{H} \right. \\ &+ C_{quH^3 D^2}^{(1)} (D_{\mu} H)^{\dagger} (D^{\mu} H) \bar{q}_L u_R \tilde{H} + C_{quH^3 D^2}^{(2)} \left[(D_{\mu} H)^{\dagger} \tau^a (D^{\mu} H) \right] \left[\bar{q}_L u_R \tau^a \tilde{H} \right] \\ &+ C_{quH^3 D^2}^{(5)} \left[(D_{\mu} H)^{\dagger} H \right] \left[\bar{q}_L u_R \widetilde{D^{\mu} H} \right] + C_{qdH^5} (H^{\dagger} H)^2 \bar{q}_L d_R H \\ &+ C_{qdH^3 D^2}^{(1)} (D_{\mu} H)^{\dagger} (D^{\mu} H) \bar{q}_L d_R H + C_{qdH^3 D^2}^{(2)} \left[(D_{\mu} H)^{\dagger} \tau^a (D^{\mu} H) \right] \left[\bar{q}_L d_R \tau^a H \right] \\ &+ C_{qdH^3 D^2}^{(5)} (H^{\dagger} D_{\mu} H) (\bar{q}_L d_R D^{\mu} H) + h.c. \right\} + 4 \; Fermion \end{split}$$

Note: O_{H6}⁽¹⁾ gives VVh₁₂₅ coupling

S. Dawson, BNL

S. Dawson, BNL

SD, D. Fontes, S. Homiller, and M. Sullivan, 2205.01561

SCALE DEPENDENCE FOR C_H

- C_H modifies Higgs tri-linear
- Affects Higgs coupling limits through loop contributions

• C_H scaling different than Yukawa like terms

 $\frac{\frac{v^2 C_{tH}}{M^2}}{\frac{v^2 C_H}{M^2}} \sim \frac{\frac{\cos(\beta - \alpha)\eta_t m_t}{v \tan \beta}}{\frac{\cos^2(\beta - \alpha)M^2}{v^2}}$

Decoupling requires $\cos^2(\beta - \alpha) \ll \frac{v^2}{M^2}$

Degrassi, Giardino, Maltoni, Pagani, 1607.04251

HIGGS TRI-LINEAR AT DIMENSION-8

- C_H fits have dependence on scale Λ
- Fits sensitive to inclusion of $C_{\rm H}$

Dashed: I/Λ^2 Solid: I/Λ^4

BOTTOM LINE ON DIMENSION-8 AND 2HDM

- Dimension-8 terms are important in matching SMEFT to type-I 2H2M
- This is for a well-understood physics reason (VVh₁₂₅ first arises at dimension-8)
- Studies of matching to other models (Gauge triplet, <u>2102.02819</u>, Vector like top quark, <u>2110.06929</u>) show that the importance of dim-8 terms appears to be model dependent

S. Dawson, BNL

FINALLY, WHAT IF IT'S NOT SMEFT?

- What if Higgs is not part of an SU(2) doublet? \rightarrow HEFT (Higgs Effective Field Theory)
- Expansion is different from SMEFT (LO Lagrangian here)

$$\begin{split} L_{HEFT} &\sim \frac{v^2}{4} \bigg[1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} + \dots \bigg] Tr \left\{ D_{\mu} U^{\dagger} D_{\mu} U \right\} + \frac{1}{2} (\partial_{\mu} h)^2 - V(h) \\ V(h) &= \frac{1}{2} m_h^2 h^2 \left(1 + \kappa_3 \frac{h}{v} + \frac{\kappa_4}{4} \frac{h^2}{v^2} + \dots \right) \\ D_{\mu} U &= \partial_{\mu} U + ig W_{\mu}^a \frac{\sigma^a}{2} U - ig' U \frac{\sigma^3}{2} B_{\mu} \end{split}$$
 h is physical Higgs

- Unitary gauge, U \rightarrow I; SM: $a=b=\kappa_3=\kappa_4=1$ SMEFT: $b-a=\frac{3C_{H\Box}v^2}{\Lambda^2}$
- Suggests that hh \rightarrow hh, WW \rightarrow hh can distinguish between SMEFT and HEFT
- (Do same matching to 2HDM as in SMEFT.....)

<u>2204.01763</u>, <u>2307.15693</u>, <u>2305.07689</u>, <u>2311.16897</u>, <u>2312.03877</u>, <u>2211.09605</u>

CONCLUSIONS

- SMEFT offers the promise of probing UV scale physics that is not accessible directly
- There are many effects which can affect predictions...order of the $1/\Lambda^2$ expansion, flavor, higher dimension operators, loop effects....
- Double Higgs production offers the possibility to distinguish SMEFT from HEFT

46

Sill a lot of work to do!