Physics of the Cosmic Microwave Background

Jens Chluba

School on Cosmological Tools IFT, Madrid, Spain, Nov 12th - 15th, 2013

Canadian Institute for Theoretical Astrophysics

.'institut canadien l'astrophysique theorique

Some of the Big Questions of Cosmology

- What is the Universe made of?
- What are the initial conditions?
- Where do all the structures come from?
- Why do things look the way they do?
- Dark energy & dark matter?
- Gravitational Waves?
- Physics beyond the standard model?

Cosmic Microwave Background Anisotropies help us to answer these questions!

Planck all sky map

CMB has a blackbody spectrum in every direction
tiny variations of the CMB temperature Δ*T*/*T* ~ 10⁻⁵

Cosmic Microwave Background Anisotropies help us to answer these questions!

Planck all sky map

CMB has a blackbody spectrum in every direction
tiny variations of the CMB temperature Δ*T*/*T* ~ 10⁻⁵

CMB anisotropies clearly taught us a lot about the Universe we live in!

Precisio	on cosm	Ology Summary of th	TABLE 1 E COSMOLOGICAL PARAMET	Tiny error bars!		
Class Parameter V		$W\!M\!AP$ 7-year $\rm ML^a$	$WMAP+BAO+H_0 ML$	$W\!M\!AP$ 7-year Mean ^b	$WMAP+BAO+H_0$ Mean	
Primary	ry $100\Omega_b h^2$ 2.270		2.246	$2.258^{+0.057}_{-0.056}$	2.260 ± 0.053	
	$\Omega_c h^2$	0.1107	0.1120	0.1109 ± 0.0056	0.1123 ± 0.0035	
	Ω_{Λ}	0.738	0.728	0.734 ± 0.029	$0.728^{+0.015}_{-0.016}$	
	n_s	0.969	0.961	0.963 ± 0.014	0.963 ± 0.012	
	au	0.086	0.087	0.088 ± 0.015	0.087 ± 0.014	
	$\Delta^2_{\mathcal{R}}(k_0)^{\mathrm{c}}$	2.38×10^{-9}	2.45×10^{-9}	$(2.43 \pm 0.11) \times 10^{-9}$	$(2.441^{+0.088}_{-0.092}) \times 10^{-9}$	
Derived	σ_8	0.803	0.807	0.801 ± 0.030	0.809 ± 0.024	
	H_0	71.4 km/s/Mpc	70.2 km/s/Mpc	$71.0 \pm 2.5 \text{ km/s/Mpc}$	$70.4^{+1.3}_{-1.4} \text{ km/s/Mpc}$	
	Ω_b	0.0445	0.0455	0.0449 ± 0.0028	0.0456 ± 0.0016	
	Ω_c	0.217	0.227	0.222 ± 0.026	0.227 ± 0.014	
	$\Omega_m h^2$	0.1334	0.1344	$0.1334^{+0.0056}_{-0.0055}$	0.1349 ± 0.0036	
	$z_{ m reion}{}^{ m d}$	10.3	10.5	10.5 ± 1.2	10.4 ± 1.2	
	$t_0{}^{\mathbf{e}}$	13.71 Gyr	13.78 Gyr	$13.75 \pm 0.13 \; \text{Gyr}$	$13.75 \pm 0.11 \text{ Gyr}$	

^aLarson et al. (2010). "ML" refers to the Maximum Likelihood parameters.

^bLarson et al. (2010). "Mean" refers to the mean of the posterior distribution of each parameter. The quoted errors show the 68% confidence levels (CL).

 $^{c}\Delta_{\mathcal{R}}^{2}(k) = k^{3}P_{\mathcal{R}}(k)/(2\pi^{2})$ and $k_{0} = 0.002 \text{ Mpc}^{-1}$.

^d "Redshift of reionization," if the universe was reionized instantaneously from the neutral state to the fully ionized state at z_{reion} . Note that these values are somewhat different from those in Table 1 of Komatsu et al. (2009b), largely because of the changes in the treatment of reionization history in the Boltzmann code CAMB (Lewis 2008).

^eThe present-day age of the universe.

e.g. Komatsu et al., 2011, ApJ, arXiv:1001.4538 Dunkley et al., 2011, ApJ, arXiv:1009.0866

CMB anisotropies clearly taught us a lot about the Universe we live in!

TABLE I. Standard Λ CDM parameters from the combination of WMAP9, ACT and SPT.

Parameter	WMAP9	WMAP9	WMAP9		
	+ACT	+SPT	+ACT+SPT		
$100\Omega_b h^2$	2.260 ± 0.041	2.231 ± 0.034	2.245 ± 0.032		
$100\Omega_c h^2$	11.46 ± 0.43	11.16 ± 0.36	11.23 ± 0.36		
$100\theta_A$	1.0396 ± 0.0019	1.0422 ± 0.0010	1.0420 ± 0.0010		
au	0.090 ± 0.014	0.082 ± 0.013	0.085 ± 0.013		
n_s	0.973 ± 0.011	0.9650 ± 0.0093	0.9678 ± 0.0088		
$10^9 \Delta_R^2$	2.22 ± 0.10	2.15 ± 0.10	2.17 ± 0.10		
$\Omega_{\Lambda}{}^{a}$	0.716 ± 0.024	0.737 ± 0.019	0.734 ± 0.019		
σ_8	0.830 ± 0.021	0.808 ± 0.018	0.814 ± 0.017		
t_0	13.752 ± 0.096	13.686 ± 0.065	13.682 ± 0.063		
H_0	69.7 ± 2.0	71.5 ± 1.7	71.2 ± 1.6		
$100r_s/D_{V0.57}$	7.50 ± 0.17	7.65 ± 0.14	7.65 ± 0.14		
$100r_s/D_{V0.35}$	11.29 ± 0.31	11.56 ± 0.26	11.55 ± 0.26		
best fit χ^2	7596.0	7617.1	7660.0		

Precision Cosmology with Planck

	Planck+WP		Planck+WP+highL		Planck+lensing+WP+highL		Planck+WP+highL+BAO	
Parameter	Best fit	68% limits	Best fit	68% limits	Best fit	68% limits	Best fit	68% limits
$\Omega_{\rm b}h^2$	0.022032	0.02205 ± 0.00028	0.022069	0.02207 ± 0.00027	0.022199	0.02218 ± 0.00026	0.022161	0.02214 ± 0.00024
$\Omega_c h^2 \dots \dots$	0.12038	0.1199 ± 0.0027	0.12025	0.1198 ± 0.0026	0.11847	0.1186 ± 0.0022	0.11889	0.1187 ± 0.0017
100θ _{MC}	1.04119	1.04131 ± 0.00063	1.04130	1.04132 ± 0.00063	1.04146	1.04144 ± 0.00061	1.04148	1.04147 ± 0.00056
τ	0.0925	$0.089^{+0.012}_{-0.014}$	0.0927	$0.091^{+0.013}_{-0.014}$	0.0943	$0.090^{+0.013}_{-0.014}$	0.0952	0.092 ± 0.013
<i>n</i> _s	0.9619	0.9603 ± 0.0073	0.9582	0.9585 ± 0.0070	0.9624	0.9614 ± 0.0063	0.9611	0.9608 ± 0.0054
$\ln(10^{10}A_s)$	3.0980	$3.089^{+0.024}_{-0.027}$	3.0959	3.090 ± 0.025	3.0947	3.087 ± 0.024	3.0973	3.091 ± 0.025
$A_{100}^{\rm PS}$	152	171 ± 60	209	212 ± 50	204	213 ± 50	204	212 ± 50
A_{143}^{PS}	63.3	54 ± 10	72.6	73 ± 8	72.2	72 ± 8	71.8	72.4 ± 8.0
$A_{217}^{\rm PS}$	117.0	107^{+20}_{-10}	59.5	59 ± 10	60.2	58 ± 10	59.4	59 ± 10
A ^{CIB} ₁₄₃	0.0	< 10.7	3.57	3.24 ± 0.83	3.25	3.24 ± 0.83	3.30	3.25 ± 0.83
A ^{CIB} ₂₁₇	27.2	29 ₋₉ ⁺⁶	53.9	49.6 ± 5.0	52.3	50.0 ± 4.9	53.0	49.7 ± 5.0
A ^{tSZ} ₁₄₃	6.80		5.17	$2.54^{+1.1}_{-1.9}$	4.64	$2.51^{+1.2}_{-1.8}$	4.86	$2.54^{+1.2}_{-1.8}$
$r_{143\times217}^{\rm PS}$	0.916	> 0.850	0.825	$0.823^{+0.069}_{-0.077}$	0.814	0.825 ± 0.071	0.824	0.823 ± 0.070
r ^{CIB} _{143×217}	0.406	0.42 ± 0.22	1.0000	> 0.930	1.0000	> 0.928	1.0000	> 0.930
γ^{CIB}	0.601	$0.53^{+0.13}_{-0.12}$	0.674	0.638 ± 0.081	0.656	0.643 ± 0.080	0.667	0.639 ± 0.081
$\xi^{tSZ \times CIB}$	0.03		0.000	< 0.409	0.000	< 0.389	0.000	< 0.410
A^{kSZ}	0.9		0.89	5.34+2.8	1.14	$4.74^{+2.6}_{-2.1}$	1.58	$5.34^{+2.8}_{-2.0}$
Ω_{Λ}	0.6817	$0.685^{+0.018}_{-0.016}$	0.6830	0.685+0.017	0.6939	0.693 ± 0.013	0.6914	0.692 ± 0.010
<i>σ</i> ₈	0.8347	0.829 ± 0.012	0.8322	0.828 ± 0.012	0.8271	0.8233 ± 0.0097	0.8288	0.826 ± 0.012
Z _{re}	11.37	11.1 ± 1.1	11.38	11.1 ± 1.1	11.42	11.1 ± 1.1	11.52	11.3 ± 1.1
H_0	67.04	67.3 ± 1.2	67.15	67.3 ± 1.2	67.94	67.9 ± 1.0	67.77	67.80 ± 0.77
Age/Gyr	13.8242	13.817 ± 0.048	13.8170	13.813 ± 0.047	13.7914	13.794 ± 0.044	13.7965	13.798 ± 0.037
100 <i>0</i> ,	1.04136	1.04147 ± 0.00062	1.04146	1.04148 ± 0.00062	1.04161	1.04159 ± 0.00060	1.04163	1.04162 ± 0.00056
<i>r</i> _{drag}	147.36	147.49 ± 0.59	147.35	147.47 ± 0.59	147.68	147.67 ± 0.50	147.611	147.68 ± 0.45

- Massive amount of information! (close to 30 Planck papers in March 2013)
- Impressive consistency between different experiments!
- Amazing confirmation of ACDM

Planck Satellite

WMAP CMB Sky

Other cosmological Dataset:

BAO, Lyman- α forest, lensing, ...

CAMB/CMBfast

h, τ, *n*_s,...

Other cosmological Dataset:

References for the Theory of CMB anisotropies

- Early works
 - Sachs & Wolfe, 1967, ApJ, 147, 73
 - Silk, 1968, ApJ, 151, 459
 - Peebles & Yu, 1970, Ap&SS, 4, 301
 - Sunyaev & Zeldovich, 1970, Ap&SS, 7, 3

Yakov Zeldovich

Rashid Sunyaev

Rainer Sachs

Arthur Wolfe

Jim Peebles

References for the Theory of CMB anisotropies

- Early works
 - Sachs & Wolfe, 1967, ApJ, 147, 73
 - Silk, 1968, ApJ, 151, 459
 - Peebles & Yu, 1970, Ap&SS, 4, 301
 - Sunyaev & Zeldovich, 1970, Ap&SS, 7, 3
- Nice Lectures and Reviews
 - Hu & White, 1996, ApJ, 471, 30
 - Hu & Dodelson, 2002, ARAA, 40, 171
 - Hu, 2008, arXiv:0802.3688
 - Challinor & Peiris, 2009, AIP Conf. Proc., 1132, 86

References for the Theory of CMB anisotropies

- Early works
 - Sachs & Wolfe, 1967, ApJ, 147, 73
 - Silk, 1968, ApJ, 151, 459
 - Peebles & Yu, 1970, Ap&SS, 4, 301
 - Sunyaev & Zeldovich, 1970, Ap&SS, 7, 3
- Nice Lectures and Reviews
 - Hu & White, 1996, ApJ, 471, 30
 - Hu & Dodelson, 2002, ARAA, 40, 171
 - Hu, 2008, arXiv:0802.3688
 - Challinor & Peiris, 2009, AIP Conf. Proc., 1132, 86
- Many great animations and illustrations for this lecture from Wayne Hu (<u>http://background.uchicago.edu/~whu/</u>)

Physics behind the CMB anisotropies

Early CMB History & Physics

- Natural consequence of a Big-Bang Model (hence it is often referred to as one of the *pillars* of the Big-Bang Model)
- Discussed and invoked by Gamov, Alpher & Herman in 1946/1948 to understand the production of light elements in the early Universe
- Alpher & Herman 1948 (at JHU at that time!) the first to give an pretty good estimate of the CMB temperature T~5K (later revised it to T~28K)

- Experimentally *discovered* in 1964/65 by Penzias & Wilson (Nobel Prize 1978)
- Interpretation as CMB by Dicke, Peebles, Roll & Wilkinson 1965

From Dicke, Peebles, Roll & Wilkinson, 1965

CMB dipole

 Lowest order v/c effect caused by observers motion (simple Lorentz-trafo of average CMB blackbody into observer frame)

$$T' = \frac{T_0}{\gamma(1 - \beta\mu)} \approx T_0 [1 + \beta\mu + \mathcal{O}(\beta^2)]$$

direction cosine $\mu = \hat{\gamma} \cdot \hat{\beta}$

- Probably understood by contemporary folks but dipole was *first explicitly mentioned* by *Peebles & Wilkinson*, 1968 and *Bracewell & Conklin*, 1968
- possibility to measure our velocity with respect to the CMB rest frame
- earliest mentioning by Condon & Harwit, 1967 (but they got the transformation law wrong...)
- much larger than expected primordial dipole for standard cosmology (today)
- second order in β ⇒ motion-induced monopole & quadrupole and ydistortion monopole & quadrupole (e.g., JC & Sunyaev, 2004)

Measurements of CMB dipole

Measurement	$\begin{array}{cc} \text{Frequency} & \delta T \\ \text{GHz} & \text{mK} \end{array}$		lpha hours	$\delta \ { m degrees}$	
Wilson & Penzias (1967)	4	<100	any juns	which meys	
Partridge & Wilkinson (1967)	9	3 ± 6	celled by the	entirely can	
Conklin (1969)	8	2.3 ± 0.7	10.3	wavelongth	
Henry (1971)	10	3.2 ± 0.8	10.5 ± 4	-30 ± 25	
Boughn et al. (1971)	35	7.5 ± 11.6		sumpt min	
Davis (1971)	5	2.5 ± 1.5	10 ± 2	at Punceto	
Conklin (1972)	8	2.3 ± 0.9	11	meastremen	
Corey & Wilkinson (1976)	19	2.5 ± 0.6	13 ± 2	-25 ± 20	
Muehlner (1977)	60-300	~ 2.0	$\simeq 18$	~ 0	
Smoot <i>et al.</i> (1977)	33	3.5 ± 0.6	11.0 ± 0.6	6 ± 10	
Smoot & Lubin (1979)	33	3.1 ± 0.4	11.4 ± 0.4	9.6 ± 6	
Cheng <i>et al.</i> (1979)	19-31	2.99 ± 0.34	12.3 ± 0.4	-1 ± 6	
COBE/DMR	30-90	3.353 ± 0.024	11.20 ± 0.02	-7.06 ± 0.13	
WMAP	22-90	3.358 ± 0.017	11.19 ± 0.003	-6.9 ± 0.1	

From Book of Peebles, Page & Partridge, "Finding the Big Bang"

- First marginal detection of CMB dipole amplitude: Conklin 1969
- ~6σ measurement Smoot et al. 1977
- dipole today still used for calibration purposes!

COBE / FIRAS (Far InfraRed Absolute Spectrophotometer)

$T_0 = 2.725 \pm 0.001 \,\mathrm{K}$ $|y| \le 1.5 \times 10^{-5}$ $|\mu| \le 9 \times 10^{-5}$

Mather et al., 1994, ApJ, 420, 439 Fixsen et al., 1996, ApJ, 473, 576 Fixsen et al., 2003, ApJ, 594, 67

Only very small distortions of CMB spectrum are still allowed!

Physical mechanisms that lead to spectral distortions

•	Cooling by adiabatically expanding ordinary matter: $T_{\gamma} \sim (1+z) \leftrightarrow T_{\gamma}$ (JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)	+ <i>Z</i>) ²		
	 continuous <i>cooling</i> of photons until redshift <i>z</i> ~ 150 via Compton scattering due to huge heat capacity of photon field distortion very small (Δρ/ρ ~ 10⁻¹⁰-10⁻⁹) 	S Oi	tandard s f distortio	sources ns
•	Heating by decaying or annihilating relic particles			
	 How is energy transferred to the medium? lifetimes, decay channels, neutrino fraction, (at low redshifts: environments), 			epoch
•	Evaporation of primordial black holes & superconducting strings (Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012) • rather fast, quasi-instantaneous but also extended energy release			bination (
•	Dissipation of primordial acoustic modes & magnetic fields (Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; Jedamzik et al. 2000)			9-recon
•	Cosmological recombination	"high"	redshifts	bre
•	Signatures due to first supernovae and their remnants (Oh, Cooray & Kamionkowski, 2003)	"low"	redshifts	ation
	Shock waves arising due to large-scale structure formation (Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)		Ň	sombine
	SZ-effect from clusters; effects of reionization (Heating of medium by X-Rays, Cost	mic Rays	, etc)	post-red

Discovery of CMB anisotropies by COBE/DMR

- first measurement of large scale two-point correlation function
- consistent with scale invariant power spectrum (Harrison-Zeldovich power spectrum)
- observed perturbation amplitude pretty low
 dark matter needed to explain structures
- fluctuations on superhorizon scales at z_{rec}
 ⇒ determined by *initial conditions* and *gravity* (Sachs-Wolfe effect & ISW)
- hot spot ⇐⇒ under density!

Dramatic improvements in angular resolution and sensitivity over the past decades!

Cosmic Microwave Background Anisotropies with ACT

ACT - collaboration, 148 GHz Map, Hajian et al. 2010

~ 0.02 degree beam!

Interpretation of power spectrum in a nutshell

- Fourier-transform of the two-point correlation function
- power spectrum describes the two-point statistics of a map
- Characterizes the *full statistics* (all *n*-point function) of a map for a Gaussian random field (odd *n*-point functions vanish)

Power spectrum is a really convenient way to talk about CMB maps and compress all its information!

Cosmic Variance

$$\frac{\Delta T}{T} = \sum_{lm} a_{lm} Y_{lm}(\theta, \phi)$$

Spherical harmonic expansion

- power spectrum describes intrinsic properties of the CMB for an ensemble of Universes (many realizations of the same field)
- determines variance of the harmonic coefficients
- We measure the CMB for one specific realization
- Our measurement of one realization does not directly reflect the ensemble average / expectation value \implies cosmic variance $\Delta C_l / C_l = \sqrt{\frac{2}{2l+1}}$
- Unavoidable noise/uncertainty!
- depends on the number of modes that are available

 $\langle a_{lm} \rangle = 0$ $\langle a_{lm} a_{l'm'}^* \rangle = \delta_{ll'} \delta_{mm'} C_l$

Primordial CMB anisotropies

Early Predictions of CMB anisotropies

- Medium with photon & baryon (dark matter not part of standard model back in the days!)
- Some process (like inflation) set up small initial perturbations in the medium (Harrison-Zeldovich power spectrum)
- initial perturbations adiabatic (isentropic)

 $\frac{\delta\rho_{\rm m}}{\rho_{\rm m}} \approx \frac{3}{4} \, \frac{\delta\rho_{\gamma}}{\rho_{\gamma}}$

- pressure + gravity determine evolution
 ⇒ gravitational collapse / growth for masses larger than Jeans mass
- Key features:
 - growth logarithmic early on (super-horizon)
 - acoustic oscillations before recombination
 - modes in different phases at decoupling
 - Acoustic peaks and sound waves!

no CDM \implies expected perturbations large: $\Delta T/T \sim 10^{-3} - 10^{-2}$

Acoustic oscillations until recombination

Sound horizon $r_{\rm s} = \int \frac{c_{\rm s} \,\mathrm{d}t}{a}$ **Baryon loading**

- position of first peak related to scale of sound horizon at recombination
- other peaks are higher harmonics of sound horizon scale

Hu & White, 2004
Cosmological Time in Years

Cosmological Time in Years

Thomson scattering and Silk damping

Thomson scattering cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{3\sigma_{\mathrm{T}}}{16\pi} \left[1 + \left(\hat{\gamma} \cdot \hat{\gamma}'\right)^2 \right]$$

- couples to monopole & quadrupole
- helps to *isotropize* the radiation field
- erases anisotropies below the diffusion damping scale, k_D

 $\frac{1}{k_{\rm D}^2} \simeq \frac{8}{45} \int \frac{{\rm d}\eta}{a\sigma_{\rm T}N_{\rm e}} \quad \mbox{(radiation-domination)}$

 $k_{\rm D} \simeq 4 \times 10^{-6} (1+z)^{3/2} {\rm Mpc}^{-1}$

mixing of blackbodies
 CMB spectral distortions

Effect of Baryon loading on local monopole

- shifts the zero point of oscillation (need dark matter!)
- compression peaks have larger amplitude

Figure from Hu & White, 1996

Sachs-Wolfe Effect

 related to difference in the gravitational potential between us and recombination

- gravitational redshifting
- important at large scales (super-horizon)
- hot spots \leftarrow under dense regions

Figure from Sachs & Wolfe, 1967

$$\frac{\Delta T}{T}\Big|_{\rm obs} \simeq \frac{\Delta T}{T}\Big|_{\rm prim} + \Phi_{\rm rec} - \Phi_{\rm obs} \approx -\frac{\Phi}{3}$$

Integrated Sachs-Wolfe Effect (ISW)

- evolution (decay) of potential
- gravitational blue and redshifting do not cancel (photon hotter)
- only when Universe is not matter dominated
 - → dark energy era (*now*)
 - early ISW around matter radiation equality but also during recombination
- ISW is both primordial and secondary source of anisotropies

Movie from Neyrinck & Szapudi

$$\left. \frac{\Delta T}{T} \right|_{\text{ISW}} \simeq \int (\dot{\Phi} + \dot{\Psi}) \, \mathrm{d}\eta$$

Integrated Sachs-Wolfe Effect (ISW)

- evolution (decay) of potential
- gravitational blue and redshifting do not cancel (photon hotter)
- only when Universe is not matter dominated
 - ➡ dark energy era (now)
 - early ISW around matter radiation equality but also during recombination
- ISW is both primordial and secondary source of anisotropies

Movie from Neyrinck & Szapudi

$$\left. \frac{\Delta T}{T} \right|_{\text{ISW}} \simeq \int (\dot{\Phi} + \dot{\Psi}) \, \mathrm{d}\eta$$

Doppler effect

- gas volumes in motion at recombination
- in tight-coupling regime (before recombination)

 \implies photon monopole & dipole $\pi/2$ shifted

 \implies coherent addition == 0

 projection effects and R>0 render Doppler terms weaker so that acoustic peaks remain intact

Doppler effect

- gas volumes in motion at recombination
- in tight-coupling regime (before recombination)
 - \implies photon monopole & dipole $\pi/2$ shifted
 - \implies coherent addition == 0
- projection effects and R>0 render Doppler terms weaker so that acoustic peaks remain intact

Sum of Effects

- acoustic peaks + SW dominant
- Iate ISW at large scales
- early ISW around first peak
- Doppler terms out of phase with acoustic peaks

Main Dependencies on Parameters

CMB is sensitive to curvature of the Universe

acoustic peaks define standard ruler at last scattering

 $\Omega_{\rm k} = 1 - \Omega_0$

matter, dark energy, radiation, neutrinos, etc

- the corresponding observed angular scale is directly related to the sound horizon scale by the angular diameter distance
- positions of acoustic peaks probe total curvature of the Universe
- Geometric degeneracy (has very similar effect dark energy)

Effect of Baryon density

- Increasing $\Omega_{\rm b} h^2$
 - decreases sound speed
 - decreases sound horizon
 - peak positions shift to smaller scales

Effect of Baryon density

- Increasing $\Omega_{
 m b}h^2$
 - decreases sound speed
 - decreases sound horizon
 - peak positions shift to smaller scales
- Increasing $\Omega_{
 m b}h^2$
 - increases scattering rate
 - decreases damping scale
 - more small scale power

Effect of Baryon density

- Increasing $\Omega_{
 m b}h^2$
 - decreases sound speed
 - decreases sound horizon
 - peak positions shift to smaller scales
- Increasing $\Omega_{
 m b}h^2$
 - increases scattering rate
 - decreases damping scale
 - more small scale power
- Increasing $\Omega_{
 m b}h^2$
 - shift zero point of oscillations
 - odd (compressional) peaks higher (assuming dark matter is present)

Dependence on power spectrum parameters

Standard parametrization of curvature power spectrum

$$P_{\zeta} = 2\pi^2 A_{\zeta} k^{-3} (k/k_0)^{n_{\rm S} - 1 + \frac{1}{2}n_{\rm run} \ln(k/k_0)}$$

 Dependence on overall power spectrum amplitude trivial

- large scale part cosmic variance
- degeneracy with ISW
- Spectral index determines overall tilt
 - pivot scale usually chosen to de-correlate parameter from amplitude (depends on exp.)
- running determines overall curvature of power spectrum
 - small in single field inflation

 $n_{\rm run} \simeq (n_{\rm S} - 1)^2$

overall amplitude

spectral index

Effect of Dark Matter

- Increasing $\Omega_{
 m cdm} h^2$
 - matter-domination earlier
 - gravitational driving effect important for smaller scales
 - baryon loading becomes larger
 - age of Universe increases (distance sound can travel increases)
 - peaks move to larger scales

Isocurvature modes

Figure from Hu & White, 1996

- initial perturbations in the entropy/ composition of the medium
- different types (baryon/CDM/neutrino/ compensated) of modes depending on what component is perturbed
- photon perturbations vanish at super-horizon scales
- peak positions shifted
- from observations we know that the contribution is small at CMB scales
- significant contribution at smaller scales not ruled out!
 - \implies CMB spectral distortions

CMB polarization and Secondary Anisotropies

Polarization from Thomson scattering

- Thomson scattering of anisotropic radiation (quadrupole part) creates linear polarization signal
- signal is small, since quadrupole part of the radiation field is scattering with 1/10 probability of the monopole
- Thomson scattering only creates
 E-mode polarization at lowest
 order in perturbation theory
- generation of polarization at recombination & reionization

WMAP Polarization Measurements

- From TE and EE power spectra constraint on Thomson optical depth τ~0.1 to reionization
- upper limit on B-mode polarization
 - \implies limits tensor to scalar ratio
 - \implies energy-scale of inflation
 - \implies gravity waves
- Lots of experiments are trying to go for this: PLANCK, LITEBIRD, SPIDER, PIXIE, PRISM, Stage IV-CMB

WMAP 3yr, Page et al., 2007

CMB lensing

Structure in the Universe will lead to small deflections of photon from their original path

CMB lensing

- conversion of E-modes to B-modes
- lensing also introduces small smearing of temperature power spectrum
- effect can be used to reconstruct the lensing potential of the intervening matter
- higher order statistics
- real effect much more subtile ...

First detection of lensed B-modes by SPT

- effect really small....
- 7.7σ detection of the E-B conversion effect using cross correlation and Herschel data to estimate the lensing potential

Hanson et al., 2013

thermal SZ \iff Up-scattering of CMB photon by hot electrons in galaxy cluster

Sunyaev& Zeldovich, 1980, ARAA, 18, 537

thermal SZ \iff Up-scattering of CMB photon by hot electrons in galaxy cluster

thermal SZ \iff Up-scattering of CMB photon by hot electrons in galaxy cluster kinetic SZ \iff Doppler shift caused by bulk motion of the cluster

thermal SZ \iff Up-scattering of CMB photon by hot electrons in galaxy cluster kinetic SZ \iff Doppler shift caused by bulk motion of the cluster

- Allows probing growth of structures and 'gastrophysics' of clusters
- depends on large-scale flows

Relativistic corrections to the SZ effect with SZpack

JC, Nagai, Sazonov & Nelson, 2012 JC, Switzer, Nagai, Nelson, 2012 SZpack available at: www.Chluba.de/SZpack

- quasi-exact computation of the SZ signal
- computation very fast (<~0.01 sec)
- allows including *line-of-sight variations* of the electron temperature
- *multiple scattering* contribution included
- will be useful for the analysis of *future highresolution/high-sensitivity* SZ measurements (CCAT, CARMA, etc)
- stacking analysis with cluster samples!

Secondary CMB signals for temperature

Gravitational effects

Scattering effects

Secondary CMB signals for temperature

Gravitational effects

Scattering effects

- smearing by lensing important at small scales
- Rees-Sciama effect from non-linear growth of structures

Secondary CMB signals for temperature

Gravitational effects

Scattering effects

- smearing by lensing important at small scales
- Rees-Sciama effect from non-linear growth of structures
- thSZ dominant at small scales
- several effects from velocity and density fluctuations during reionization (*line of sight cancelations!*)

Some words about damping tail physics

CMB constraints on N_{eff} and Y_p

Planck Collaboration, 2013, paper XV

- Helium determination from CMB consistent with SBNN prediction
- CMB constraint on N_{eff} competitive
- Partial degeneracy with Y_p and running
- Some tension between different data sets

CMB constraints on N_{eff} and Y_p

Consistent with SBBN and standard value for N_{eff}

• Future CMB constraints (SPTPol & ACTPol) on Yp will reach 1% level

Interplay of N_{eff} and Y_p and other parameters

Hinshaw et al, 2012 (WMAP-9yr)

Bottom line: changes in the damping tail can be mimicked by combinations of many parameters

CMB anisotropies directly probe early-universe physics / inflation

Another way to plot small-scale power spectrum

- 6σ deviation from scale-invariance (previously ~ 3σ)
- single-field inflation predicts departure from scale-invariance (e.g., Mukhanov 2007)
- Degeneracies with, e.g., effective number of relativistic degrees of freedom, N_{eff}, Helium abundance, Y_p, and recombination physics!
- The power spectrum at small scales thus directly links early-Universe, particle and recombination physics!

Planck Collaboration, 2013, paper XV
All kind of fun science with the CMB (no time for this though)

Planck Collaboration, 2013, paper XVII

CMB aberration

lots of SZ clusters to play with!

Planck Collaboration, 2013, paper XXIV

Planck Collaboration, 2013, paper XXVII

- *Non-Gaussianity* (test of inflation models)
- Topology
- CMB anomalies (power-asymmetry, low-I correlations, etc.)
- CIB and Galactic science

Conclusions

- CMB physics is very rich but also very clean!
- CMB anisotropies so far provide an outstanding confirmation of ACDM cosmology
- The data has become so precise that one can start testing non-standard extensions of ΛCDM
- The future of CMB is bright: lots of new data from the ground and space

 New avenues (polarization, spectral distortions, higher order statistics, cross-correlation with other data sets) will open up!

Lots of interesting work ahead of you guys!