Chiral Fermion Transport and THz Spectroscopy in Dirac/Weyl Semimetals

Qiang Li

Condensed Matter Physics & Materials Science Division Brookhaven National Laboratory

a passion for discovery

Office of

Weyl Metal Workshop, IFT-Madrid, Feb. 24, 2019

Outline:

- $\,\circ\,\,$ 3D chiral fermions in condensed matters
- Chiral fermion transport in 3D Dirac/Weyl semimetals
 Chiral magnetic effect
 Anomalous Hall effect and Nernst effect
- Light and chiral fermion interaction
 - Chiral qubit
 - **Coherent THz emission**
 - Dark matter detection

Topological photonics – review on Nat. Photon. (2014); Chiral phonons - Science (2018)

Superconductivity

Seven Nobel Prizes

Applications of high temperature superconductor in electricity generation, transmission, and storage

Li, Rep. Prog. Phys. 74 124510 (2011)

The BCS Theory (1957)

Bardeen, Cooper, Schrieffer, Phys. Rev. **106**, 162; **108**, 1175 (1957). Brookhaven Science Associates

- Paired electrons
- Medium to provide the "glue" for the Cooper pairs
- Condensates in the ground state

Superconductors

Other way to transfer charge without dissipation?

(single) fermion? at higher (or room) temperature?

Other way to build a more robust qubit?

Higher gate/coherence ratio? at higher (or room) temperature?

- Edge states in topological insulators
- Chiral magnetic effect* (3D)
 The generation of electric current by the chirality imbalance between left- and right-handed fermions in a magnetic field.

$$\vec{J} = \sigma_{\rm CME} \ \vec{B}$$

Brookhaven Science Associates

*In the case of conserved chirality, or below the chiral flipping time

• Edge states in TI (0D*, 1D, 2D) and Chiral SC

Full pairing gap in the bulk, gapless Majorana edge and surface states

Chiral fermions in TI

(Qi, Hughes, Raghu and Zhang, PRL, 2009)

• Chiral magnetic effect (3D)

The generation of electric current by the chirality imbalance between left- and right-handed fermions in a magnetic field.

Massless Fermions – Parity odd system (P, CP)

Chirality: (electrons, quarks, and neutrinos)

Right-handed

Left-handed

Chiral charge conservation

Brookhaven Science Associates

Quark-gluon plasma in heavy-ion collisions (RHIC and LHC)

- Extreme relativistic u and d quarks
 (~ massless fermions)
- Chirality imbalance due to rapid topological transitions mediated by QCD sphalerons (the axial anomaly)
- Huge magnetic field (> 10¹² Tesla) due to noncentral collisions
- The induced electric current in the quark-gluon plasma is proportional to the chiral chemical potential µ₅ which controls imbalance between left-handed and right-handed quarks.

Quark-gluon plasma in heavy-ion collisions

Chiral particles: (ultra-relativistic electrons, quarks, and neutrinos)

Quark-gluon plasma in heavy-ion collisions

Chiral quasiparticles in condensed matters

3D semimetals with quasi-particles that have a linear dispersion relation have opened a fascinating possibility to study the quantum dynamics of relativistic field theory in condensed matter experiments.

Graphene and 2D Dirac Fermions

-a single atomic plane of graphite*

Novoselov, et al. Science 306, 666-669 (2004).

Geim and Novoselov The Nobel Prize in Physics 2010

Wikipedia.org

- zero effective mass,
- High mobility quantum effects robust and survive even at room temperature
- High electrical current, thermal conductivity and stiffness
- Impermeable to gases

Castro Neto, et al Rev. Mod. Phys. 81, 109 (2009)

3D Dirac Semimetals: ZrTe₅

- Crystal structure

Weng, Dai, Fang Phys. Rev. X 4, 011002 (2014)

Brookhaven Science Associates

3D Dirac Semimetals: ZrTe₅

- Electronic structure by ARPES

- The states forming the small, hole-like Fermi surface (FS) disperse linearly over a large energy range, indicating a Dirac-like dynamics of carriers
- The velocity, or the slope of dispersion, is very large, $v_a \sim 6.4 \text{ eV} \text{Å}(\sim c/300)$, $v_c \sim 4.5 \text{ eV} \text{Å}$

rookhaven Science Associates al arXiv:1412.6543, Nature Physics (2016) doi:10.1038/nphys3648

Temperature-induced Lifshitz transition in ZrTe₅*

3D semimetals with linear dispersion

Weyl semimetal (non-degenerated bands)

Dirac semimetal (doubly degenerated bands)

ĥC

ZrTe₅

Na₃Bi,

 Cd_3As_2

• The Dirac point can split into two Weyl points either by breaking the crystal inversion symmetry or time-reversal symmetry.

 Each Weyl point acts like a singularity of the Berry curvature in the Brillion Zone – magnetic monopole in *k*-space

Chiral anomaly (Adler-Bell-Jackiw anomaly)

Rapid decay of π^{o} into two photons γ

Adler, Phys. Rev. 177, 2426 (1969) Bell & Jackiw, Nuov Cim 60, 47–61 (1969)

Nielsen and Ninomiya (1983)

- Physics Letters B130, 389 (1983)

"The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal"

Son and Spivak (2013)

- Phys. Rev. B, 88, 104412 (2013).

"Chiral anomaly and classical negative magnetoresistance of Weyl metals."

Burkov (2014)

-Phys. Rev. Lett., 113, 247203 (2014).

"Chiral anomaly and diffusive magneto-transport in Weyl metals".

Observable: a large, negative longitudinal magnetoresistance $(\vec{B}/|\vec{E})$ in Dirac/Weyl semimetals

Chiral magnetic effect, "Weyl orbits", charge pumping

Brookhaven Science Associates

Chiral charges in Dirac semimetals

1

Chiral chemical potential:

 $\mu_5 \equiv \mu_L - \mu_R$

Density of chiral charge:

$$o_5 = \frac{\mu_5^3}{3\pi^2 v^3} + \frac{\mu_5}{3v^3} \left(T^2 + \frac{\mu^2}{\pi^2} \right)$$

Rate of chiral charge generaton:

K. Fukushima, D. Kharzeev, and H. Warringa. Phys. Rev. D, 78, 074033 (2008).

D. E. Kharzeev. "The chiral magnetic effect and anomaly-induced transport". Progress in Particle and Nuclear Physics **75**, 133 (2014).

Brookhaven Science Associates

For

Chiral Magnetic Effect in Condensed Matter

$$\mu_{5} = \frac{3}{4} \frac{v^{3}}{\pi^{2}} \frac{e^{2}}{\hbar^{2}c} \frac{\vec{E} \cdot \vec{B}}{T^{2} + \frac{\mu^{2}}{\pi^{2}}} \tau_{v}$$

Chiral magnetic current:

Brookhaven Science Associates

$$\vec{J}_{CME} = \frac{e^2}{2\pi^2} \mu_5 \vec{B} \qquad J^i_{CME} = \frac{e^2}{\pi\hbar} \frac{3}{8} \frac{e^2}{\hbar c} \frac{v^3}{\pi^3} \frac{\tau_v}{T^2 + \frac{\mu^2}{\pi^2}} B^i B^k E^k = \sigma^{ik}_{CME} E^k$$

CME conductivity
for **B**//**E**:
$$\sigma_{CME}^{zz} = \frac{e^2}{\pi\hbar} \frac{3}{8} \frac{e^2}{\hbar c} \frac{v^3}{\pi^3} \frac{\tau_v}{T^2 + \frac{\mu^2}{\pi^2}} B^2 = \alpha(T) \cdot B^2$$

$$J = J_{\text{Ohm}} + J_{\text{CME}} = (\sigma_{\text{Ohm}} + \sigma_{\text{CME}})E$$

K. Fukushima, D. Kharzeev, and H. Warringa. Phys. Rev. D, 78, 074033 (2008).D. E. Kharzeev, Progress in Particle and Nuclear Physics **75**, 133 (2014).

Magneto-transport properties of ZrTe₅

- Huge positive magnetoresistance when magnetic field is perpendicular to the current ($\phi = 0$)
- Large negative magnetoresistance when magnetic field is parallel with the current ($\phi = 90^{\circ}$)

arXiv:1412.6543

Observation of the chiral magnetic effect in ZrTe₅

Qiang Li,¹ Dmitri E. Kharzeev,^{2,3} Cheng Zhang,¹ Yuan Huang,⁴ I. Pletikosić,^{1,5} A. V. Fedorov,⁶ R. D. Zhong,¹ J. A. Schneeloch,¹ G. D. Gu,¹ and T. Valla¹

Magneto-transport properties at H//I

Brookhaven Science Associates

<section-header><text><text><text><text><text>

DIRAC SEMIMETALS Chiral magnetic effect observed Li, et al arXiv:1412.6543,

doi:10.1038/nphys3648

Chiral magnetic effect in Dirac/Weyl semimetals

- ZrTe₅ Q. Li, et al (BNL and Stony Brook Univ.) arXiv:1412.6543; Nat. Phys., doi:10.1038/NPHYS3648
 G. Zheng, M. Tian et al (CHMFL, USTC et al) arXiv:1603.05351; Phys. Rev. B
- Na₃Bi J. Xiong, N. P. Ong et al (Princeton Univ.) arxiv:1503.08179; Science
- Cd₃As₂- C. Li et al (Peking Univ. China) arxiv:**1504.07398**; Nat. Commun

Weyl semimetals TaAs

- TaAs X. Huang et al (IOP, China) arxiv:1503.01304; Phys. Rev. X
- NbP Z. Wang et al (Zhejiang Univ. China) arxiv:1506.00924, Phys. Rev. B
- TaP Shekhar, C. Felser, B. Yang et al (MPI-Dresden) arxiv:1506.06577, Nat. Commun.

 $Bi_{1-x}Sb_x$ at $x \approx 0.03$ - Kim, et al. "Dirac versus Weyl Fermions in Topological Insulators: Adler-Bell-Jackiw Anomaly in Transport Phenomena" Phys. Rev. Lett., 111, 246603 (2013).

Topological phase transition

TCI : Topological Crystalline Insulator (SnTe and SnSe)

>PbTe

-- one of the first materials studied by loffe and colleagues in 1950s

A. F. loffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, London, 1957)

PbTe_xSe_{1-x} (p-type) Pb_{1-x}Sn_xTe (n-type)

-- suggested by S. V. Airapetyants et al - Zh. Tekh. Fiz. 27 2167 (1957)

>Pb_{1-x}Sn_xTe

-- can be both n- and p-type - D. A. Wright, Metall. Rev. 15 147 (1970) Energy gap goes to zero at x = 0.4

>Pb_{0.75}Sn_{0.25}Te (x=0.25)

- -- recommended by Rosi et al
 - F.D. Rosi, E. F. Hocking, N. E. Lindernbald: RCA Rev. 22, 82 (1961)

Energy Bands in PbTe*

J. B. CONKLIN, JR., † L. E. JOHNSON, AND G. W. PRATT, JR. Materials Theory Group, Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

VOLUME 16, NUMBER 26

PHYSICAL REVIEW LETTERS

27 JUNE 1966

BAND STRUCTURE AND LASER ACTION IN Pb_xSn_{1-x}Te

J. O. Dimmock, I. Melngailis, and A. J. Strauss

Lincoln Laboratory,* Massachusetts Institute of Technology, Lexington, Massachusetts (Received 27 May 1966)

Pb_{1-x}Sn_xTe

The field-induced band crossing in GdBiPt and CME

- $\circ~$ Half-Heusler GdPtBi is a semimetal with quadratic bands.
- $\circ~$ In a magnetic field, the Zeeman energy leads to Weyl nodes

Hirschberger, et al, Nature Materials (2016) doi:10.1038/nmat4684

Room-temperature chiral charge pumping

Zheng et al, Nature Communications 8, 13741 (2017)

Robustness of chiral fermion transport

Known:

 Chiral flipping is a rare event that involves large quasi-momentum transfer in Weyl semimetals or scattering between different point-group

 $au_{
u}\,$ – chirality-change scattering relaxation time

- Long chiral charge scattering length $L_{v}(=v_{F}\cdot\tau_{v})$
- CME exists at room temperature in Dirac semimetals, even with small band gap, band non-linearity, and crystal deformation

Unknown:

- \circ What determines τ_{v} ? chiral fermion-phonon interaction, defects, etc
- Chiral flipping mechanism

Mixed Axial–Gravitational Anomaly – Thermopower of NbP in a magnetic field

Gooth et al Nature 547 324 (2017)

Theoretical References:

Landsteiner et al "Gravitational Anomaly and Transport Phenomena" Phys. Rev. Lett. **107**, 021601 (2011) Lucas et al "Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals." Proc. Natl Acad. Sci. USA **113**, 9463 (2016).

- Mixed axial–gravitational anomaly: Curved space-time provides a distinct contribution to a chiral imbalance,
- A mixed axial–gravitational anomaly in flat space-time leads to a positive magneto-thermoelectric conductance for Weyl fermions

Low field limit:
$$G = \frac{J}{E} = G_x + c_1 a_c^2 B_{\parallel}^2$$

 $G_T = \frac{J}{|\nabla T|} = G_{T,x} + c_2 a_c a_g B_{\parallel}^2$

Transport coefficients in condensed matters

Magneto-resistance at B//E

Negative longitudinal magnetoresistance develops at ~ 100 K

Hall signature at onset of chiral magnetic effect in ZrTe₅

H. Chi, QL et al New J. Phys. (2017)

Berry curvature induced anomalous Hall effect and anomalous Nernst effect

• Berry curvature:
$$\vec{\Omega}_{k} = i\nabla_{k} \times \langle \psi(k) | \nabla_{k} | \psi(k) \rangle$$

• Berry phase: $\gamma = \oint_{S} \vec{\Omega} \cdot d\vec{a}_{k}$
• Chiral fermion velocity: $\frac{\partial \vec{r}}{\partial t} = \vec{\nabla}_{\vec{k}} \varepsilon + \frac{\partial \vec{k}}{\partial t} \times \vec{\Omega}$
• Force: $\frac{\partial \vec{k}}{\partial t} = q \vec{\nabla}_{\vec{r}} \phi + q \frac{\partial \vec{r}}{\partial t} \times \vec{B}$
• Anomalous Hall effect: $\sigma_{yz} = \frac{e^{2}}{\hbar} \int d^{3}k \Omega_{z} f_{o}$
• Quantized anomalous Hall conductance: $\sigma_{yz}^{3D} = \frac{e^{2}}{\hbar} 2K_{o}$
Vang et at PRB 84, 075129 (2011)
• Anomalous Nernst effect: $\alpha_{yz} = \frac{k_{B}e}{\hbar} \int d^{3}k \Omega_{z} f_{o}$

Bro

Anomalous Hall and Anomalous Nernst effect in ZrTe₅

(Data and crystals from Princeton U.) T. Liang, Nat. Phys. 14, 451 (2018)

- Hall signatures of Berry curvature at onset of chiral anomaly
- Anomalous Hall effect accompanied by anomalous Nernst effect

BrFigures from P. Ong/March meeting 2018

Phase Sensitive Probes to Weyl Fermion Chirality

ARPES, STM, and transport experiments so far are not phase sensitive to the chirality.

One proposal is to use pump probe ARPES (a mid-infrared pump and a soft X-ray probe) to measure the transient spectral weight upon shining circularly polarized pump light.

Another proposal is to measure mid-infrared photocurrent response to the chirality. Photocurrents induced by circularly polarized light*

*Ma et al, Nature Physics 13, 842 (2017)

Detection and manipulation of chiral Weyl fermions by optical means

Ma et al, Nature Physics 13, 842 (2017)

Brookhaven Science Associates

BROOKHAVEN NATIONAL LABORATORY

Coherent terahertz emission with tunable ellipticity and optical chirality from the Weyl semimetal TaAs

Gao, et al arXiv:1901.00986

Coherent terahertz emission with tunable ellipticity and optical chirality from the Weyl semimetal TaAs

Gao, et al arXiv:1901.00986

Brookhaven Science Associates

Fourier transform spectra for the THz near-field

Chiral Qubit*

The quantum states corresponding to the non-dissipative CME current circulating counter- and clockwise form the basis of the qubit. Incident circularly polarized light creates quantum superpositions of these states

Kharzeev and QL*

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Adom: COMMISSIONES FOR PATENTS PO. Bot 1450 Advanced, Mignia 22313-1450 *CHIRAL QUBIT SYSTEM AND METHOD – Provisional patent application # 62685349, confirmation #7192, June 15, 2018

TIONAL

Massless or massive 3D Dirac fermions in ZrTe₅

- Infrared spectroscopy study

R. Chen, QL, Gu, Wang et al, PRB (2015)

Z. Chen, QL, Gu, Wang et al. Proc. Natl. Acad. Sci. (2017)

A linear relationship observed between the zero-magnetic-field (B) absorption and the photon energy A bandgap of ~10 meV and a \sqrt{B} dependence of the Landau level (LL) transition observed at low B Reemergence of intra-LL transitions at B > 17 T reveals the energy cross between the two zeroth LLs, which reflects the inversion between the bulk conduction and valence bands.

Brookhaven Science Associates

ZrTe₅ - Light dark matter detection

Experiments from the ultra thin crystals (a few to tens of unit cell)

Brookhaven Science Associates

Evolution of temperature dependent resistivity of ZrTe5. Normalized temperature dependent resistivity of 0.2 mm bulk ZrTe5 single crystal sample, 100 nm device and 10 nm device, showed as black open circle, green open circle and red solid circle, respectively. Inset shows the linear scale.

Summary

- Solution 3D Dirac/Weyl semimetals open a new avenue to study the quantum dynamics of relativistic field theory in condensed matter experiments.
- Chiral magnetic effect has been observed in condensed matter systems
- Optical manipulation of Weyl fermions and chiral qubit proposal for quantum information process
- Coherent THz emission and light dark matter detection

Dmitri Kharzeev

Tonica Valla

Genda Gu

Cheng Zhang

Brookhaven Science Associates