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Al =1/2 rule (1)

(mm)1=2 Al =3)2
Particle  Isospin | /
S Koy T e

(mm)j=0 AlI=1)2

» T: Transition amplitude
> A: Amplitude ‘ T[K — (71'7T)/] = A/eié’ ‘
» §: Scattering phase shift

Experiments: — >~ 221 "Al =1/2 rule”

Enhancement of amplitude changing Isospin by %
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] T(K — (n7)) = Aje™,  1=0,2,  |Al/|A2| =22.1 "Al=1/2 rule" \

» "Rule": Al = % enhancement over Al = % transitions also in baryon sector,

eg. N—= NmorX — Nm

» Weak interaction does not distinguish different isospin final states

— Origin: Strong interaction effects

» Short-distance QCD effects and large N, arguments — only small enhancement

—> Study long-distance, i.e. non-perturbative regime of QCD

— Lattice
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Al =1/2 rule (Il)

’ T(K — (7)) = Al 1=0,2, |Aol/|A2| ~22.1 " Al =1/2 rule”

Several possible origins/contributions of long-distance QCD

» final state interactions
» physics at Egcp ~ 250 MeV
P physics at g = mcpam ~ 1 GeV (via penguins)

Role of charm quark unclear. Classic arguments suggest:
Large up-charm quark mass difference may be important
[Shifman et al. NPB 120 (1977)]

P all of the above (no dominating mechanism)

Separate intrinsic QCD effects from physics at m.
[Giusti, Herndndez, Laine, Weisz, Wittig, JHEP11 (2004)]
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Effective Hamiltonian (1)

5 d 5 d
W Length scale weak interaction
—_— <
size of hadron
u u u u — turn to effective theory

OPE: separates long-distance and short-distance effects via effective weak Hamiltonian

» O: (multi) quark field operators

HEF = \[ Zk Vierm, My, 1) Qi(p) » k: Wilson Coefficients, include all
high-energy effects

Continuum SM — HEFF k(My, ) Qe (Myy) ke, k(1) QO (1)
matching |

k(1) Z(pa) Q" (a)
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Effective Hamiltonian (I1)

Lowest QCD corrections
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Kaon decays on the lattice

Lattice: two approaches
N\

Relate K — mm to K — m, K — 0 via ChPT
K — 7
Direct computation

[RBC/UKQCD collaboration]

P> Express K — 7 in terms of LECs
» Determine LECs in lattice simulation
» LECs defined in chiral limit m — 0

Challenges/problems

» Evaluation of 4-point
functions > Relies on ChPT
» Large volume required
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rategy (I)

Approach:

» CP-conserving AS = 1 effective weak Hamiltonian ’)"leAﬁ,SZ1 with active charm

quark (both: in lattice QCD and Chiral Perturbation Theory)

» Bypass direct computation of K — 77 [Bernard et al. PRD 32 (1985)]
— Compute K — 7 and K — vac matrix elements in LQCD
— relate to physical transition amplitude via ChPT

» Express ratio of kaon decay amplitudes A; via LECs [gli] in ChPT

|Ao| 1,1 38
7ol = t LO
[Aq| (3 2gf> (at 10)
» Determine g, /& in lattice QCD
Stepl:  mc=my =mg = ms SU(4)-LQCD matched to SU(4)-ChPT
Step 2:  mc >my = mg = ms SU(4)-LQCD matched to SU(3)-ChPT

— monitor Ap, A2 as a function of m.
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Strategy (I1)

Ingredient:

Neuberger (overlap) fermions: Dy = 1%? {1— W}, A=1-—aDy,

[H. Neuberger, PL B417 (1998)]

» Renormalization & mixing patterns like in the continuum, provided

~ 1+s — —

v—d=(1-=D)v b=
2a

No mixing with lower dimensional operators [Capitani, Giusti, PRD (2001) 014506 |

P Allows simulating quark masses near chiral limit — ChPT most reliable

» Numerical treatment expensive — first results quenched
Quantitative attempt to understand large Al = 1/2 enhancement!
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AS =1 weak Hamiltonian with an active charm quark (1)

Effective theory with approximate SU(4), x SU(4)g chiral symmetry

2

g *

Ha = o Vaa Vi D k7 QF + k5 Q3 }
w o=%

k
Short distance QCD — moderate enhancement k%% 2.8 (2 loop PT)
1

Enhancement dominated by matrix elements of operators (long distance)
QF = {(59u P u) (@Y P d) (57 P d) (@ P-u)} — (u — )

OF = (m? — m2)(my5P+d + ms5P.d)

» SU(4), x SU(4)g chiral group: 4-quark operator Q] : (84,1), Q; : (20,1)

— no mixing under renormalization for GW fermions

> Q;t don't contribute to phys. K — 77 decay, mix with Qf: for me # my
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AS =1 weak Hamiltonian with an active charm quark (1)

Effective theory with approximate SU(4), x SU(4)g chiral symmetry

H = 2M2 Via Va Z {k{ Q7 + k3 Q3 }
o=%
Short distance QCD — moderate enhancement k—+z 2.8 (2 loop PT)

Enhancement dominated by matrix elements of operators (long distance)

OF = {(57uP— u)(@7,.P—d)-£(57, P d) (@, P—u)} — (1 — c)
;t = (m% — mg)(md§P+d + m5§P+d)

SU(4) vs. SU(3) flavor approach. SU(3) symmetry: charm integrated out

10 . 2 Current-current operators

HAS= Z Ki( Ve, M, 1) Qi(1) . 4 QCD-penguin operators
i . 4 EW-penguin operators

Nice: Active charm quark + GW-fermions — only logarithmic divergences !
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AS =1 weak Hamiltonian with an active charm quark (Il)

Low-energy counterpart of weak effective Hamiltonian at LO

HE'/hPT 2?/,\”2 V V* Z gl { étlj suud - [éf} sccd}

. 1,
4-quark operator <« [Ol}aﬁvé = ZF (Vo UT),W(U(?HUT)JB
U € SU(4): Goldstone boson field,  F: pion decay constant

| Ao &
O« 2L
|A2| g1
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Step 1: De rate charm

Study K —  transitions in the SU(4)-symmetric theory: my, = mg = ms = mc

= only "Figure-8" graphs contribute @

CE(x,y) :<Tr ["/OP—S(XvO)T’YOP—S(Xv 0)} Tr [VOP—S(Y: O)W)P—S(y,O)D

F (T [10P-5(x,0)"0P-5(y,0)70P-S(y,0) 10P-S(x,0)] )

~F — errors
_ L 81 -15t: statistical

vIv_attu’:'e 0.51(3)(5)(6) 2.6(1)(3)(3) 2. matching to ChPT

| Exp N ~ 10'5 ~ 10'4 -3 renormalization

arge Nc

» Al =3/2 amplitude Az: close to "experiment”

» Al =1/2 amplitude Ap: factor ~ 4 too small
A

» Significant enhancement in SU(4)-symmetric limit: M ~ 6 Exp: ~22
|Az]
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Low-mode averaging (LMA)

» Strong statistical fluctuations as m — 0: “spikes” in MC history

» Spectral representation of quark propagator:

1 V,'(X) ® V,'T(}’)
S(va)_vz )\’+m
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Low-mode averaging (LMA)

» Strong statistical fluctuations as m — 0: “spikes” in MC history

» Spectral representation of quark propagator:

1 Z V,'(X) ® V,'T(}’)

S(x,y) = —
(x,¥) v N m
m>1/%V - low-lying spectrum of Dy, dense near m (m > Ajoy)
- contributions from v; averaged with same weight (~ 1/m)
m<1/zV - low-lying spectrum of Dy, discrete: m~ A\ =1/YV

- sizeable contributions come from a few v;
- space-time fluctuations of wave-functions can be amplified
significantly for individual eigenmodes — “spikes”
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Low-mode averaging (LMA)

» Strong statistical fluctuations as m — 0: “spikes” in MC history

» Spectral representation of quark propagator:

1 Mow T
S(x,y) = Vzi‘/’(i\)’i‘;(” + Sh(x,y) ("low” part 4+ "high” part)

m>1/%V - low-lying spectrum of Dy, dense near m (m > Ajo)
- contributions from v; averaged with same weight (~ 1/m)

m<1/zV - low-lying spectrum of Dy, discrete: m~ A\ =1/YV
- sizeable contributions come from a few v;
- space-time fluctuations of wave-functions can be amplified
significantly for individual eigenmodes — “spikes”
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Low-mode averaging (LMA)

» Strong statistical fluctuations as m — 0: “spikes” in MC history

» Spectral representation of quark propagator:

1 Mow T
S(x,y) = Vzi‘/’(i\)’i‘;(” + Sh(x,y) ("low” part 4+ "high” part)

m>1/%V - low-lying spectrum of Dy, dense near m (m > Ajo)
- contributions from v; averaged with same weight (~ 1/m)

m<1/zV - low-lying spectrum of Dy, discrete: m~ A\ =1/YV
- sizeable contributions come from a few v;
- space-time fluctuations of wave-functions can be amplified
significantly for individual eigenmodes — “spikes”

— Treat a number of low-lying modes, ny,,, exactly:
Averaging over X,y in low-lying contribution reduces local fluctuations
[Giusti et al. JHEP04 (2004),DeGrand, Schaefer CPC159 (2004)]
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Low-mode averaging (LMA)

1 Z vi(x) ® vl (v)

S(x,y) = v N T m + Sh(x,y) ("low” part 4+ "high” part)

—> Decomposition of CF:

C2t = = " {Tr{S(x, y)0P-S(y, x)wP-}) = C"(t)+C""(£)+C"(t)

CM(t) = = (Tr{roP-S"(x,0)"5P-5"(x,0)})

X

M) o~ 3o S b, (I 0PIV 0P () <>
kI 1 X,y

Nlow

Ch/ Z(Sttx ty<V,< (X)voP— 5( )’YO'Dka()’)>+(X<_’)’)
k 1 x,y
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Low-mode averaging (LMA)

Niow

1 &y ev0) | o _
S(x,y)=— ! . S"(x, " low” t "high” t
(x,¥) v z’: N m + S"(x,y) ("low” part + "high” part)
30t — M chill . chhll  chhhl o chhhh
S S S
# of diagrams 1 4 6 4 1 =16
Example: chm
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Extended propagators

S(xy)

C"(2) o<{ v (x)10P— S"(x, Y)W0P-vi (¥) ) + (x = ¥)

Use eigenmode as source for inversion

n(yi to) = S0 P— v (y)

Solution at fixed timeslice yg:
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Extended propagators

s"xy)
C"(2) o<{ v} (x)10P= S"(x, Y)W0P-v (v) ) + (x = ¥)
N———
SEXt(x,y)
vy) Voo

Use eigenmode as source for inversion
n(yito) = SeypY0P—vi(y)

Solution at fixed timeslice yg:

S (x,y) =D S, ¥)10P-vi(v)

y

PRO: Implicit volume averaging
CON: yp fixed and ny,,, extra inversions
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Low-mode averaging (LMA)

p-regime, nijqg, = 20 e-regime, Nigw = 20
108 r q
‘ ' ' 1o | T E
2 sx10 Bl o ]
= = 0 frrorretparindattan gty fie b
[ ] E o :
& a ¥ —5x10°8 [ | El
i M=s ]
—1x107 | ‘ E
o7 | ‘ E
= a 3 sxi0 | 9
Mé s E E
= = o E
§ -5x10° |- 1 §
o | o100 I
qweqpe bl 1 P R —1x107 | - [ - L =
0 50 100 150 200 0 50 100 150
» with LMA: signal improves P> without LMA: signal lost

Downside: main part of CPU time spent on manipulations involving low-modes
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Step 2: Decouple charm quark m. > m,

1 Mow . T
S(z,z) = L5 M) ©vi(2)
Vv 7 )\,’ + m

» "EYE"-diagram: Signal still lost despite LMA

» Problem: Use of point-to-all propagators S”(z, 0) does not allow for averaging
over Z, the position of 4-quark operator insertion

» Approach: Estimate entire propagator S"(z, z) (“high part”) stochastically; not
only single column! [“Hybrid-approach”, Peardon et al. CPC 172 (2005)]

» Not only loop requires stochastic all-to-all propagator

Eric EndreB Al =1/2 rule



Reminder: Stochastic volume sources (SVS)

» Source method: Quark propagator by solving the linear system

Do =n

Eric EndreB Al =1/2 rule



Reminder: Stochastic volume sources (SVS)

» Source method: Quark propagator by solving the linear system
Do =n

> Generate set of N, volume-filling source vectors {ny,...,mn,]} by assigning
random numbers, e.g. € Z(2) = {£1} satisfying
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Reminder: Stochastic volume sources (SVS)

» Source method: Quark propagator by solving the linear system
Do =n

> Generate set of N, volume-filling source vectors {ny,...,mn,]} by assigning
random numbers, e.g. € Z(2) = {£1} satisfying

> <77§(X)[,]>Src =0
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Reminder: Stochastic volume sources (SVS)

» Source method: Quark propagator by solving the linear system
Do =n

> Generate set of N, volume-filling source vectors {ny,...,mn,]} by assigning
random numbers, e.g. € Z(2) = {£1} satisfying

> (), =
> (RO = Sdasd®

src
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Reminder: Stochastic volume sources (SVS)

» Source method: Quark propagator by solving the linear system
Do =n

> Generate set of N, volume-filling source vectors {ny,...,mn,]} by assigning
random numbers, e.g. € Z(2) = {£1} satisfying

> (), =
> (RO = Sdasd®

src

(... )oe: expectation value over the distribution of noise vectors

» Taking the solution vector & = Dfln[,] —— estimate of entire propagator
matrix

(@300 km—@ﬂﬂ;W@@cm >
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Reminder: Stochastic volume sources (SVS)

» Source method: Quark propagator by solving the linear system
Do =n

> Generate set of N, volume-filling source vectors {ny,...,mn,]} by assigning
random numbers, e.g. € Z(2) = {£1} satisfying

> (), =
> (RO = Sdasd®

src

(... )oe: expectation value over the distribution of noise vectors

» Taking the solution vector & = Dfln[,] —— estimate of entire propagator
matrix

CABECREE)

src

<(D_1)ZCW(X7 2)nS(2)(n" )%(y)m>

src
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Reminder: Stochastic volume sources (SVS)

» Source method: Quark propagator by solving the linear system
Do =n

> Generate set of N, volume-filling source vectors {ny,...,mn,]} by assigning
random numbers, e.g. € Z(2) = {£1} satisfying

> (1), =0
> (TROIN5)) = Sxdasd®

(... )oe: expectation value over the distribution of noise vectors

» Taking the solution vector & =D~ 77[,] —— estimate of entire propagator
matrix —— 826,50
—

(@25 <(D D, (e 2) s (2 )[,](nf>%<y)[,]>

= Sag(x )

src
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Dilution (1)

Stochastic volume sources (SVS):

NICE: Access to entire propagator — increase in statistics
— reduced sensitivity to local fluctuations

BAD: Explicit introduction of stochastic noise (exact only limit N, — o)

Technique for reducing intrinsic stochastic noise: " Dilution”
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Stochastic volume sources (SVS):

NICE: Access to entire propagator — increase in statistics
— reduced sensitivity to local fluctuations

BAD: Explicit introduction of stochastic noise (exact only limit N, — o)

Technique for reducing intrinsic stochastic noise: " Dilution”

n Ui Up) UL mn
Z; 4 0 0 0
Z; 0 2> 0 0
n % Z3 dilution 0 , 0 . 23 - 0
Zn 0 0 0 Zy
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Dilution (1)

Stochastic volume sources (SVS):

NICE: Access to entire propagator — increase in statistics
— reduced sensitivity to local fluctuations

BAD: Explicit introduction of stochastic noise (exact only limit N, — o)

Technique for reducing intrinsic stochastic noise: " Dilution”

n Ui Up) UL mn

Z; 4 0 0 0

Z; 0 2> 0 0

n % Z3 dilution 0 , 0 . 23 - 0
Zn 0 0 0 Zy

Examples: time, spin, color, even-odd space-time

» Experience: Additional inversions (often) outperform application of multiple hits

» Full time dilution mandatory for connected correlators
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Dilution (I1)

S ‘ 0.05———

=—= point src

r =—=eo+s+c| r B
-——aeo+S
S
41 —a5+C = 004 |
-—a €O
=—= only t
[ 1 r 1 abs. error X/ Ncg
3+ - 003 B
vs.
ch
2 - o0nf - &
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Preliminary results: Eye-diagram

R- = CEYE/ 2pt

Ry = EYE/ 2pt

0.1 | —
L J Ihhh
0.05 I | 0.04
L J h h
0 DI T I
i =/ 1 002
-0.05 — 1_ I light
0.1 B ] o I —
i 4+ LMA+SVS I ) I
0151 + LMA ]-0.02
02 Lo Lo > 140 cnfgs, 32x163
I I BT T 1T T T 1 > Quenched
0.8 —
r 4 02 > (3 =15.8485
0.4 — > nj, =20
H 1 o1
o1 @ I l 1 weavy > Spin-dilution
+ | J-I 40 L_ £ > m; =322 MeV
04 I B ol U J » light:mc. = 2m,
08k | - » heavy:m. = 10m,
Lo 02 [
Cull Chhhh clhhh C]]hh cIIIh CIIII CJll hhhh ]hhh llhh cIIIh C]]]]
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Preliminary results: Eye-diagram

R- = CE_YE/C22pt

R

Ry = CI-_’-"—YE/CZQDt
R

+

0.1 -
[ I I I I 1 oos I I lIhh
0.05— =
- M g
0 T
i Y 1 002 I
-0.05 B 7] 1_ I light
0.1 4 0 I {*L/
i 4+ LMA+SVS I 1 I
0151 + LMA ]-0.02
02 L L L ! L ! ! ! | ' ' ' > 140 cnfgs, 32x163
Y I B BT T 1T T T 1 > Quenched
L 4 02 > (3 =15.8485
04 [\ "V — » Niow = 20
L 1 o1 C
0 T Yy IT = I I heav » Spin-dilution
= T = T ks y
+ | \J;I/ 40 - _|‘_J- > m; =322 MeV
04 I L. ol J I[\/ J » light:mc. = 2m,
08k | - » heavy:m. = 10m,
L ool L1
Cull Chhhh clhhh C]]hh cIIIh C|||| Cull Chhhh C]hhh Cllhh cIIIh C]]]]
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Preliminary results: Eye-diagram
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+
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0.1 | N — —
0'05; I ] 004 llh
L }:T }: 4 |
0 -+
i = 1 002 I
-0.05 B 7] 1_ I light
0.1 4 0 I —
i + LMA+SVS I ) I
0151 + LMA ]-0.02
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Preliminary results: Eye-diagram

Ry = CEYE/ Cz2

ALL

140 cnfgs, 32x163
Quenched

[ = 5.8485

Niow = 20
Spin-dilution

my = 322 MeV
light:mc =2m,

heavy:mc = 10my




Summary and Outlook

» Computational framework to quantify different sources of Al =1/2
enhancement: AS = 1 weak effective Hamiltonian with active charm and
Ginsparg-Wilson fermions

» Current stage: Decouple charm quark mass, i.e. mc > m,, to monitor
dependence of amplitudes on mc

» Problem: Signal lost due to closed quark loops in Eye-diagram
» Proposed solution: Combining LMA with stochastic all-to-all propagators

P Status: Noise can be reduced significantly

» Prospective:

> Still bare quantities — renormalization
> Dynamical configurations with Wilson sea quarks (Mixed action)
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Diagrams required for renormalization

(pottane)
(0[3PLd|K) : ‘
<7r|02i(z)|;<> : ‘
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Summary and Outlook

» Computational framework to quantify different sources of Al =1/2
enhancement: AS = 1 weak effective Hamiltonian with active charm and
Ginsparg-Wilson fermions

» Current stage: Decouple charm quark mass, i.e. mc > m,, to monitor
dependence of amplitudes on m¢

» Problem: Signal lost due to closed quark loops in Eye-diagram
» Proposed solution: Combining LMA with stochastic all-to-all propagators

P Status: Noise can be reduced significantly

» Prospective:

> Still bare quantities — renormalization

> Dynamical configurations with Wilson sea quarks (Mixed action)
[F. Bernardoni, N. Garron, P. Hernandez, S. Necco and C. Pena et al. Phys.Rev D83 (2011)]
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