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∆I = 1/2 rule (I)

K −→ ππ

Particle Isospin I
Kaon 1/2
Pion 1

KI = 1
2

↗
→
↘

(ππ)I =2 ∆I = 3/2

����(ππ)I =1 ∆I = 3/2

(ππ)I =0 ∆I = 1/2

I T: Transition amplitude

I A: Amplitude T [K → (ππ)I ] = AI e
iδI

I δ: Scattering phase shift

Experiments:
|A0|
|A2|

' 22.1 ”∆I = 1/2 rule”

Enhancement of amplitude changing Isospin by 1
2
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∆I = 1/2 rule (II)

T (K → (ππ)I ) = AI e iδI , I = 0, 2, |A0|/|A2| ' 22.1 ”∆I = 1/2 rule”

I ”Rule”: ∆I = 1
2

enhancement over ∆I = 3
2

transitions also in baryon sector,
e.g. Λ→ Nπ or Σ→ Nπ

I Weak interaction does not distinguish different isospin final states

=⇒ Origin: Strong interaction effects

I Short-distance QCD effects and large Nc arguments −→ only small enhancement

=⇒ Study long-distance, i.e. non-perturbative regime of QCD

=⇒ Lattice
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∆I = 1/2 rule (III)

T (K → (ππ)I ) = AI e iδI , I = 0, 2, |A0|/|A2| ' 22.1 ”∆I = 1/2 rule”

Several possible origins/contributions of long-distance QCD

I final state interactions

I physics at EQCD ≈ 250 MeV

I physics at µ = mcharm ∼ 1 GeV (via penguins)

Role of charm quark unclear. Classic arguments suggest:
Large up-charm quark mass difference may be important
[Shifman et al. NPB 120 (1977)]

I all of the above (no dominating mechanism)

Separate intrinsic QCD effects from physics at mc

[Giusti, Hernández, Laine, Weisz, Wittig, JHEP11 (2004)]
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Outline

Theoretical approach to ∆I = 1/2 rule
Effective Hamiltonian
Kaon decays on the lattice

∆I = 1/2 with an active charm quark
Strategy
H∆S=1

eff with active charm

Lattice techniques
Low-mode averaging (LMA)
Stochastic volume sources (SVS)

Results
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Effective Hamiltonian (I)

Length scale weak interaction
�

size of hadron
−→ turn to effective theory

OPE: separates long-distance and short-distance effects via effective weak Hamiltonian

Heff
w =

GF√
2

X
i

ki (VCKM ,MW , µ)Qi (µ)

I Q: (multi) quark field operators

I k: Wilson Coefficients, include all
high-energy effects

Continuum SM
OPE−−−→ Heff

w ∼ k(MW )Qcont (MW )
RG−−→ k(µ)Qcont (µ)

matching l

k(µ)Z(µa)Qlatt (a)
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Effective Hamiltonian (II)

Lowest QCD corrections
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Kaon decays on the lattice

Lattice: two approaches

↙↘

K → ππ
Direct computation

[RBC/UKQCD collaboration]

Relate K → ππ to K → π, K → 0 via ChPT

I Express K −→ ππ in terms of LECs

I Determine LECs in lattice simulation

I LECs defined in chiral limit m→ 0

Challenges/problems

I Evaluation of 4-point
functions

I Large volume required

I Relies on ChPT
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Strategy (I) [Giusti, Hernández, Laine, Weisz, Wittig, JHEP11 (2004)]

Approach:

I CP-conserving ∆S = 1 effective weak Hamiltonian H∆S=1
eff with active charm

quark (both: in lattice QCD and Chiral Perturbation Theory)

I Bypass direct computation of K → ππ [Bernard et al. PRD 32 (1985)]

=⇒ Compute K → π and K → vac matrix elements in LQCD

=⇒ relate to physical transition amplitude via ChPT

I Express ratio of kaon decay amplitudes AI via LECs [ĝ±1 ] in ChPT

|A0|
|A2|

=
1
√

2

“1

2
+

3

2

ĝ−1
ĝ+

1

”
(at LO)

I Determine ĝ−1 /ĝ+
1 in lattice QCD

Step 1: mc =mu = md = ms SU(4)-LQCD matched to SU(4)-ChPT

Step 2: mc �mu = md = ms SU(4)-LQCD matched to SU(3)-ChPT

=⇒ monitor A0,A2 as a function of mc
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Strategy (II) [Giusti, Hernández, Laine, Weisz, Wittig, JHEP11 (2004)]

Ingredient:

Neuberger (overlap) fermions: DN =
1+s

a

n
1− A

(A†A)1/2

o
, A = 1− aDW ,

[H. Neuberger, PL B417 (1998)]

I Renormalization & mixing patterns like in the continuum, provided

ψ → ψ̃ =
“

1−
1 + s

2a
D
”
ψ, ψ̄ → ψ̄

No mixing with lower dimensional operators [Capitani, Giusti, PRD (2001) 014506 ]

I Allows simulating quark masses near chiral limit −→ ChPT most reliable

I Numerical treatment expensive −→ first results quenched
Quantitative attempt to understand large ∆I = 1/2 enhancement!
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∆S = 1 weak Hamiltonian with an active charm quark (I)

Effective theory with approximate SU(4)L × SU(4)R chiral symmetry

Heff
w =

g2
w

2M2
W

Vud V ∗us

X
σ=±
{kσ1 Qσ1 + kσ2 Qσ2 }

Short distance QCD −→ moderate enhancement
k−1
k+

1
≈ 2.8 (2 loop PT)

Enhancement dominated by matrix elements of operators (long distance)

Q±1 = {(s̄γµP−u)(ūγµP−d)±(s̄γµP−d)(ūγµP−u)} − (u → c)

Q±2 = (m2
u −m2

c )(md s̄P+d + ms s̄P+d)

I SU(4)L × SU(4)R chiral group: 4-quark operator Q+
1 : (84, 1), Q−1 : (20, 1)

−→ no mixing under renormalization for GW fermions

I Q±2 don’t contribute to phys. K −→ ππ decay, mix with Q±1 for mc 6= mu
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∆S = 1 weak Hamiltonian with an active charm quark (I)

Effective theory with approximate SU(4)L × SU(4)R chiral symmetry

Heff
w =

g2
w

2M2
W

Vud V ∗us

X
σ=±
{kσ1 Qσ1 + kσ2 Qσ2 }

Short distance QCD −→ moderate enhancement
k−1
k+

1
≈ 2.8 (2 loop PT)

Enhancement dominated by matrix elements of operators (long distance)

Q±1 = {(s̄γµP−u)(ūγµP−d)±(s̄γµP−d)(ūγµP−u)} − (u → c)

Q±2 = (m2
u −m2

c )(md s̄P+d + ms s̄P+d)

SU(4) vs. SU(3) flavor approach. SU(3) symmetry: charm integrated out

H∆S=1
eff ∝

10X
i

ki (VCKM ,MW , µ)Qi (µ)

` 2 Current-current operators` 4 QCD-penguin operators` 4 EW-penguin operators

Nice: Active charm quark + GW-fermions −→ only logarithmic divergences !
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∆S = 1 weak Hamiltonian with an active charm quark (II)

Low-energy counterpart of weak effective Hamiltonian at LO

HChPT
w =

g2
w

2M2
W

Vud V ∗us

X
σ=±

ĝσ1

nˆ
Ôσ1
˜

suud
−
ˆ
Ôσ1
˜

sccd

o

4-quark operator ↔
ˆ
Ô1

˜
αβγδ

=
1

4
F 4
`
U∂µU†

´
γα

`
U∂µU†

´
δβ

U ∈ SU(4): Goldstone boson field, F: pion decay constant

|A0|
|A2|

∝
ĝ−1
ĝ+

1
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Step 1: Degenerate charm [ Giusti,Hernández,Laine,Pena,Wennekers,Wittig ’07]

Study K → π transitions in the SU(4)-symmetric theory: mu = md = ms = mc

=⇒ only ”Figure-8” graphs contribute

C±1 (x , y) =
D

Tr
h
γ0P−S(x , 0)†γ0P−S(x , 0)

i
Tr
h
γ0P−S(y , 0)†γ0P−S(y , 0)

iE
∓
D

Tr
h
γ0P−S(x , 0)†γ0P−S(y , 0)γ0P−S(y , 0)†γ0P−S(x , 0)

iE

ĝ+
1 ĝ−1

Lattice 0.51(3)(5)(6) 2.6(1)(3)(3)
”Exp” ∼ 0.5 ∼ 10.4
large Nc 1 1

errors
-1st : statistical
-2nd : matching to ChPT
-3rd : renormalization

I ∆I = 3/2 amplitude A2: close to ”experiment”

I ∆I = 1/2 amplitude A0: factor ∼ 4 too small

I Significant enhancement in SU(4)-symmetric limit:
|A0|
|A2| ∼ 6 (Exp: ∼22)
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Low-mode averaging (LMA)

I Strong statistical fluctuations as m→ 0: “spikes” in MC history

I Spectral representation of quark propagator:

S(x , y) =
1

V

nlowX
i

vi (x)⊗ v†i (y)

λi + m
+ Sh(x , y) (”low” part + ”high” part)

m > 1/ΣV - low-lying spectrum of Dm dense near m (m� λlow )
- contributions from vi averaged with same weight (∼ 1/m)

m ≤ 1/ΣV - low-lying spectrum of Dm discrete: m ≈ ∆λ = 1/ΣV
- sizeable contributions come from a few vi

- space-time fluctuations of wave-functions can be amplified
significantly for individual eigenmodes −→“spikes”

=⇒ Treat a number of low-lying modes, nlow , exactly:
Averaging over ~x , ~y in low-lying contribution reduces local fluctuations
[Giusti et al. JHEP04 (2004),DeGrand, Schaefer CPC159 (2004)]
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Low-mode averaging (LMA)

S(x , y) =
1

V

nlowX
i

vi (x)⊗ v†i (y)

λi + m
+ Sh(x , y) (”low” part + ”high” part)

=⇒ Decomposition of CF:

C 2pt = −
X
~x

˙
Tr{S(x , y)γ0P−S(y , x)γ0P−}

¸
= C ll (t)+C lh(t)+C hh(t)

C hh(t) = −
X
~x

˙
Tr{γ0P−Sh(x , 0)†γ0P−Sh(x , 0)}

¸
C ll (t) ∝ −

1

V

nlowX
k,l=1

X
x,y

δt,tx -ty

D
[v†k γ0P−vl ](x)[v†l γ0P−vk ](y)

E

C hl (t) ∝ −
1

L3

nlowX
k=1

X
x,~y

δt,tx -ty

D
v†k (x)γ0P−Sh(x , y)γ0P−vk (y)

E
+ (x ↔ y)
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Low-mode averaging (LMA)

S(x , y) =
1

V

nlowX
i

vi (x)⊗ v†i (y)

λi + m
+ Sh(x , y) (”low” part + ”high” part)

C 3pt = C llll + C hlll + C hhll + C hhhl + C hhhh

⇑ ⇑ ⇑ ⇑ ⇑
# of diagrams 1 4 6 4 1 = 16

Example: C hlll
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Extended propagators

C hl (t) ∝
D

v†k (x)γ0P− Sh(x , y)γ0P−vk (y)| {z }
Sext(x,y)

E
+ (x ↔ y)

Use eigenmode as source for inversion

η(y ; t0) = δty0γ0P−vk (y)

Solution at fixed timeslice y0:

Sext (x , y) =
X
~y

Sh(x , y)γ0P−vk (y)

PRO: Implicit volume averaging
CON: y0 fixed and nlow extra inversions
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Low-mode averaging (LMA)

I with LMA: signal improves I without LMA: signal lost

Downside: main part of CPU time spent on manipulations involving low-modes
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Step 2: Decouple charm quark mc > mu

S(z, z) =
1

V

nlowX
i

vi (z)⊗ v†i (z)

λi + m
+ Sh(z, z)

I ”EYE”-diagram: Signal still lost despite LMA

I Problem: Use of point-to-all propagators Sh(z, 0) does not allow for averaging
over ~z, the position of 4-quark operator insertion

I Approach: Estimate entire propagator Sh(z, z) (“high part”) stochastically; not
only single column! [“Hybrid-approach”, Peardon et al. CPC 172 (2005)]

I Not only loop requires stochastic all-to-all propagator
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Reminder: Stochastic volume sources (SVS)
[Bernardson et al. CPC 78 (1993) ’93, Dong, Liu PLB 328 (1994)]

I Source method: Quark propagator by solving the linear system

DΦ = η

I Generate set of Nr volume-filling source vectors {η[1], . . . , η[Nr ]} by assigning

random numbers, e.g. ∈ Z(2) = {±1} satisfying

I

〈
ηa

α(x)k
[r ]

〉
src

= 0

I

〈
ηa

α(y)[r ](η
†)b

β(x)[r ]

〉
src

= δyxδαβδ
ab

〈. . . 〉src : expectation value over the distribution of noise vectors

I Taking the solution vector Φ[r ] = D−1η[r ] −→ estimate of entire propagator
matrixD

Φa
α(x)[r ]

(η†)b
β(y)[r ]

E
src

=

*
(D−1)

ac
αγ(x , z)

−→δzy δγβδ
cb

ηc
γ(z)[r ]

(η†)b
β(y)[r ]

+
src

= Sab
αβ(x , y)

Eric Endreß ∆I = 1/2 rule



Reminder: Stochastic volume sources (SVS)
[Bernardson et al. CPC 78 (1993) ’93, Dong, Liu PLB 328 (1994)]

I Source method: Quark propagator by solving the linear system

DΦ = η

I Generate set of Nr volume-filling source vectors {η[1], . . . , η[Nr ]} by assigning

random numbers, e.g. ∈ Z(2) = {±1} satisfying

I

〈
ηa

α(x)k
[r ]

〉
src

= 0

I

〈
ηa

α(y)[r ](η
†)b

β(x)[r ]

〉
src

= δyxδαβδ
ab

〈. . . 〉src : expectation value over the distribution of noise vectors

I Taking the solution vector Φ[r ] = D−1η[r ] −→ estimate of entire propagator
matrixD

Φa
α(x)[r ]

(η†)b
β(y)[r ]

E
src

=

*
(D−1)

ac
αγ(x , z)

−→δzy δγβδ
cb

ηc
γ(z)[r ]

(η†)b
β(y)[r ]

+
src

= Sab
αβ(x , y)

Eric Endreß ∆I = 1/2 rule



Reminder: Stochastic volume sources (SVS)
[Bernardson et al. CPC 78 (1993) ’93, Dong, Liu PLB 328 (1994)]

I Source method: Quark propagator by solving the linear system

DΦ = η

I Generate set of Nr volume-filling source vectors {η[1], . . . , η[Nr ]} by assigning

random numbers, e.g. ∈ Z(2) = {±1} satisfying

I

〈
ηa

α(x)k
[r ]

〉
src

= 0

I

〈
ηa

α(y)[r ](η
†)b

β(x)[r ]

〉
src

= δyxδαβδ
ab

〈. . . 〉src : expectation value over the distribution of noise vectors

I Taking the solution vector Φ[r ] = D−1η[r ] −→ estimate of entire propagator
matrixD

Φa
α(x)[r ]

(η†)b
β(y)[r ]

E
src

=

*
(D−1)

ac
αγ(x , z)

−→δzy δγβδ
cb

ηc
γ(z)[r ]

(η†)b
β(y)[r ]

+
src

= Sab
αβ(x , y)

Eric Endreß ∆I = 1/2 rule



Reminder: Stochastic volume sources (SVS)
[Bernardson et al. CPC 78 (1993) ’93, Dong, Liu PLB 328 (1994)]

I Source method: Quark propagator by solving the linear system

DΦ = η

I Generate set of Nr volume-filling source vectors {η[1], . . . , η[Nr ]} by assigning

random numbers, e.g. ∈ Z(2) = {±1} satisfying

I

〈
ηa

α(x)k
[r ]

〉
src

= 0

I

〈
ηa

α(y)[r ](η
†)b

β(x)[r ]

〉
src

= δyxδαβδ
ab

〈. . . 〉src : expectation value over the distribution of noise vectors

I Taking the solution vector Φ[r ] = D−1η[r ] −→ estimate of entire propagator
matrixD

Φa
α(x)[r ]

(η†)b
β(y)[r ]

E
src

=

*
(D−1)

ac
αγ(x , z)

−→δzy δγβδ
cb

ηc
γ(z)[r ]

(η†)b
β(y)[r ]

+
src

= Sab
αβ(x , y)

Eric Endreß ∆I = 1/2 rule



Reminder: Stochastic volume sources (SVS)
[Bernardson et al. CPC 78 (1993) ’93, Dong, Liu PLB 328 (1994)]

I Source method: Quark propagator by solving the linear system

DΦ = η

I Generate set of Nr volume-filling source vectors {η[1], . . . , η[Nr ]} by assigning

random numbers, e.g. ∈ Z(2) = {±1} satisfying

I

〈
ηa

α(x)k
[r ]

〉
src

= 0

I

〈
ηa

α(y)[r ](η
†)b

β(x)[r ]

〉
src

= δyxδαβδ
ab

〈. . . 〉src : expectation value over the distribution of noise vectors

I Taking the solution vector Φ[r ] = D−1η[r ] −→ estimate of entire propagator
matrixD

Φa
α(x)[r ]

(η†)b
β(y)[r ]

E
src

=

*
(D−1)

ac
αγ(x , z)

−→δzy δγβδ
cb

ηc
γ(z)[r ]

(η†)b
β(y)[r ]

+
src

= Sab
αβ(x , y)

Eric Endreß ∆I = 1/2 rule



Reminder: Stochastic volume sources (SVS)
[Bernardson et al. CPC 78 (1993) ’93, Dong, Liu PLB 328 (1994)]

I Source method: Quark propagator by solving the linear system

DΦ = η

I Generate set of Nr volume-filling source vectors {η[1], . . . , η[Nr ]} by assigning

random numbers, e.g. ∈ Z(2) = {±1} satisfying

I

〈
ηa

α(x)k
[r ]

〉
src

= 0

I

〈
ηa

α(y)[r ](η
†)b

β(x)[r ]

〉
src

= δyxδαβδ
ab

〈. . . 〉src : expectation value over the distribution of noise vectors

I Taking the solution vector Φ[r ] = D−1η[r ] −→ estimate of entire propagator
matrixD

Φa
α(x)[r ](η

†)b
β(y)[r ]

E
src

=

*
(D−1)

ac
αγ(x , z)

−→δzy δγβδ
cb

ηc
γ(z)[r ](η

†)b
β(y)[r ]

+
src

= Sab
αβ(x , y)

Eric Endreß ∆I = 1/2 rule



Reminder: Stochastic volume sources (SVS)
[Bernardson et al. CPC 78 (1993) ’93, Dong, Liu PLB 328 (1994)]

I Source method: Quark propagator by solving the linear system

DΦ = η

I Generate set of Nr volume-filling source vectors {η[1], . . . , η[Nr ]} by assigning

random numbers, e.g. ∈ Z(2) = {±1} satisfying

I

〈
ηa

α(x)k
[r ]

〉
src

= 0

I

〈
ηa

α(y)[r ](η
†)b

β(x)[r ]

〉
src

= δyxδαβδ
ab

〈. . . 〉src : expectation value over the distribution of noise vectors

I Taking the solution vector Φ[r ] = D−1η[r ] −→ estimate of entire propagator
matrixD

Φa
α(x)[r ](η

†)b
β(y)[r ]

E
src

=

*
(D−1)

ac
αγ(x , z)

−→δzy δγβδ
cb

ηc
γ(z)[r ](η

†)b
β(y)[r ]

+
src

= Sab
αβ(x , y)

Eric Endreß ∆I = 1/2 rule



Dilution (I) [Peardon et al. CPC 172 (2005)]

Stochastic volume sources (SVS):

NICE: Access to entire propagator −→ increase in statistics
−→ reduced sensitivity to local fluctuations

BAD: Explicit introduction of stochastic noise (exact only limit Nr →∞)

Technique for reducing intrinsic stochastic noise: ”Dilution”

n×

0BBBBB@

η

Z1

Z2

Z3

...
Zn

1CCCCCA

dilution−−−−→

0BBBBB@

η1

Z1

0
0
...
0

1CCCCCA,
0BBBBB@

η2

0
Z2

0
...
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Dilution (II)

p
Ncfg

abs. error ×
p

Ncfg

vs.p
Ncfg

Eric Endreß ∆I = 1/2 rule



Preliminary results: Eye-diagram

R− = C−EYE/C 2
2pt R+ = C +

EYE/C 2
2pt

lhhh

I 140 cnfgs, 32x163

I Quenched

I β = 5.8485

I nlow = 20

I Spin-dilution

I mπ = 322 MeV

I light:mc = 2mu

I heavy:mc = 10mu
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Summary and Outlook

I Computational framework to quantify different sources of ∆I = 1/2
enhancement: ∆S = 1 weak effective Hamiltonian with active charm and
Ginsparg-Wilson fermions

I Current stage: Decouple charm quark mass, i.e. mc > mu , to monitor
dependence of amplitudes on mc

I Problem: Signal lost due to closed quark loops in Eye-diagram

I Proposed solution: Combining LMA with stochastic all-to-all propagators

I Status: Noise can be reduced significantly

I Prospective:

I Still bare quantities → renormalization
I Dynamical configurations with Wilson sea quarks (Mixed action)
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Diagrams required for renormalization

D
0|O±1 (z)|K

E
:

〈0|s̄P±d |K〉 :

D
π|O±2 (z)|K

E
:
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[F. Bernardoni, N. Garron, P. Hernandez, S. Necco and C. Pena et al. Phys.Rev D83 (2011)]
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