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Sources

Based on work done in collaboration with Martin Lüscher

Non-renormalizability of the HMC algorithm,
JHEP 1104 (2011) 104
Lattice QCD without topology barriers,
JHEP 1107 (2011) 036
Lattice QCD with open boundary conditions and
twisted-mass reweighting,
arXiv:1206.2809, accepted by CPC
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Introduction

Continuum limit

Continuum limit essential part of lattice computation.
Numerical computations at various fine a.
Extrapolate a→ 0.
Can bring important corrections.

ALPHA’12
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Overview

Rising cost as a→ 0

Need more points for fixed volume
L =const→ N = a−4.
Algorithms get slower.
→ physics behind this subject of this talk.

Program

Field theoretical framework for scaling of algorithms.
The role of the topological charge.
Open boundary conditions.
Numerical results.
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Lattice simulations

Markov Chain Monte Carlo
Sequence of field configurations

U1 → U2 → U3 → · · · → UN

Reliable computations need a representative sample
of field space.
Subsequent measurements are correlated.
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Dangers

Algorithm is slow.
Detectable by
measuring
autocorrelations.

There are barriers in field
space.
Hard to detect.
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Autocorrelations

Sequence of field configurations

U1 → U2 → U3 → · · · → UN

Measurements of observables

A1 → A2 → A3 → · · · → AN

Estimates

〈A〉 ≈ 1
N

N∑
i=1

Ai
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Stefan Schaefer Hybrid Monte Carlo 15-10-2012 7 / 48



Autocorrelation time
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Autocorrelation function

Γ(τ) = 〈(A(τ)− A)(A(0)− A)〉

Integrated Autocorrelation Time

τint(A) =
∫ ∞
−∞

dτ ρ(τ) with ρ(τ) =
Γ(τ)
Γ(0)
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Critical slowing down

Integrated autocorrelation time

τint(A) =
∫ ∞

0

Γ(t)
Γ(0)

dt

Time to make an “independent” configuration.

How do Γ(t) and τint scale as a→ 0?
Is there universal behavior?

τint ∝ a−z

Are there barriers forming as a→ 0?
→topological charge
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Observed scaling: Pure gauge theory
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SOMMER, VIROTTA, S.S.’10
SEE ALSO DEL DEBBIO ET AL’02, LÜSCHER’10

Pure gauge theory, Wilson action, L = 2.4 fm
1 fm× 1 fm Wilson loop→ τint ∝ a−0.8

Topological charge Q2 → τint ∝ a−5
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Observed scaling: Pure gauge theory
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Even in pure gauge theory, measurements below
0.05 fm difficult
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Summary – Outlook: Part I

Summary

An algorithm is a prescription to generate sequence
of fields

U1 → U2 → U3 → · · · → UN

Want to study scaling as a→ 0.

Outlook

Study problem with field theoretical methods.
Example: Langevin equation as update algorithm.
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Langevin equation

Field theory with a scalar field φ and action S[φ]

Z =
∫

[dφ]e−S[φ]

Langevin equation

∂tφ = −δS[φ]

δφ
+ ηt

t: simulation time
ηt: Gaussian noise

Generates fields with probability P(φ) ∝ e−S[φ].
Studied in the context of stochastic quantization.
(Parisi & Wu)
Take fields φn at time tn = nτ .
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5D

Scaling of

ΓA(t) = 〈A(t)A(0)〉 − Ā2

2pt function in 5d theory
4d field theory + simulation time
Analogy to 4d

〈O(x)O(0)〉

Use renormalization group analysis
to study scaling of AC function.

4d

t
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Going to 5D

ZINN-JUSTIN’86

Basic steps

Z =
∫

[dφ]e−S[φ]

Include differential equation constraint by delta
function

Z′ =
∫

[dφ][dη]δ [∂tφ+ δS[φ]− η] e−S[φ]−|η|2/2

Replace delta function with Lagrange multipliers.
Integrate out Gaussian noise.
Get a renormalizable 5d field theory.
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Expected scaling

After renormalization of time, autocorrelation function
scales

t = Zt(g2
0)tR/a2

Pointwise convergence
ρ(

t)

tR
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Expected scaling

Autocorrelation time with fixed window scales.

τint =
1
2

∫ W

0
ρ(t) dt

Limits a→ 0 and W →∞ do not necessarily commute.
ρ(

t)

tR
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Consequences for Langevin equation

∂tφ = −δS[φ]

δφ
+ ηt

Field φ has dimension [length]
⇒ Simulation time t has dimension [length]2

Autocorrelations scale essentially with a−2

Renormalizability perturbation theory also for gauge
theory
ZINN-JUSTIN&ZWANZIGER’88

In SU(3) Yang-Mills theory

τint ∝ g9/11
0 r2

0(1 +O(g2
0)) BAULIEU&ZWANZIGER’00
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Towards simulations

Langevin equation

Langevin equation not used in actual simulations
No exact algorithm known.
Change direction of movement on microscopic
scale.
Time has dimension [length]2.

Hybrid Monte Carlo

Algorithm of choice for QCD simulations.
Exact algorithm.
Directed movement on macroscopic scale.
Time has dimension [length].
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Hybrid Monte Carlo

DUANE ET AL’86

Classical mechanics system
Field configuration φ→position
Introduce conjugate momenta
Hamiltonian

H[π, φ] =
1
2
π2 + S[φ]

Trajectory

Choose random momentum π.
Update by solving classical equations of motion.

π̇ = −δH
δφ

; φ̇ = π
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Hybrid Monte Carlo

Stochastic Molecular Dynamics HOROWITZ’85-’91

∂tφ = π

∂tπ = −δS
δφ
− 2µ0π + η

⇒ ∂2
t φ+ 2µ0∂tφ = −δS

δφ
+ ηt

η Gaussian noise with 〈ηx,tηx′,t′〉 = 4µ0δ(t− t′)δ(x− x′)
π conjugate momenta

µ0 → 0 molecular dynamics
µ0 →∞ Langevin equation (rescale t→ 2µ0t)
t has dimension [length]
Expect τint ∝ a−1
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SMD algorithm

Algorithm HOROWITZ’85-’91

Momentum refreshment

π → e−γδτπ +
√

1− e−2γδτη

Molecular dynamics

∂sπ = −δS
δφ

; ∂sφ = π

Metropolis step with π → −π upon rejection

BECCARIA&CURCI’94, JANSEN&LIU’95, KENNEDY&PENDLETON’01

s = ta, γ = 2aµ
γ → 0, δτ → τ HMC
γ = 2aµ =const→ Langevin in continuum limit
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SMD algorithm

Differential equation

∂tφ= π ; ∂tπ = −δS
δφ
− 2µπ + η

Algorithm

Momentum refreshment

π → e−γδτπ +
√

1− e−2γδτη

Molecular dynamics

∂sπ = −δS
δφ

; ∂sφ = π

Stefan Schaefer Hybrid Monte Carlo 15-10-2012 22 / 48



Question

Is the HMC actually different from the Langevin?

HMC Langevin
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Renormalizability of the HMC

M. LÜSCHER&S.S.’11

The HMC is not renormalizable.

UV singularity along the “light cone” at one-loop of
perturbation theory.

Not removable by local counter terms.
Demonstrated in φ4 theory.
Most likely same in gauge theory.
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Non-Renormalizability of the HMC

HMC is still a good algorithm.
No statement about scaling possible.

Conjecture

HMC and SMD fall into universality class of Langevin.
Because of interactions, also HMC does only
microscopic updates (random walk).
SMD µ0 →∞ gives Langevin equation.
Should exhibit a−2 scaling.
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Langevin scaling?
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Topological charge.
Smeared Wilson loop.
No obvious scaling behavior.
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Summary – Outlook: Part II

Summary

The properties of algorithms can be analyzed using
field theoretical methods.
→ renormalizable algorithms
The Langevin equation is renormalizable.
HMC not renormalizable→ Langevin scaling.

Outlook

The special role of the topological charge.
Numerical study.
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Topological charge

Q = − 1
32π2

∫
d x εµνρσtr FµνFρσ

In continuum limit, disconnected topological sectors
emerge.
The probability of configurations “in between” sectors
drops rapidly. M. LÜSCHER, ’10

Simulations get stuck in one sector.

Q=−1

Q=0

Q=1

Q=2
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Topological charge

Tunneling is a cut-off effect.
Quasi continuous algorithms will not cure it.
Problem for interpretation of data.
Fixed topology introduces finite volume effects.

〈A〉 = 〈A〉Q=Q0 · {1 +O(V−1)}

Prevents simulations on fine lattices.

Q=−1

Q=0

Q=1

Q=2
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Boundary conditions

Periodic boundary conditions do not let charge flow
out of the volume.
Field space is disconnected in continuum.
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Open boundary conditions

Proposed solution

open boundary condition in time direction
→ same transfer matrix, same particle spectrum
periodic boundary condition in spatial directions
→momentum projection possible
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Open boundary conditions

Lattices of size T × L3.
Neumann boundary conditions in time.

Gauge fields

F0k|x0=0 = F0k|x0=T = 0, k = 1,2,3

Fermion fields

P+ψ(x)|x0=0 = P−ψ(x)|x0=T = 0 P± =
1
2

(1± γ0)

ψ̄(x)P−|x0=0 = ψ̄(x)P+|x0=T = 0
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Goals of numerical study

Langevin scaling

Demonstrate that HMC falls into universality class of
Langevin.
Find a−2 scaling.

Benefit of the boundaries

For T →∞ boundary has no effect.
Does it improve the situation for a typical sized lattice?
How does this depend on a?
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Numerical study

Lattice

pure gauge theory, Wilson action
L4 lattices
L = 1.6fm from r0 = 0.5fm
a = 0.1fm, 0.08fm, 0.067fm, 0.05fm, 0.04fm
longer lattices for T dependence

Algorithms

HMC
SMD at fixed γ = 2aµ0 → Langevin as a→ 0.
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Observables

Requirements

Arguments based on renormalization.
Need to consider quantities with continuum limit.
→ does not apply to previous plot.

Noise can cover autocorrelations.
Use low-noise observables.
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Gradient flow

NEUBERGER’06, LÜSCHER’10, LÜSCHER&WEISZ’11

Smoothing with gradient flow at fixed flow time t = t0.

∂tVt(x, µ) = −g2
0 [∂x,µS(Vt)] Vt(x, µ); Vt(x, µ)|t=0 = U(x, µ)

Gaussian smoothing over r ∼
√

8t.
Renormalized quantities with continuum limit.
Smooth observables→ long autocorrelations.

E = − a3

2L3

∑
~x

tr GµνGµν

∣∣
x0=T/2

Q = − a3

32π2

∑
~x

tr G̃µνGµν

∣∣
x0=T/2

Q = − a4

32π2

∑
x

tr G̃µνGµν
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Effect of the smoothing

Autocorrelation time of Ē vs smoothing range (a=0.05fm).

0 0.2 0.4 0.6 0.8 1 1.2
t/t0

0
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τint

√
8t smoothing radius→ t = t0 smoothing over r ≈ r0

τint saturates with τint = 93 + ae−c/t.
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Scaling towards continuum limit

Autocorrelation function vs scaled MC time

0 0.1 0.2
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1
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t(a /L)2
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Energy (on time slice) shows very good scaling.
Large cut-off effects in topological observables.
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Scaling towards continuum limit: τint vs a−2

0 500 1000 1500
0

50

100

150

τint /Z SMD, Z=1
HMC, Z=1.32

0 500 1000 1500

(L /a)2

0 500 1000 1500

  E   Q2 Q2

HMC and SMD0.3 show same scaling up to a constant.
→ universal behavior
Topological observables well described by
τint = c1 + c2/a2

Also Q2 and Q̄2 show a2 scaling for a→ 0.
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Large T

Simulations so far on relatively short lattices.
Bound. cond. break time translation invariance.
Effect from boundaries exponentially suppressed with
distance.
Need slightly longer lattices.

1/M 1/M
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Large T

20 40 60
x0/a

0
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τint

20 40 60
x0/a

  E   Q2

Various T for a = 0.067fm.
Effect of boundary small at x0 ∼ 0.7fm.
Behavior in center of short lattices representative of
large T.
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Large T

Finite volume

For T →∞ the effect of the b.c. vanishes.
But also the effect on observables vanishes as V−1.

Dependence on T

Width of distribution of Q is ∝
√

TL3.
Change of charge through boundary ∝

√
L3.

→ expect τint ∝ T, for random walk
For each T, there is an a from which the boundary
tunneling dominates over the bulk tunneling.
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Dynamical fermions

Action

Nf = 2 + 1 NP improved Wilson fermions
Iwasaki gauge action
64× 323 lattice with a = 0.09fm
studied extensively by PACS-CS AOKI ET AL’09,’10

mπ = 200MeV
mπL = 3

Algorithm M. LÜSCHER, S.S.’12

Reweighting to avoid stability problems.
Generated with new public openQCD code.
http://cern.ch/luscher/openQCD
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Effect of the boundary: gauge observables

10 15 20 25 30 35 40 45 50 55

x0

0.036

0.038

0.040

0.042

〈E(x)〉

Wilson flow time t = t0

Smoothing radius r =
√

8t ≈ 0.5 fm.
Correlation length 1/(amπ) ≈ 11
Plateau starting ∼ 1 fm from boundary.
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Fermions and open boundary conditions

 1e-05

 0.0001
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x0/a

Gπ(x0,1)

source at y0/a = 1

Chiral perturbation theory with Dirichlet b.c.

G(x0, y0) ∝ sinh(m(T − x0)) sinh(my0) for y0 < x0

Valid if sufficiently away from boundary (≈ 0.5 fm).
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Summary I: Open boundary conditions

To remove the regulator from, a series of fine lattices
has to be simulated.
Particularly important for e.g. heavy quarks.
With periodic boundary conditions, topology gets
stuck
→use open boundary in time
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periodic b.c.; a-5
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Summary II: Renormalizable algorithms

Algorithms can be studied using field theory.
The free field scaling of the HMC does not hold with
interactions.
Likely in Langevin universality class.
No macroscopic steps.
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Summary III: Cost of simulation

Fixed volume
a−4 points

Fixed acceptance (2nd order integrator).

a−1 step size

Scaling of τint → a−2 length

Total cost ∝ a−7

Total cost

Total cost ∝ a−7

Factor 2 in lattice spacing↔ factor 128 cost.
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