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Motivations for glueball studies

• Self-interaction of gluon → Do bound states of gluon exist ?

• From the theoretical point of view the question is cleanly posen in the
pure YM theory
• Experimentally: search of extra states (resonances) not in the quark

model (could be glueballs, tetraquarks ... exotic)
no electric charge (no direct coupling to γ), no flavor (flavor blind
decay mode)

• Most exploited channel,
J/Ψ radiative decays

c

c̄

G

BES, SLAC (MARK), FAIR ?

• Several resonances, f0’s for the 0++ and η’s for the 0−+ between 1.5
and 2 GeV.

• Precise theoretical predictions are needed to clearly identify these
states as glueballs.

• In the full theory glueballs mix with qq states !! [TχL, UKQCD]
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Exponential growth of the signal to noise ratio (Parisi ’84, Lepage ’89)

Consider a point to point correlation function interpolating (eg) a meson.
The signal is given by the expectation value of

while the a priori variance is given by the expectation value of

Luckily Wick-contractions are done before squaring, for the variance. Then a

multi-pion state dominates, otherwise it would be the vacuum (as for YM).
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pion RNS ∝ const

ρ RNS ∝ exp((mρ −mπ)t)

N RNS ∝ exp((mN − 3
2mπ)t)
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O(2000) quenched confs (β = 6.2, κ = 0.1526) in APE, hep-lat/9611021
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Yang-Mills theory

• For an operator interpolating a parity odd glueball

COG
(t) = 〈OG (t)OG (0)〉 → |〈0|OG (0)|G−〉|2 e−MG− t + . . .

the variance can be estimated as

σ2 = 〈O2
G (t)O2

G (0)〉 − 〈OG (t)OG (0)〉2 → 〈0|O2
G (0)|0〉2 + . . .

• The noise to signal ratio at large time separations is given by

RNS(t)→
〈0|O2

G (0)|0〉
|〈0|OG (0)|G−〉|2

eMG− t + . . .

⇐ On a given gauge configuration symmetries as parity are not
preserved. All states are allowed to propagate despite the quantum
numbers of the source.

⇒ For every gauge-field configuration the vacuum dominates. The signal
emerges due to large cancellations in the gauge average.

⇒ In the standard approach glueball masses are extracted at rather short
separations.
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Signal up to 0.5 fm at most.
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C. Morningstar and M. Peardon, 1999 ....
Nice results, which however we believe need to be checked concerning
systematic effects. In particular a single state dominance in the correlation
function for large x0 (in fm.) is not always observed. Rather, compromises
between excited states contributions at short time- and large errors at
large time-separations.
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Decomposition of the path integral and boundary conditions

with periodic boundary conditions Z =
∫
D3[V ]〈V |e−TĤ P̂G |V 〉

Z = Z+ + Z− , Z± = e−E0 T

[
1± 1

2
+
∑
n=1

ω±n e−E
±
n T

]

We introduce a parity transformation

℘̂ |V 〉 = |V ℘〉 , V ℘
k (x) = V †k (−x− k̂) ,

with V̂k(x)|V 〉 = Vk(x)|V 〉 and

Z tw =

∫
D3[V ]〈V |e−TĤ P̂G |V ℘〉 =

∑
G

∫
D3[V ]〈V |G 〉〈G |e−TĤ℘̂|G 〉〈G |V 〉 = Z+ − Z−
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• We want to compute Z−

Z (T ) = 1
2

(
1− Z tw

Z

)
(T ) where, compared to

Z , the boundary conditions in Z tw are parity twisted. At large T we
should be able to extract the lightest parity odd glueball.

• We aim at a hierarchical integration scheme [Lüscher and Weisz, ’01]
and divide the system in thick time-slices of size d with boundaries
updated at different rates wrt the internal dof.

• We start from the factorized expression for Z (T )

Z (T ) =

∫ T/d−1∏
i=0

D3[Vid ]T d [V(i+1)d ,Vid ] , with

T d [Vx0+d ,Vx0 ] = 〈Vx0+d |T̂ d |Vx0〉

and by introducing

(T−)d [Vx0+d ,Vx0 ] =
1

2

{
T d [Vx0+d ,Vx0 ]− T d [Vx0+d ,V

℘
x0

]
}

we generalize it to Z−/Z .
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Relevant property: orthogonality

Using the invariance of the Hamiltonian under parity it is easy to show

T d [Vx0+d ,V
℘
x0

] = T d [V ℘
x0+d ,Vx0 ]

and therefore∫
D3[Vid ] (T+)d [V(i+1)d ,Vid ] (T−)d [Vid ,V(i−1)d ] = 0
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• The basic quantity to be computed for each sub-lattice of time extent
d with Dirichlet boundary conditions is the ratio of partition functions

T d
[
V ℘
x0+d ,Vx0

]
T d
[
Vx0+d ,Vx0

]
The product (over the thick-slices) of a simple linear function of that
is then integrated numerically on the boundary configurations Vx0=id .

• We need O((L/a)3) MC simulations to estimate the ratio above
becauase we interpolate among the two systems using a telescopic
procedure:

ZP

Z
=

Z1

Z

Z2

Z1
. . .

ZP

ZV−1

We have a V 2 = (L/a)6 algorithm but we get rid of the exponential
(in time) degradation of the signal, if we choose d ≥ 1/Tc , such that
the ratio above is of the right size O(e−MG−d) and its fluctuations are
reduced to the same level.
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Results (Parity only)

Wilson action β = 5.7 (a ' 0.17 fm ) and O(50) meas at each T/a.
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• The algorithm works as expected. We see a clear signal up to a
separation of about 3 fm.

• There is no strong dependence of the results from L for
1.4 fm < L < 2 fm (⇒ negligible “torelon” contribution)

• However, by using parity only it is difficult to correctly identify the
dominating state. For example, a rather light parity odd state (maybe
lighter than the lightest 0+− glueball) could be

1√
2

(
|0++, ~p〉 − |0++,−~p〉

)
, |~p| = 2π/L

• We want to consider the lattice YM symmetry groups

C and P, g = 2
spatial translations, g = L3

central charge conjugations, Z 3
3 , g = 27

spatial rotations, octahedral group, g = 24
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Fixing an irreducible representation (quantum numbers) [DM and Giusti, 2010]

• The phase space of the theory can be factorized into regular
representations of the group. In the partition function

Z (T ) = Tr
[
T̂T
]

one inserts the identity I written as

I =
1

g

g∑
i=1

∫
D3[V ]|V Γi 〉〈V Γi |

eg on the boundaries of our thick-slices.

• Then group theory tells us how to project on an irreducible
representation µ

P̂(µ) =
nµ
g

g∑
i=1

χ
(µ)
i

∗
Γ̂i
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• So, one has to compute

T d
[
V Γi

x0+d ,Vx0

]
T d
[
Vx0+d ,Vx0

] , i = 1 . . . g

and then form linear combinations of them.

For example: The relative contribution of states with momentum ~p in the
system with Dirichlet bc is (P̂(~x) representing translations by ~x)

(T~p)d
[
Vx0+d ,Vx0

]
T d
[
Vx0+d ,Vx0

] =
1√
L3

∑
~x

e−i~p·~x
T d
[
V

P(~x)
x0+d ,Vx0

]
T d
[
Vx0+d ,Vx0

]
We will use this setup to extract the mass of the lightest 0++ glueball
through the dispersive relation. By selecting non-zero momentum we get
rid of the vacuum.
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Results for the dispersion relation (fixing in addition C parity to be even)

β = 5.7, L/a = 8 E 2 =
(

ln(ZC ,p(T )/Z(T ))
T

)2
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As T grows the signal at large |~p| becomes smaller. We concentrate on
~p = 2π/L, 0, 0 and C= + and project only stochastically on py = pz = 0
and central charge e = 0
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We [MDM and Giusti, 2010] fit the last 4 points with a function

ln

[
Z (p,+)

Z (0,+)

]
= A− BT

and obtain A = ln(ω) = −0.6(4) and B = E
(p,+)
eff = 1.15(6) . The

rightmost plot is produced by setting the multiplicity to 1 and defining

E
(p,+)
eff = − 1

T

[
Z (p,+)

Z (0,+)

]
.

We use the T = 12 result E
(p,+)
eff = 1.22(3) to finally get

M+ = 0.935(42) , → M+ = 1.08(5) GeV [r0 = 0.5 fm]

through the continuum dispersion relation. The result agrees with the
0.955(15) computed in the standard way with the same a and action
in [Vaccarino and Weingarten, 1999].
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Approaching the continuum limit

We have repeated the computation at a = 0.012 fm [β = 5.85] on a
143 × 10 lattice (corresponding to T = 7 at β = 5.7)
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The signal is still good.
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Conclusions and outlook

• In the YM theory the noise to signal problem can be solved by
enforcing the propagation in time of states with the desired quantum
numbers only.
• We have shown that all quantum numbers can be fixed in this

approach.
• We are now exploring the stochastic projection on the singlet

component (eg zero momentum in order to avoid another L3 factor in
the scaling of the algorithm).
• In the near future we will concentrate on the 0++ in the continuum

limit but also the 2++ glueball masses.
• Matter fields ?
• The inclusion of fermions appears difficult, due to the non-locality of

the resulting gauge action after integrating out the quarks.
• On the other hand the method can be used for scalar gauge theories

(Higgs), which suffer of the same exponential noise to signal problem
as pure gauge theories or to two dimensional systems as CP(N).
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