Issues in Hybrid Monte Carlo Simulations

Stefan Schaefer

STRONGnet 2012

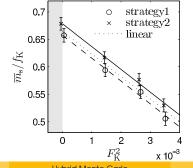
Based on work done in collaboration with Martin Lüscher

- Non-renormalizability of the HMC algorithm, JHEP 1104 (2011) 104
- Lattice QCD without topology barriers, JHEP 1107 (2011) 036
- Lattice QCD with open boundary conditions and twisted-mass reweighting, arXiv:1206.2809, accepted by CPC

Introduction

Continuum limit

- Continuum limit essential part of lattice computation.
- Numerical computations at various fine a. Extrapolate $a \rightarrow 0$.
- Can bring important corrections.



ALPHA'12

Overview

Rising cost as a ightarrow 0

• Need more points for fixed volume $L = \text{const} \rightarrow N = a^{-4}$.

Algorithms get slower.
 → physics behind this subject of this talk.

Program

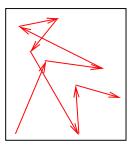
- Field theoretical framework for scaling of algorithms.
- The role of the topological charge.
- Open boundary conditions.
- Numerical results.

Lattice simulations

- Markov Chain Monte Carlo
- Sequence of field configurations

$$U_1 o U_2 o U_3 o \cdots o U_N$$

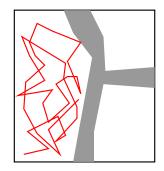
- Reliable computations need a representative sample of field space.
- Subsequent measurements are correlated.



Dangers

- Algorithm is slow.
- Detectable by measuring autocorrelations.

- There are barriers in field space.
- Hard to detect.



Autocorrelations

Sequence of field configurations

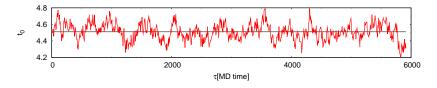
$$U_1
ightarrow U_2
ightarrow U_3
ightarrow \cdots
ightarrow U_N$$

Measurements of observables

$$A_1 o A_2 o A_3 o \cdots o A_N$$

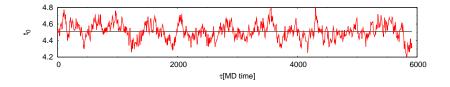
Estimates

$$\langle A
angle pprox rac{1}{N} \sum_{i=1}^N A_i$$



Stefan Schaefer

Autocorrelation time



Autocorrelation function

$$\Gamma(\tau) = \langle (\boldsymbol{A}(\tau) - \overline{\boldsymbol{A}}) (\boldsymbol{A}(0) - \overline{\boldsymbol{A}}) \rangle$$

Integrated Autocorrelation Time

$$\tau_{\rm int}({\pmb A}) = \int_{-\infty}^\infty {\rm d}\tau\,\rho(\tau) \quad {\rm with} \quad \rho(\tau) = \frac{\Gamma(\tau)}{\Gamma(0)}$$

Stefan Schaefer

Hybrid Monte Carlo

Critical slowing down

Integrated autocorrelation time

$$au_{
m int}(A) = \int_0^\infty rac{\Gamma(t)}{\Gamma(0)}\,dt$$

Time to make an "independent" configuration.

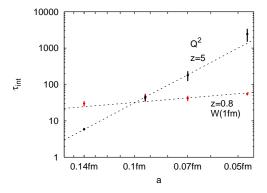
• How do $\Gamma(t)$ and τ_{int} scale as $a \rightarrow 0$?

■ Is there universal behavior?

$$au_{
m int} \propto a^{-z}$$

Are there barriers forming as $a \rightarrow 0$? \rightarrow topological charge

Observed scaling: Pure gauge theory



SOMMER, VIROTTA, S.S.'10

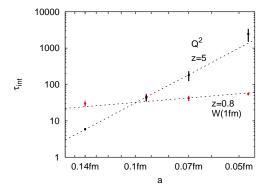
see also Del Debbio et al'02, Lüscher'10

- Pure gauge theory, Wilson action, L = 2.4 fm
- 1 fm imes 1 fm Wilson loop o $au_{
 m int}$ \propto $a^{-0.8}$
- \blacksquare Topological charge $Q^2
 ightarrow au_{
 m int} \propto a^{-5}$

Stefan Schaefer

Hybrid Monte Carlo

Observed scaling: Pure gauge theory



Sommer, Virotta, S.S.' 10 see also Del Debbio et al'02, Lüscher' 10

Even in pure gauge theory, measurements below 0.05 fm difficult

Stef	an	Sch	aef	er

Summary – Outlook: Part I

Summary

 An algorithm is a prescription to generate sequence of fields

$$U_1 o U_2 o U_3 o \cdots o U_N$$

• Want to study scaling as $a \rightarrow 0$.

Outlook

Study problem with field theoretical methods.

Example: Langevin equation as update algorithm.

Langevin equation

Field theory with a scalar field ϕ and action $oldsymbol{S}[\phi]$

$$Z=\int [d\phi] e^{-S[\phi]}$$

Langevin equation

$$\partial_t \phi = -rac{\delta {old S}[\phi]}{\delta \phi} + \eta_t$$
 t: simulation time η_t : Gaussian noise

- Generates fields with probability $P(\phi) \propto e^{-S[\phi]}$.
- Studied in the context of stochastic quantization. (Parisi & Wu)
- Take fields ϕ_n at time $t_n = n\tau$.

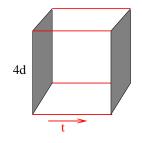
Scaling of

$$\Gamma_A(t) = \langle A(t)A(0)
angle - ar{A}^2$$

- 2pt function in 5d theory
- 4d field theory + simulation time
- Analogy to 4d

 $\langle O(x)O(0)\rangle$

Use renormalization group analysis to study scaling of AC function.



Basic steps

$$Z=\int [d\phi]e^{-S[\phi]}$$
 .

 Include differential equation constraint by delta function

$$Z' = \int [d \phi] [d \eta] \delta \left[\partial_t \phi + \delta S[\phi] - \eta
ight] e^{-S[\phi] - |\eta|^2/2}$$

- Replace delta function with Lagrange multipliers.
- Integrate out Gaussian noise.
- Get a renormalizable 5d field theory.

Expected scaling

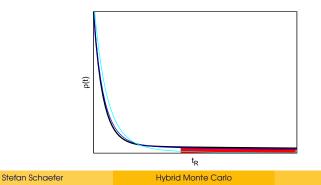
After renormalization of time, autocorrelation function scales

$$t=Z_t(g_0^2)t_R/a^2$$

15-10-2012

15 / 48

Pointwise convergence

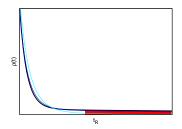


Expected scaling

Autocorrelation time with fixed window scales.

$$\tau_{\rm int} = \frac{1}{2} \int_0^W \rho(t) \, dt$$

Limits $a \to 0$ and $W \to \infty$ do not necessarily commute.



Stefan Schaefer

Consequences for Langevin equation

$$\partial_t \phi = -\frac{\delta \boldsymbol{S}[\phi]}{\delta \phi} + \eta_t$$

Field ϕ has dimension (length) \Rightarrow Simulation time t has dimension (length)²

- Autocorrelations scale essentially with a^{-2}
- Renormalizability perturbation theory also for gauge theory

ZINN-JUSTIN&ZWANZIGER'88

In SU(3) Yang-Mills theory

$$au_{
m int} \propto g_0^{9/11} r_0^2 (1 + \mathcal{O}(g_0^2))$$
 Baulieu&Zwanziger'00

Towards simulations

Langevin equation

- Langevin equation not used in actual simulations
- No exact algorithm known.
- Change direction of movement on microscopic scale.
- Time has dimension (length)².

Hybrid Monte Carlo

- Algorithm of choice for QCD simulations.
- Exact algorithm.
- Directed movement on macroscopic scale.
- Time has dimension (length).

Hybrid Monte Carlo

DUANE ET AL'86

- Classical mechanics system
- **Field** configuration $\phi \rightarrow \text{position}$
- Introduce conjugate momenta
- Hamiltonian

$$H[\pi,\phi]=rac{1}{2}\pi^2+S[\phi]$$

Trajectory

- Choose random momentum π .
- Update by solving classical equations of motion.

$$\dot{\pi} = -rac{\delta H}{\delta \phi} \; ; \qquad \dot{\phi} = \pi$$

Hybrid Monte Carlo

Stochastic Molecular Dynamics

 η Gaussian noise with $\langle\eta_{x,t}\eta_{x',t'}\rangle=4\mu_0\delta(t-t')\delta(x-x')$ π conjugate momenta

- \blacksquare $\mu_0 \rightarrow 0$ molecular dynamics
- \blacksquare $\mu_0
 ightarrow \infty$ Langevin equation (rescale $t
 ightarrow 2\mu_0 t$)
- \blacksquare t has dimension (length)
- \blacksquare Expect $au_{
 m int} \propto a^{-1}$

SMD algorithm

Algorithm

HOROWITZ'85-'91

Momentum refreshment

$$\pi
ightarrow e^{-\gamma \delta au} \pi + \sqrt{1 - e^{-2\gamma \delta au}} \eta$$

Molecular dynamics

$$\partial_s \pi = -\frac{\delta S}{\delta \phi}; \quad \partial_s \phi = \pi$$

• Metropolis step with $\pi \rightarrow -\pi$ upon rejection Beccaria&Curci'94, Jansen&Liu'95, Kennedy&Pendleton'01

s = ta,
$$\gamma = 2a\mu$$
 $\gamma \to 0, \, \delta\tau \to \tau \, \text{HMC}$
 $\gamma = 2a\mu = \text{const} \to \text{Langevin in continuum limit}$

Stefan Schaefer

Hybrid Monte Carlo

SMD algorithm

Differential equation

$$\partial_t \phi = \pi$$
 ; $\partial_t \pi = -\frac{\delta S}{\delta \phi} - 2\mu \pi + \eta$

Algorithm

Momentum refreshment

$$\pi
ightarrow e^{-\gamma\delta au}\pi + \sqrt{1-e^{-2\gamma\delta au}}\eta$$

Molecular dynamics

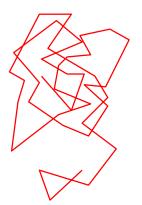
$$\partial_s \pi = -\frac{\delta S}{\delta \phi}; \quad \partial_s \phi = \pi$$

Stefan Schaefer

Is the HMC actually different from the Langevin?

HMC

Langevin



Renormalizability of the HMC

M. LÜSCHER&S.S.'11

The HMC is not renormalizable.

UV singularity along the "light cone" at one-loop of perturbation theory.

- Not removable by local counter terms.
- Demonstrated in ϕ^4 theory.
- Most likely same in gauge theory.

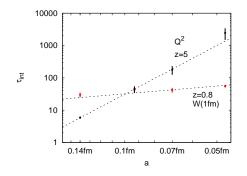
Non-Renormalizability of the HMC

- HMC is still a good algorithm.
- No statement about scaling possible.

Conjecture

- HMC and SMD fall into universality class of Langevin.
- Because of interactions, also HMC does only microscopic updates (random walk).
- **SMD** $\mu_0 \rightarrow \infty$ gives Langevin equation.
- Should exhibit a^{-2} scaling.

Langevin scaling?



- Topological charge.
- Smeared Wilson loop.
- No obvious scaling behavior.

Summary – Outlook: Part II

Summary

- The properties of algorithms can be analyzed using field theoretical methods.
 - \rightarrow renormalizable algorithms
- The Langevin equation is renormalizable.
- \blacksquare HMC not renormalizable \rightarrow Langevin scaling.

Outlook

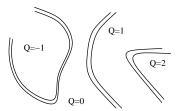
■ The special role of the topological charge.

Numerical study.

Topological charge

$$Q=-rac{1}{32\pi^2}\int d\,x\,\epsilon_{\mu
u
ho\sigma}{
m tr}F_{\mu
u}F_{
ho\sigma}$$

- In continuum limit, disconnected topological sectors emerge.
- The probability of configurations "in between" sectors drops rapidly.
 M. LÜSCHER, '10
- Simulations get stuck in one sector.



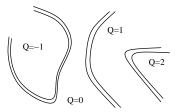
Topological charge

■ Tunneling is a cut-off effect.

- Quasi continuous algorithms will not cure it.
- Problem for interpretation of data.
- Fixed topology introduces finite volume effects.

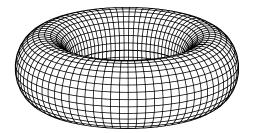
$$\langle A
angle = \langle A
angle_{oldsymbol{Q} = oldsymbol{Q}_0} \, \cdot \, \{1 + \mathcal{O}(V^{-1})\}$$

Prevents simulations on fine lattices.



Boundary conditions

- Periodic boundary conditions do not let charge flow out of the volume.
- Field space is disconnected in continuum.



Open boundary conditions

Proposed solution

open boundary condition in time direction

 same transfer matrix, same particle spectrum

 periodic boundary condition in spatial directions

 \rightarrow momentum projection possible

Open boundary conditions

• Lattices of size $T \times L^3$.

Neumann boundary conditions in time.

Gauge fields

$$F_{0k}|_{x_0=0} = F_{0k}|_{x_0=T} = 0, \quad k = 1, 2, 3$$

Fermion fields

$$\begin{split} P_{+}\psi(x)|_{x_{0}=0} &= P_{-}\psi(x)|_{x_{0}=T} = 0 \qquad P_{\pm} = \frac{1}{2}(1\pm\gamma_{0})\\ \bar{\psi}(x)P_{-}|_{x_{0}=0} &= \bar{\psi}(x)P_{+}|_{x_{0}=T} = 0 \end{split}$$

Goals of numerical study

Langevin scaling

- Demonstrate that HMC falls into universality class of Langevin.
- Find a^{-2} scaling.

Benefit of the boundaries

- For $T \to \infty$ boundary has no effect.
- Does it improve the situation for a typical sized lattice? How does this depend on a?

Numerical study

Lattice

- pure gauge theory, Wilson action
- \blacksquare L^4 lattices
- L = 1.6 fm from $r_0 = 0.5$ fm
- *a* = 0.1fm, 0.08fm, 0.067fm, 0.05fm, 0.04fm
- Ionger lattices for T dependence

Algorithms

HMC

■ SMD at fixed $\gamma = 2a\mu_0 \rightarrow \text{Langevin as } a \rightarrow 0.$

Observables

Requirements

- Arguments based on renormalization.
- Need to consider quantities with continuum limit. → does not apply to previous plot.
- Noise can cover autocorrelations.
- Use low-noise observables.

Gradient flow

NEUBERGER'06, LÜSCHER'10, LÜSCHER&WEISZ'11

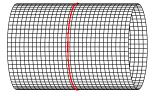
Smoothing with gradient flow at fixed flow time $t = t_0$.

 $\partial_t V_t(x,\mu) = -g_0^2 \left[\partial_{x,\mu} S(V_t)\right] V_t(x,\mu); \quad V_t(x,\mu)|_{t=0} = U(x,\mu)$

- Gaussian smoothing over $r \sim \sqrt{8t}$.
- Renormalized quantities with continuum limit.
- \blacksquare Smooth observables \rightarrow long autocorrelations.

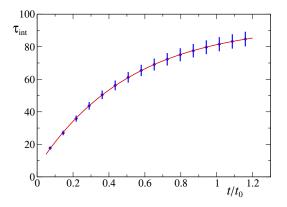
$$ar{E}=-rac{a^3}{2L^3}\sum_{ec{x}}\mathrm{tr}\,G_{\mu
u}G_{\mu
u}ig|_{x_0=T/2}
onumber\ egin{array}{c} \overline{Q}=-rac{a^3}{32\pi^2}\sum_{ec{x}}\mathrm{tr}\, ilde{G}_{\mu
u}G_{\mu
u}ig|_{x_0=T/2}
onumber\ Q=-rac{a^4}{32\pi^2}\sum_{ec{x}}\mathrm{tr}\, ilde{G}_{\mu
u}G_{\mu
u}$$

x



Effect of the smoothing

Autocorrelation time of \overline{E} vs smoothing range (a=0.05fm).

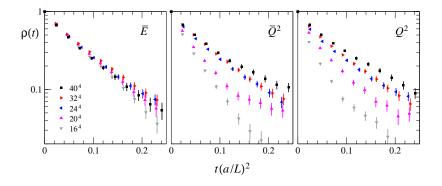


• $\sqrt{8t}$ smoothing radius $\rightarrow t = t_0$ smoothing over $r \approx r_0$ • τ_{int} saturates with $\tau_{\text{int}} = 93 + ae^{-c/t}$.

Stefan Schaefer

Scaling towards continuum limit

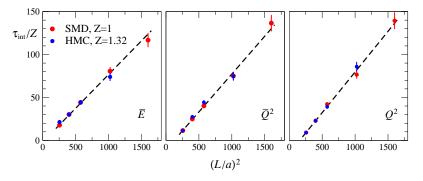
Autocorrelation function vs scaled MC time



Energy (on time slice) shows very good scaling.
Large cut-off effects in topological observables.

Stefan Schaefer

Scaling towards continuum limit: $au_{ m int}$ vs a^{-2}



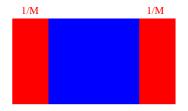
- \blacksquare HMC and SMD_{0.3} show same scaling up to a constant. \rightarrow universal behavior
- Topological observables well described by

 $au_{
m int}=c_1+c_2/a^2$

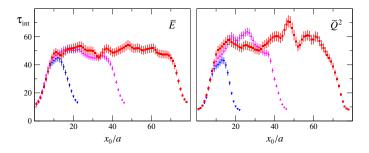
• Also Q^2 and \bar{Q}^2 show a^2 scaling for a
ightarrow 0.

Large T

- Simulations so far on relatively short lattices.
- Bound. cond. break time translation invariance.
- Effect from boundaries exponentially suppressed with distance.
- Need slightly longer lattices.



Large T



- Various T for a = 0.067 fm.
- Effect of boundary small at $x_0 \sim 0.7$ fm.
- Behavior in center of short lattices representative of large T.

Large T

Finite volume

- For $T \to \infty$ the effect of the b.c. vanishes.
- But also the effect on observables vanishes as V^{-1} .

Dependence on T

- Width of distribution of Q is $\propto \sqrt{TL^3}$.
- Change of charge through boundary $\propto \sqrt{L^3}$. \rightarrow expect $\tau_{\text{int}} \propto T$, for random walk
- For each *T*, there is an *a* from which the boundary tunneling dominates over the bulk tunneling.

Dynamical fermions

Action

- \blacksquare $N_{
 m f}=2+1$ NP improved Wilson fermions
- Iwasaki gauge action
- 64×32^3 lattice with a = 0.09 fm
- studied extensively by PACS-CS

```
Aoki et al'09,'10
```

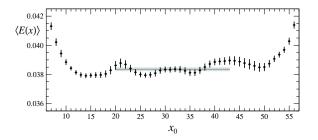
• $m_{\pi} = 200 \text{MeV}$

 $\blacksquare m_{\pi}L = 3$

Algorithm

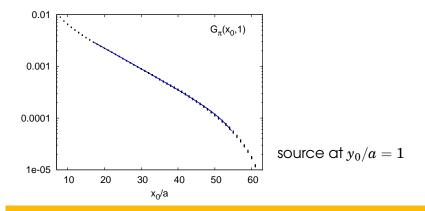
M. LÜSCHER, S.S.'12

- Reweighting to avoid stability problems.
- Generated with new public openQCD code. http://cern.ch/luscher/openQCD



- Wilson flow time $t = t_0$
- Smoothing radius $r = \sqrt{8t} \approx 0.5$ fm.
- Correlation length $1/(am_{\pi}) \approx 11$
- \blacksquare Plateau starting $\sim 1\,\text{fm}$ from boundary.

Fermions and open boundary conditions



Chiral perturbation theory with Dirichlet b.c.

 $G(x_0, y_0) \propto \sinh(m(T - x_0)) \sinh(my_0)$ for $y_0 < x_0$

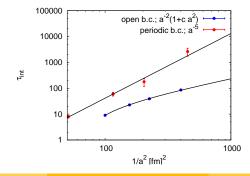
 \blacksquare Valid if sufficiently away from boundary ($\approx 0.5\, \text{fm}$).

Stefan Schaefer

Summary I: Open boundary conditions

- To remove the regulator from, a series of fine lattices has to be simulated.
- Particularly important for e.g. heavy quarks.
- With periodic boundary conditions, topology gets stuck

 \rightarrow use open boundary in time



Stefan Schaefer

Summary II: Renormalizable algorithms

- Algorithms can be studied using field theory.
- The free field scaling of the HMC does not hold with interactions.
- Likely in Langevin universality class.
- No macroscopic steps.

Summary III: Cost of simulation

Fixed volume

 a^{-4} points

■ Fixed acceptance (2nd order integrator).

 a^{-1} step size

Scaling of $au_{\mathrm{int}}
ightarrow a^{-2}$ length

Total cost $\propto a^{-7}$

Total cost

Total cost $\propto a^{-7}$

Factor 2 in lattice spacing \leftrightarrow factor 128 cost.

Stefan Schaefer

Hybrid Monte Carlo

15-10-2012 48 / 48