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Overview

® VWhat is NSPT and what is it useful for?

® Teaming up NSPT and the Schrodinger Functional.



The Schrodinger Functional

Dirichlet boundary
conditions in
time.

Periodic boundary
conditions in
space.

M. Luscher, P.Weisz, R. Narayanan, U.Wolff, 1992. S. Sint, 1996, M. Luscher 2006.
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Perturbation I'heory

In perturbation theory, we want to
obtain expansions like this one:

(O[¢]) = %/qu O[¢] exp {So[d] + aSi[#] +...} =0 + a0 + ...

Usually, one calculates Q¥
using Feynman diagrams and rules extracted from

S[g] = Sol¢] + aSi[¢] + ...



PT in the SF

In the Schrodinger Functional one would like to avoid PT!
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® Big number of diagrams even at low orders

® Background field makes Feynman rules complicated

Numerical Stochastic PT avoids both!



Stochastic Quantization |

We want to calculate an expectation value
1 _
0l = [ Do Ogl 1
Introduce a new d.o.f., the stochastic time/1.

The evolution in stochastic time is given by the Langevin Equation,
b (m3t) = —0p, (2:) S[¢] + n(z;t)
With Gaussian noisev,.

Parisi,VVu, 1981



Stochastic Quantization 2

Defining the ‘noise average’
1 —1 2.7l n?(z. 7
<O>n=7/737706 1) dlzrln(z7)

One asserts that the functional integral can be calculated using

Oy (x151), .y G (s )]y —— (OB(1), - .., P(as)])



Stochastic Perturbation
Theory

Split up the action into free and interacting parts

S\p| = Sol¢] + 951(9]

and formally write ¢(x Z "o (w

Using the Langevin equation one may now obtaln Z g

By defining (¢ + )" = ") + SO(T), ()" = Z P Y



Numerical Stochastic
Perturbation I heory

In NSPT, one integrates the perturbative Langevin
Equation numerically.

This is similar to hybrid MC methods c.f. Stefan’s talk.

However, there is no perturbative expression for an
accept/reject step.

Hence, one is stuck with a finite integration time 7

and has to extrapolate 7 — 0.

Di Renzo, 2004



Stochastic Gauge Fixing

Zwanziger, |98
In principle no GF is need. However, if one looks at the Langevin egn.,

a a a a
S AL, w3t) = DFY (n, z;t) + nt(x;t)

One finds that for a solution in Fourier space
t t
n)a/(1i.. L ab —k2(t—s n)b ab n)b
AR (rst) = T2k [ dse 00 ) 1 [ ds 0

The longitudinal component will diverge like a random walk.
GF introduces a damping factor and stabilizes the simulation.

A similar statement holds for the gauge zero modes.



Gauge Fixing Pitfalls

The gauge fixing function in the SF at the boundary reads

(@®/L°) > [00(0,¥)]i;  if x9=0,i=]
0 else

d"q(x)]ij = {

It acts on the fluctuation field, writing
Un(z) = exp{go aqu(z)}V,(z)

This amounts to suppressing spatial zero modes at the boundary.

Luscher, Narayanan, VWeisz, Wolff, 1992



Bad Ristory

Sesome m® ¢ -*lj

g !’-’lhi o I
e e B A eaas

f8crywss,. o

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

~

t in 10 updates

Incorrect gauge fixing leads to a slow increase of noise (which can be confusing).



Good History
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Correct gauge fixing leads to a drastic decrease of the noise.



Advantages of NSPT

No Feynman Rules, i.e. easier to implement various
actions.

No Feynman Diagrams, i.e. higher order are only a
matter of CPU time.

NSPT codes can benefit from non-perturbative ones ...

... and vice versa!



No Free Lunch

® VWay more numerical effort than common PT.

® Stochastic noise makes extraction of logs difficult.

But NSPT has many applications, e.g. improvement:

__O(a/L)
Orla/L) = 17 5(a/L)
5(a/L) = Ola/L) — O0) _ 5 (a/L) + g2V (a/L) + ...

O(0)
de Divitiis et al. Nucl. Phys. B437



The SF coupling

The SF introduces an external scale T = cL (usually ¢ = I).

This enables us to give a precise definition for a coupling
g(p=1/L)
Furthermore one can calculate a discrete beta-function
w=7g°(L), v =7g°(sL), o(s,u)=1u

On the lattice: X (s, u,a/L) = v’

Luscher, Narayanan, VWeisz, Wolff, 1992



Defining the SF coupling

The usual choice for the background field is ‘defined’ by setting
C =i/L diag(¢1, d2,¢3), C" =i/L diag(dy, Py, d3)

Where ¢;, ®; depend on two parameters, v and 1.

Defining as usual ¢

one can define a coupling through

5’77

-

k

- =2
n=v=0 g

Luscher, Sommer, Weisz, Wolff, 1993



O(a) improvement

To implement O(a) improvement, one defines

— sz trl_ (p)]

For plaquettes at the boundary, containing a spatial link, one sets

w(p) = ci(go) = 1+ 6(1)92 - . else w(p) =1

Luscher, Sommer, Weisz, Wolff, 1993



The Coupling Order by Order

We then write the coupling order by order,

G3(L) = g2+ mi(L/a)gt + ma(L/a)gs + . ..

with
a 1) b
1 = ml _I_ Cg )ml ,
g e - 49
mo —mj = mz"‘cg )m2—|— Cg) m2+c§ )mQ

We use this as a check for our quenched code!

Bode, Weisz, Wolff, 1997



Data Analysis

® Ve use a custom implementation of the method
presented by Ulli Wolff (CPC 156,2004) to control
autocorrelation and determine the errors.

® [he extrapolation 7 — 0 was done using a bootstrap
analysis.

® We performed a cross check using binned Jackknife
samples.



Our Data

® Did test runs on L/a = 4,8,12
® Coupling is known to be hard to measure
® VVe experience

® | ots of noise

¢ Slow thermalization

® |Long autocorrelation times



Simulation Details

L =4 on TURING (Univ. of Milan Bicocca)

e L = 8,12 on FERMI (CINECA)

This is an ideal test case to check core performances!

L =12 L =38 L =14
T 0.0015 | 0.003 0.005 | 0.00I5 | 0.003 0.005 0.001 0.002 0.003
Neff 270(50) | 540(80) [800(100)| 1.6(2)k | 3.3(2)k | 6.3(3)k | 6.6(3)k [ 14.9(5)k | 21.8(6)k
CORE-H 2k | .6k 33

www.hpc.cineca.it www.mib.infn.it



http://www.hpc.cineca.it
http://www.hpc.cineca.it
http://www.mib.it
http://www.mib.it
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Conclusions

® Quenched NSPT for the SF is implemented.
® Applications: Cut-off effects.

® Next Step: Fermions!



A word about logs.

An observable with at most a logarithmic divergence looks like this

= a, + b, log I
- Sttt oy,

n=0

M. Luscher, P Weisz, 1996,

One can extract the coefficients using successive fits.
A. Bode, P.Weisz, U.Wolff, 2000.

But: One requires many data points with high precision.



