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Overview

• What is NSPT and what is it useful for?

• Teaming up NSPT and the Schrödinger Functional.



The Schrödinger Functional 
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Perturbation Theory

hO[�]i = 1

Z

Z
D� O[�] exp {S0[�] + ↵S1[�] + . . .} = O(0)

+ ↵O(1)
+ . . .

In perturbation theory, we want to 
obtain expansions like this one:

Usually, one calculatesO(i)

using Feynman diagrams and rules extracted from

S[�] = S0[�] + ↵S1[�] + . . .



LPT in the Schrödinger Functional

A typical diagram
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LPT challenges

I Diagram Level
I Schrödinger functional enhances number of

diagrams even at 1-loop.

I Vertex Level
I SF boundary conditions lead to background field.
I Many actions in use, many Feynman rules.

PT in the SF

• Big number of diagrams even at low orders

• Background field makes Feynman rules complicated

In the Schrödinger Functional one would like to avoid PT!

Numerical Stochastic PT avoids both!



Stochastic Quantization 1
We want to calculate an expectation value

Introduce a new d.o.f., the stochastic time  .t

The evolution in stochastic time is given by the Langevin Equation,

hO[�]i = 1

Z

Z
D� O[�] e�S[�]

�̇

⌘

(x; t) = �@

�⌘(x;t) S[�] + ⌘(x; t)

With Gaussian noise  .⌘

Parisi, Wu, 1981



Stochastic Quantization 2

Defining the ‘noise average’

hOi⌘ =
1

Z 0

Z
D⌘ O e�

1
4

R
d[z,⌧ ] ⌘2(z,⌧),

One asserts that the functional integral can be calculated using

hO[�⌘(x1; t), . . . ,�⌘(xn; t)]i⌘
t!1���! hO[�(x1), . . . ,�(xn)]i



Stochastic Perturbation 
Theory

Split up the action into free and interacting parts

and formally write �(x; t) =
1X

i=0

g

i
�

(i)(x; t)

Using the Langevin equation one may now obtain hOi⌘ =
1X

i=0

gihOi(i)⌘

(�')(r) =
rX

i=0

�(i)'(r�i)By defining (�+ ')(r) = �(r) + '(r),

S[�] = S0[�] + gS1[�] + . . .



Numerical Stochastic 
Perturbation Theory

• In NSPT, one integrates the perturbative Langevin 
Equation numerically.

• This is similar to hybrid MC methods c.f. Stefan’s talk.

• However, there is no perturbative expression for an 
accept/reject step.

• Hence, one is stuck with a finite integration time

and has to extrapolate

⌧

⌧ ! 0 .
Di Renzo, 2004



Stochastic Gauge Fixing

9

us the chance to motivate some prescriptions in the implementation of NSPT for LGT, in
particular the Stochastic Gauge Fixing, which is crucial, as already said, to demonstrate the
results of [15]. The same questions were studied in [11] for some simple models. The purpose
of this section is to analyse the peculiarities of LGT. This will lead us to the introduction of
Stochastic Gauge Fixing and the regularization of zero modes.

Let us start considering the process defined by (11) (or equivalently (16)), with F given
in (8). It is not difficult to see that a limit distribution cannot exist. To illustrate this point
we consider the system in a continuum regularization. The Langevin equation then reads
(Dab

ν is the gauge covariant derivative; no expansion has yet been made)

∂

∂t
Aa

µ(η, x; t) = Dab
ν F b

νµ(η, x; t) + ηa
µ(x; t).

The formal solution for the perturbative components of the fields (the solutions of the anal-
ogous to (11) and (16)) reads (in Fourier space)

(18) A(n)a
µ (k; t) = T ab

µν

∫ t

0

ds e−k2(t−s)f (n)b
ν (k, s) + Lab

µν

∫ t

0

ds f (n)b
ν (k, s),

where T ab
µν and Lab

µν are the abelian transverse and longitudinal projectors

T ab
µν = (δµν −

kµkν

k2
)δab, T ab

µνT
bc
νρ = T ac

µρ,

Lab
µν =

kµkν

k2
δab, Lab

µνL
bc
νρ = Lac

µρ, T ab
µνL

bc
νρ = 0.

The function f (n) represents the interaction term, which only contains perturbative compo-
nents of the field of order strictly lower than n

f (n)a
ν (k; t) = gI(3)(n−1)a

µ (k; t) + g2I(4)(n−2)a
µ (k; t),

f (0)a
ν (k; t) = ην(k; t)a.

Here I(3)(n)a
µ and I(4)(n)a

µ are the n−th perturbative components of three and four gluons
interaction. For instance

gI(3)a
µ (k; t) =

igfabc

2(2π)n

∫

dpdq δ(k + p + q) Ab
ν(−p; t) Ac

σ(−q; t) v(3)
µνσ(k, p, q),

where
v(3)

µνσ(k, p, q) = δµν(k − p)σ + cyclic permutations.

A first divergence appears projecting the formal solution (18) by the longitudinal abelian
projector Lµν . Along such directions the expanded Langevin system (16) presents no damp-
ing factor e−k2t , for any of the perturbative components A(n)

Lab
µνA

(n)b
µ (k; t) = Lab

µν

∫ t

0

ds f (n)b
ν (k, s).

The field A(0) clearly diverges like a random walk (along such degrees of freedom). The
behaviour of the higher perturbative components is difficult to predict in general. However,
since the longitudinal components of A(n) only depend on the {A(m)|m < n}, it is natural
to expect diverging fluctuations at any order as was indeed observed in [3].

In the lattice regularization the interaction terms f (n) become much more complicated, but
the argument for expecting a divergence remains unchanged. This problem is not avoided
if we choose to work with the U variables (as in (11)), instead of the algebra ones A (as in

In principle no GF is need. However, if one looks at the Langevin eqn.,

One finds that for a solution in Fourier space
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The longitudinal component will diverge like a random walk.
GF introduces a damping factor and stabilizes the simulation.

Zwanziger, 1981

A similar statement holds for the gauge zero modes.



Gauge Fixing Pitfalls
The gauge fixing function in the SF at the boundary reads

[d⇤q(x)]ij =

(
(a2/L3)

P
y[q0(0,y)]ij

0

This amounts to suppressing spatial zero modes at the boundary.

It acts on the fluctuation field, writing

Uµ(x) = exp{g0 a qµ(x)}Vµ(x)

Lüscher, Narayanan, Weisz, Wolff, 1992

x0 = 0, i = jif
else



Bad History
M

2

t̃

Incorrect gauge fixing leads to a slow increase of noise (which can be confusing).



Good History
M

2

t̃

Correct gauge fixing leads to a drastic decrease of the noise.



Advantages of NSPT

• No Feynman Rules, i.e. easier to implement various 
actions.

• No Feynman Diagrams, i.e. higher order are only a 
matter of CPU time.

• NSPT codes can benefit from non-perturbative ones ...

• ... and vice versa!



No Free Lunch

• Way more numerical effort than common PT.

• Stochastic noise makes extraction of logs difficult.

But NSPT has many applications, e.g. improvement:

5.2. Perturbative Matching

Perturbative Improvement of Observables

Perturbative improvement [dD+95] has been shown to be an e�ective method to speed
up the approach to the continuum limit of a number of observables. The aim is to remove
at a given order of perturbation theory all O((a/L)n log(L/a)m) cuto� e�ects. To this
end, one defines the improved observable

OI(a/L) = O(a/L)
1 + ”(a/L) , ”(a/L) = O(a/L) ≠ O(0)

O(0) = ”(0)(a/L) + g2
0”(1)(a/L) + . . . .

(5.49)
The tree level improvements ”(0)

ij

for the step-scaling functions �
ij

have already been cal-
culated in [BdMGS10]. We want to investigate if the remaining cut-o� e�ects that were
observed non-perturbatively can be understood qualitatively as a one-loop contribution.

One Loop Analysis

We are interested specifically in the cut-o� e�ects of �33 and �44 [BdMGS10],

�33(L1) = R
”A

(L2)/R
”A

(L1), �44(L1) = Rkin
1 (L2)/Rkin

1 (L1), (5.50)

R
”A

(L) =
f stat

”A

(◊, T

2 )
f stat

A

(◊, T

2 )
≠ f stat

”A

(◊Õ, T

2 )
f stat

A

(◊Õ, T

2 )
, T = L, (5.51)

Rkin
1 (L) = fkin

1 (◊)
f stat

1 (◊) ≠ fkin
1 (◊Õ)

f stat
1 (◊Õ) , T = L/2. (5.52)

We assume again that the ratio s = L2/L1 is set to two. All relevant observables were
calculated at one loop order using pastor. Again, the static quantities have a rather
mild L/a-dependence and hence the continuum extrapolations (obtained as explained in
appendix C.3) can be performed in a straight forward way. The one loop improvements
”(1)

33 and ”(1)
44 for �33 and �44 are presented in figure 5.10, together with the tree level

improved Monte Carlo data from [B+10]. One should keep in mind that our investigation
uses a di�erent discretization of the static Lagrangian (Eichten-Hill, [EH90b]) than the
ones (HYP1/2) employed in [BdMGS10]. However, the sizes of the cuto� e�ects are
qualitatively comparable. Perturbation theory provides an interesting hint for non-
perturbative computations: the cuto� e�ects are minimal for ◊ = 0.5, ◊Õ = 1.0.
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The SF coupling

The SF introduces an external scale T = cL (usually c = 1).

This enables us to give a precise definition for a coupling

g(µ = 1/L)

Furthermore one can calculate a discrete beta-function

u = g2(L), u0 = g2(sL), �(s, u) = u0

On the lattice: ⌃(s, u, a/L) = u0

Lüscher, Narayanan, Weisz, Wolff, 1992



Defining the SF coupling

e�� =

Z
D[u]e�S[U ]Defining as usual

The usual choice for the background field is ‘defined’ by setting

C = i/L diag(�1,�2,�3), C 0 = i/L diag(�0
1,�

0
2,�

0
3)

Where �i,�
0
i ⌫ ⌘depend on two parameters, and .

one can define a coupling through @�

@⌘

����
⌘=⌫=0

=
k

g2

Lüscher, Sommer, Weisz, Wolff, 1993



O(a) improvement

To implement O(a) improvement, one defines

S[U ] =
1

g2

X

p

w(p) tr[1� U(p)]

For plaquettes at the boundary, containing a spatial link, one sets

w(p) = ct(g0) = 1 + c(1)t g2 + . . . else w(p) = 1

Lüscher, Sommer, Weisz, Wolff, 1993



The Coupling Order by Order

We then write the coupling order by order,

[4] and more recently in [10, 11] are restricted to the choice “A” of [4] for
these numbers. All other links interior to the box are integrated over with
the invariant SU(3) measure in (2.1). The action is defined by the usual sum
over oriented plaquettes,

S(U) =
1

g2
0

∑

p

w(p) tr(1 − Up). (2.4)

The weight w(p) is unity for all plaquettes except those at the boundary that
contain the time-direction and one of the frozen spatial links where we put

w(p) = ct(g0) = 1 + c(1)
t g2

0 + c(2)
t g4

0 + . . . (2.5)

The freedom of adjusting this weight is required for improvement of O(a)
lattice artefacts that are otherwise introduced by the surfaces.

We set αSF = ḡ2/4π and the SF-coupling ḡ is defined from the response
in the energy Γ to infinitesimal changes in the surface fields by varying η,

ḡ2 = k/Γ′ , (2.6)

where Γ′ is the derivative with respect to η at η = 0 and k is a constant. It
is fixed by normalizing the leading term in the perturbative expansion

ḡ2(L) = g2
0 + m1(L/a)g4

0 + m2(L/a)g6
0 + . . . (2.7)

The one loop coefficient m1 was computed in ref. [4]. Our objective here
is the computation of m2 for gauge group SU(3). In order to determine the
improvement coefficients in (2.5) we need to explicitly exhibit the dependence
of the coefficients mi on them. Inspection of the structure of the contributions
leads us to write

m1 = ma
1 + c(1)

t mb
1, (2.8)

m2 − m2
1 = ma

2 + c(1)
t mb

2 +
[

c(1)
t

]2
mc

2 + c(2)
t md

2. (2.9)

To work out the perturbative expansion of Γ we fix the gauge as discussed
in [9]. It is an important advantage of the SF-framework that there is a
unique background field of minimal action that interpolates between the
surface values (2.2), (2.3),

V (x, k) = exp[a(C + (C ′ − C)x0/L)], V (x, 0) = 1, (2.10)

3

with

We use this as a check for our quenched code!
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3

Bode, Weisz, Wolff, 1997



Data Analysis

• We use a custom implementation of the method 
presented by Ulli Wolff (CPC 156, 2004) to control 
autocorrelation and determine the errors.

• The extrapolation           was done using a bootstrap 
analysis.

• We performed a cross check using binned Jackknife 
samples.

⌧ ! 0



Our Data

• Did test runs on L/a = 4,8,12

• Coupling is known to be hard to measure

• We experience

• Lots of noise

• Slow thermalization

• Long autocorrelation times



Simulation Details
• L = 4 on TURING (Univ. of Milan Bicocca)
• L = 8,12 on FERMI (CINECA)

www.hpc.cineca.it www.mib.infn.it

CORE-H

0.0015 0.003 0.005 0.0015 0.003 0.005 0.001 0.002 0.003

270(50) 540(80) 800(100) 1.6(2)k 3.3(2)k 6.3(3)k 6.6(3)k 14.9(5)k 21.8(6)k

2k2k2k 1.6k1.6k1.6k 333333

⌧
Ne↵

L = 8 L = 4L = 12

This is an ideal test case to check core performances!

http://www.hpc.cineca.it
http://www.hpc.cineca.it
http://www.mib.it
http://www.mib.it
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Results - One Loop

Known results (red) form: Bode, Weisz, Wolff: hep-lat/9809175

m
a 1

⌧g

L = 4 L = 8 L = 12
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Results - Two Loops

Known results (red) form: Bode, Weisz, Wolff: hep-lat/9809175

m
a 2

⌧g

L = 4 L = 8

m
a 2

⌧g

L = 12



Conclusions

• Quenched NSPT for the SF is implemented.

• Applications: Cut-off effects.

• Next Step: Fermions!



A word about logs.

C. Useful Formulae and Methods

where
b(x0) = E x0 � iC, E = �i{C � � C}/T. (C.10)

The choices of C, C � above give E a simple form,

E = ��
⇧

3⇤̃8, � = 1
LT

�
⇥ + ⇧

3

⇥
. (C.11)

The background field then has the properties

V (t) Ia = Ia V (t) ei⇥a(t), (C.12)
eia2E Ia = Iaeia2E ei⇥�

a , (C.13)

where the phases ⌃, ⌃� are listed in table C.1.

a ⌃�
a ⌃a(t)

1 �3 a2� �3a�t + a
L(⇥[3

2 � ⌅] � �
3 )

3 0 0
4 �3 a2� �3a�t + a

L(⇥[3
2 + ⌅] � 2�

3 )
6 0 a

L(2⇥⌅ � �
3 )

8 0 0

Table C.1.: Phases ⌃a, ⌃�
a as in [Tak09]. Note that ⌃2 = �⌃1, ⌃5 = �⌃4, ⌃7 = �⌃6, and

analog equations hold for ⌃�
a.

C.3. Extrapolation of Perturbative Data
If we evaluate an observable at one loop with pastor, we obtain numerical estimates
f(I), up to round-o⌘ errors, for a range of lattice resolutions I = L/a. We assume that
f represents an observable that has at most a logarithmic divergence. The data is then
expected to have the asymptotic expansion [LW86]

f(I) =
⇥⇤

n=0

an + bn log I

In
. (C.14)

In some cases, one may restrict some of the coe✓cients. If the observable is known to
have a continuum limit, we may drop b0. Furthermore, a1 and b1 may be set to zero if we
deal with an O(a)-improved quantity. One is usually interested in obtaining estimates
for the first few coe✓cients ai, bi. A method to extract these is described in [LW86],
where multiple data points are combined to improve the estimates successively, up to a
point where round-o⌘ errors can no longer be neglected and become comparable to the
systematic uncertainty.

We found it more convenient to work with another (in certain cases equivalent) method
proposed in [BWW00]. Here, one performs a number of fits with a fit function like (C.14),
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M. Lüscher, P. Weisz, 1996,

One can extract the coefficients using successive fits.
A. Bode, P. Weisz, U. Wolff, 2000.

But: One requires many data points with high precision.


