The meson spectrum in large N QCD

Luca Castagnini with Gunnar Bali, Sara Collins (Regensburg) Francis Bursa, Biagio Lucini (Swansea) Luigi Del Debbio (Edinburgh) Marco Panero (Helsinki)

October 2012

Outline

- Large N QCD: motivation
- · Lattice simulation: details and techniques
- Quark and pion masses
- The meson spectrum
- Conclusions

Example

Consider a scalar field theory with *N*-component field ϕ^a , a = 1, ..., N

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi^{a} \partial^{\mu} \phi^{a} - \frac{1}{2} \mu^{2} \phi^{a} \phi^{a} - \frac{1}{8} g^{2} (\phi^{a} \phi^{a})^{2}$$

We define the 't Hooft coupling $\lambda = g^2 N$:

What happens if $g^2 \rightarrow 0$ and $N \rightarrow \infty$ with fixed λ ('t Hooft limit)?

Large N QCD

Replacing,

$$A_{\mu} \rightarrow \sqrt{N}A_{\mu}, \quad \psi \rightarrow \sqrt{N}\psi$$

SU(N) Lagrangian:

$$\mathcal{L} = N \left[\frac{1}{4\lambda} F^{a}_{\mu\nu} F^{a}_{\mu\nu} + \bar{\psi} (\not \! D + m) \psi \right]$$

Counting rules:

$$\left.\begin{array}{ll} \text{corner} & \text{each vertices} & \propto N \\ \text{edge} & \text{each propagators} & \propto 1/N \\ \text{face} & \text{closed color loop} & \propto N \end{array}\right\} \qquad \Rightarrow \qquad \langle \ \rangle \propto N^{V-E+F=\chi}$$

 $\chi = V - E + F = 2 - 2H$ (handles) – *B*(boundaries, holes) is the Euler characteristics.

sphere: $h = b = 0 \Rightarrow \chi = 2$, torus: $h = 1, b = 0 \Rightarrow \chi = 0$

Consequences of the counting rules

• Only "planar" diagrams survive:

- The leading connected vacuum diagrams are of order N² (planar graphs made of gluons only)
- The leading connected vacuum diagrams with quark lines are of order N (planar graphs with just one quark loop at the boundary)
- Corrections down by factors of $1/N^2$ in the gauge theory and by 1/N in the theory with fermions

Properties of large N QCD

- Quark loop effects $\propto 1/N \Rightarrow$ The $N = \infty$ limit is quenched
- Mixing glueballs-mesons $\propto 1/\sqrt{N} \Rightarrow$ No mixing between glueballs and mesons at $N = \infty$
- Meson decay widths $\propto 1/N \Rightarrow$ mesons do not decay at $N = \infty$
- OZI rule exact at $N = \infty$

$N = \infty$ QCD is far from being solved!

Why lattice?

- Is $N = \infty$ close to N = 3 QCD? \Rightarrow quantify 1/N effects
- AdS/QFT starts at $N = \infty$. \Rightarrow comparison with lattice results.

Lattice parameters

- Number of colours *N* = 2, 3, 4, 5, 6, 7, 17
- Volumes:

Ν	vol				
2,3	$16^3 \times 32, 24^3 \times 48, 32^3 \times 64$				
4,5,6,7	$24^3 imes 48$				
17	$12^3 imes 24$				

- 200 configs for each N and volume (80 configs for N = 17)
- lattice spacing of $a \approx 0.093 \, \text{fm}$
- pion mass as low as $m_\pi pprox$ 230 MeV
- Wilson gluon and quark action

Setting the scale

- Inverse coupling $\beta = 2N/g^2 = 2N^2/\lambda$ is fixed by imposing $a\sqrt{\sigma} = 0.2093$ for all SU(*N*). (Lattice spacing is kept constant in units of the string tension $\sigma \approx 1$ GeV/fm). Lattice spacing is the same for all groups
- Other possible choices can be made (e.g. $T_c = \text{const}$)
- The κ-parameter (2am_q = κ⁻¹ κ_c⁻¹) is adjusted such that a set of pseudoscalar masses matches between different N (achieved by exploratory simulations).

Plan:

- Vary κ to study $m_A(m_q, N)$ for each particle A.
- Extrapolate to $N = \infty$ and study $1/N^2$ corrections.

Setting the scale for SU(17)

Fit estimated Λ_L parameter in $1/N^2$ to set the scale $\Rightarrow \beta_{17} = 208.45$

$$a\Lambda_L = \exp\left(-\frac{1}{2b_0\alpha}\right) \left(b_0\alpha\right)^{-\frac{b_1}{2b_0^2}} \left(1 + \frac{1}{2b_0^3}\left(b_1^2 - b_2^L b_0\right)\alpha + \dots\right)$$

with $b_{0,1,2} = f(N)$

Other approaches are compatible within 0.3%:

- · linear fit vs. quadratic fit
- fit of $\Lambda_{\overline{\rm MS}}$
- fit of 't Hooft λ

Meson interpolators

• A generic meson interpolator is a bilinear:

$$O(x,t) = \bar{\psi}(x,t) \Gamma \psi(x,t)$$

with Γ product of Dirac matrices

• Zero momentum projected two point function:

$$C_{\Gamma,\Gamma}(t) = \sum_{x} \left\langle O(x,t)\overline{O}(0) \right\rangle = -\sum_{x} \operatorname{Tr} \left\langle \Gamma G(x,t) \Gamma G(x,0) \right\rangle$$

$$C(t) \propto e^{-mt}$$
 for $t \to \infty$

• We study mesons with $m_u = m_d$:

Particle	π	ρ	a_0	<i>a</i> 1	<i>b</i> 1
Bilinear	$\bar{u}\gamma_5 d$	$\bar{u}\gamma_i d$	ūd	$\bar{u}\gamma_5\gamma_i d$	$\frac{1}{2}\epsilon_{ijk}\bar{u}\gamma_i\gamma_j d$
J ^{PC}	0^+	1	0++	1++	1+-

Variational method

- APE smearing on the links and Wuppertal smearing on sources/sinks.
- Study of the cross-correlation matrix

$$C_{i,j} = \langle O_i(t)\overline{O}_j(0) \rangle$$

where i, j correspond to a different number of smearing iterations (0, 20, 80 and 180 steps).

• Solve the generalized eigenvalue problem:

$$C(t)\mathbf{v}^{lpha} = \lambda^{lpha}(t)C(t_0)\mathbf{v}^{lpha}$$

and extract the masses from the large *t* behaviour of the eigenvalues:

$$\lambda(t) = A\left(e^{-mt} + e^{-m(N_t a - t)}\right)$$

• \Rightarrow Ground and first excited states.

PCAC relation

Partially conserved axial current (PCAC):

$$\sum_{x} \partial_4 \langle 0|A_4(x,t)|\pi \rangle = 2m_{\text{PCAC}} \sum_{x} \langle 0|j_5(x,t)|\pi \rangle \quad \text{where} \quad \begin{cases} A_\mu(x) = \bar{u}(x)\gamma_\mu\gamma_5 d(x) \\ j_5(x) = \bar{u}(x)\gamma_5 d(x) \\ m_{\text{PCAC}} = Z m_q \end{cases}$$

 $m_q = (\kappa^{-1} - \kappa_c^{-1})/(2a)$ is the quark mass and $Z(\lambda)$ is a renormalization constants.

We fit

$$\frac{m_{\text{PCAC}}}{\sqrt{\sigma}} = A\left(\frac{1}{\kappa} - \frac{1}{\kappa_c}\right) + B\left(\frac{1}{\kappa} - \frac{1}{\kappa_c}\right)^2$$

with dimensionless fit parameters A, B, κ_c that are expected to have $O(1/N^2)$ corrections.

Determination of $\kappa_c(N)$

Pion mass vs. PCAC mass

Luca Castagnini (Regensburg)

The meson spectrum in large N QCD

Pion mass: $1/N^2$ fit of the parameters

Luca Castagnini (Regensburg)

The meson spectrum in large N QCD

Pion mass - chiral logs

In the **quenched** theory the pion behaviour should be modified as,

$$\left(\frac{m_{\pi}}{\sqrt{\sigma}}\right)^2 = A\left(\frac{1}{\kappa} - \frac{1}{\kappa_c}\right)^{\frac{1}{1+\delta}} + B\left(\frac{1}{\kappa} - \frac{1}{\kappa_c}\right)^2$$

where $\delta \propto 1/N$ goes to zero at large N (Sharpe - hep-lat/9205020)

- δ compatible with zero for $N \ge 5$
- not sensible to chiral logs at $m_{\pi} > \sqrt{\sigma}$
- linear fit with to $3 \le N \le 5$:

$$\delta = 0.108(27)\frac{1}{N}$$

 ρ : fit vs. PCAC mass

ρ : 1/ N^2 fit of the parameters

Luca Castagnini (Regensburg)

The meson spectrum in large N QCD

a1: fit vs. PCAC mass

Luca Castagnini (Regensburg)

The meson spectrum in large N QCD

October 2012 19 / 24

a_1 : $1/N^2$ fit of the parameters

The ρ mass issue

Discrepancies between L Del Debbio et al JHEP 03 (08) 062, G Bali, F Bursa JHEP 09 (08) 110, T DeGrand PRD 86 (12) 034508 vs. A Hietanen et al PLB 674 (09) 80

- $N \rightarrow \infty$ from bigger lattices and smaller N
- SU(17) volume: $12^3 \times 24$

•
$$\beta = 208.45 \ (b = rac{1}{g^2 N} = 0.3606$$
)

- Wilson fermions
- Zero momentum correlators:

$$C(t)=e^{-m_{\rho}t}$$

 ρ mass for chiral limit

$$\frac{m_{\rho}(N=17)}{\sqrt{\sigma}}=1.54(3)$$

- $N \to \infty$ from smaller lattices and bigger N
- SU(17) volume: 11⁴

•
$$\beta = 208.08 \ (b = rac{1}{g^2 N} = 0.360$$
)

- Overlap fermions
- Propagator in momentum space:

$$M_{\mu
u}=rac{A(p_\mu p_
u-p^2\delta_{\mu
u})}{p^2+m_
ho^2}$$

$$rac{m_{
ho}(N=17)}{\sqrt{\sigma}}=3.50(22)$$

Luca Castagnini (Regensburg)

The meson spectrum in large N QCD

The meson spectrum in the chiral limit

AdS/CFT

Results from the lattice

AdS/CFT calculation by Babington et al. (hep-th/0306018)

$$rac{M_
ho(M_\pi)}{M_
ho(0)}\simeq 1+0.307\left[rac{M_\pi}{M_
ho(0)}
ight]^2$$

$$rac{M_{
ho}(M_{\pi})}{M_{
ho}(0)}\simeq 1+0.369(4)\left[rac{M_{\pi}}{M_{
ho}(0)}
ight]^2$$

Holographic model by Sakai - Sugimoto (hep-th/0412141)

$$rac{M_{a_1(1260)}^2}{M_
ho^2}\simeq 2.4 \ rac{M_{a_1(1260)}^2}{M_
ho^2}\simeq 4.3 \ rac{M_{a_0(1450)}^2}{M_
ho^2}\simeq 4.9$$

$$rac{M_{a_1(1260)}^2}{M_
ho^2}\simeq 3.3 \ rac{M_{a_0}^2(1450)}{M_
ho^2}\simeq 5.4 \ rac{M_{a_0}^2(1450)}{M_
ho^2}\simeq 7.5$$

Conclusion

- We computed the quenched meson spectrum of SU(*N*) for degenerate quark masses.
- The isovector SU(3) masses as well as decay constants are close to the $N = \infty$ limit. Even N = 2 is qualitatively well described.
- $1/N^2$ corrections are small.
- Differences between the $N_f = 2 + 1$ theory and the quenched approximation at N = 3 indicate that N_f/N corrections may be small too.
- Results may help improving AdS backgrounds or holographic models.
- Results may constrain large *N* based models and EFTs of low energy strong interactions.