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Sources

Based on work done in collaboration with Martin Luscher
m Non-renormalizability of the HMC algorithm,
JHEP 1104 (2011) 104

m Lattice QCD without topology barriers,
JHEP 1107 (2011) 036

m Lattice QCD with open boundary conditions and
twisted-mass reweighting.
arXiv:1206.2809, accepted by CPC

Stefan Schaefer Hybrid Monte Carlo 15-10-2012

2/48



Infroduction

Continuum limit

m Continuum limit essential part of lattice computation.

m Numerical computations at various fine a.
Extrapolate a — 0.

m Can bring important corrections.
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Overview

Rising cost asa — 0

m Need more points for fixed volume
L =const = N =a*.

m Algorithms get slower.
— physics behind this subject of this talk.

Program

m Field theoretical framework for scaling of algorithms.
m The role of the topological charge.

m Open boundary conditions.

m Numerical results.
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Lattice simulations

m Markov Chain Monte Carlo
m Sequence of field configurations

Up—-Uy—-Us — - — Ux

m Reliable computations need a representative sample
of field space.

m Subsequent measurements are correlated.

=
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Dangers

m Algorithm is slow. m There are barriers in field
m Detectable by space.

measuring

. m Hard to detect.
autocorrelations.
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Autocorrelations

m Sequence of field configurations
Uy —Us - Us — - — Un

m Measurements of observables

A — Ay - A3 — - — Ay

m Esfimates

fo

’ 0 2000 4000 6000
T[MD time]
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Autocorrelation time

fo

T[MD time]

Infegrated Autocorrelation Time

Tint(A) = /00 drp(rt) with p(7) = —==
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Critical slowing down

Integrated autocorrelation fime

[T T@®)
Tint(A) _/o mdt

Time to make an “independent” configuration.

m How do I'(¢) and 7, scale asa — 07
m Is there universal behavior?

Tint X @ 2

m Are there barriers forming asa — 07?
—topological charge
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Observed scaling: Pure gauge theory
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a

SOMMER, VIROTTA, S.S5."10
SEE ALSO DEL DEBBIO ET AL'02, LUSCHER' 10

m Pure gauge theory, Wilson action, L = 2.4 fm

m 1fm x 1fm Wilson loop — 7 x @08

m Topological charge @2 — 7int x a~?
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Observed scaling: Pure gauge theory
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SOMMER, VIROTTA, S.S5."10
SEE ALSO DEL DEBBIO ET AL'02, LUSCHER' 10

m Even in pure gauge theory, measurements below
0.05 fm difficult
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Summary — Outlook: Part |

Summary

m An algorithm is a prescription to generate sequence
of fields
Uy —-Us—>Us - --— Ux

m Want to study scaling as a — 0.

Outlook

m Study problem with field theoretical methods.
m Example: Langevin equation as update algorithm.
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Langevin equation

Field theory with a scalar field ¢ and action S[¢]

Z— [idoes

Langevin equation

6S[¢] ¢ simulation time
%¢ = - + ne: Gaussian noise

0¢

m Generates fields with probability P(¢) o e ~SI¢l,

m Studied in the context of stochastic quantization.
(Parisi & Wu)
m Take fields ¢, at time t, = nr.
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oD

m Scaling of

m 2pt function in 5d theory
m 4d field theory + simulation time
m Analogy to 4d

(0(x)0(0))

m Use renormalization group analysis
to study scaling of AC function.
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Going to 5D

ZINN-JUSTIN' 86

Bassic steps

Z~ [idges

m Include differential equation constraint by delta
function

7 = [idlanlo o9 + 58] — nje=S=12

m Replace delta function with Lagrange multipliers.
m Infegrate out Gaussian noise.
m Get arenormalizable 5d field theory.
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Expected scaling

m Affter renormalization of time, autocorrelation function
scales

t = Z;(g3)tg/a®
m Pointwise convergence

(0]

. ————

R
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Expected scaling

m Aufocorrelation time with fixed window scales.

1 w
Tt = /0 plt) dt

m Limitsa — 0 and W — oo do not necessarily commute.

p(t)

R
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Conseqguences for Langevin equation

S
Orp = —% + Nt

m Field ¢ has dimension (length)
= Simulation fime ¢ has dimension (length)?

m Autocorrelations scale essentially with a—2

m Renormalizability perturbation theory also for gauge
theory
ZINN-JUSTIN&ZWANZIGER 88

In SU(3) Yang-Mills theory
Tint X gg/llr%(l +0(g?)) BAULIEU&ZWANZIGER' 00

Stefan Schaefer Hybrid Monte Carlo 15-10-2012

17 /48



Towards simulations

Langevin equation

m Langevin equation not used in actual simulations
m No exact algorithm known.

m Change direction of movement on microscopic
scale.

m Time has dimension (Iength)z.

Hybrid Monte Carlo

m Algorithm of choice for QCD simulations.

m Exact algorithm.

m Directed movement on macroscopic scale.
m Time has dimension (length).
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Hybrid Monte Carlo

DUANE ET AL'86
m Classical mechanics system
m Field configuration ¢ —position
m Introduce conjugate momenta
m Hamiltonian 1
Hir, ¢] = 5n* + S[¢]

Trajectory

m Choose random momentum 7.
m Update by solving classical equations of motion.

oH

@§ p=m

= —

Stefan Schaefer Hybrid Monte Carlo 15-10-2012

19 /48



Hybrid Monte Carlo

Stochastic Molecular Dynamics HoRoWITZ'85-"91
op=m 5S
= 02 + 2100, = -
8t7r——(;b—2uo7r+n P o+ 2000:9 = e T

n Gaussian noise with (ny ¢y v) = 4ped(t — ¢')d(x — x')
7w conjugate momenta

m ;o — 0 molecular dynamics

m 1o — oo Langevin equation (rescale t — 2ugt)
m ¢ has dimension (length)

m Expect 1y x a1
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SMD algorithm

Algorithm HOROWITZ'85-"91

m Momentum refreshment
T—e T+ \/1—e 217y

m Molecular dynamics

0S
8371' = _£7 8S¢ =T
m Metropolis step with m — —7 upon rejection

BECCARIA&CURCI'94, JANSEN&LIU'95, KENNEDY&PENDLETON O

Hs=ta, v=2au
my—0,6r—7HMC
B 1 = 2ap =const — Langevin in continuum limit
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oS
op=m 3 8t7r:—%—2u7r+77

m Momentum refreshment
T — e T+ 1/1 — e~y
m Molecular dynamics

oS

%3 Osp=m

537T=—



Question

Is the HMC actually different from the Langevin?

HMC Langevin
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Renormalizability of the HMC
M. LUSCHER&S.S." 11

The HMC is not renormalizable.

m UV singularity along the “light cone” at one-loop of
perturbation theory.

X X

m Not removable by local counter terms.
m Demonstrated in ¢* theory.
m Most likely same in gauge theory.
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Non-Renormalizability of the HMC

m HMC is still a good algorithm.
m No statement about scaling possible.

Conjecture

m HMC and SMD fall intfo universality class of Langevin.

m Because of interactions, also HMC does only
microscopic updates (random walk).

m SMD ¢ — oo gives Langevin equation.
m Should exhibit =2 scaling.
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Langevin scaling?
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m Topological charge.
m Smeared Wilson loop.
m No obvious scaling behavior.
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Summary — Outlook: Part Il

Summary

m The properties of algorithms can be analyzed using
field theoretical methods.
— renormalizable algorithms

m The Langevin equation is renormalizable.
m HMC not renormalizable — Langevin scaling.

Outlook

m The special role of the topological charge.
m Numerical study.
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Topological charge

Q= /dx €pott F i F oo

- 3272

m In contfinuum limit, disconnected topological sectors

emerge.
m The probability of configurations “in between” sectors
drops rapidly. M. LUSCHER, 10

m Simulations get stuck in one sector.

(<
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Topological charge

m Tunneling is a cut-off effect.

B Quasi confinuous algorithms will not cure it.

m Problem for interpretation of data.

m Fixed topology infroduces finite volume effects.

(A) = (A)g—q, - {1+0(V )}

m Prevents simulations on fine latffices.

(s
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Boundary conditions

m Periodic boundary conditions do not let charge flow
out of the volume.

m Field space is disconnected in continuum.
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Open boundary conditions

Proposed solution

B open boundary condition in time direction
— same transfer matrix, same particle spectrum

m periodic boundary condition in spatial directions
— momentum projection possible

IIEIIEIITIITIIaIIIIIEIErY)
e e
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Open boundary conditions

m Lattices of size T' x L3.
m Neumann boundary conditions in time.

m Gauge fields
F0k|x0:0 - F0k|x0:T - 07 k - 1727 3
m Fermion fields

P+¢(x)’x0:0 = P—w(x)‘x():T =0 P = %(1 SE ')’0)
Y(x)P_|xg=0 = V()P |gy—7 = 0

Stefan Schaefer Hybrid Monte Carlo 15-10-2012 32 /48



Goals of numerical study

Langevin scaling

m Demonstrate that HMC falls into universality class of
Langevin.

m Find a2 scaling.

Benefit of the boundaries

m For T — oo boundary has no effect.

m Does it improve the situation for a typical sized lattice?
How does this depend on a?

Stefan Schaefer Hybrid Monte Carlo 15-10-2012 33 /48



Numerical study

Lattice

m pure gauge theory, Wilson action

m L4 lattices

m L = 1.6fm from ry = 0.5fm

m ¢ = 0.1fm, 0.08fm, 0.067fm, 0.05fm, 0.04fm
m longer lattices for T' dependence

Algorithms

m HMC
m SMD at fixed v = 2apug — Langevin asa — 0.
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Observables

Requirements

m Arguments based on renormalization.

m Need to consider quantities with continuum limit.
— does not apply to previous plot.

m Noise can cover autocorrelations.
m Use low-noise observables.
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Gradient flow

NEUBERGER'06, LUSCHER' 10, LUSCHER&WEISZ' 11
m Smoothing with gradient flow af fixed flow time ¢ = ¢.

OVi(x, 1) = —85 [Ox S(V)] Vil ) Vi, )le—o = Ular, )

m Gaussian smoothing over r ~ v/8t.
m Renormalized quantities with continuum limit.
m Smooth observables — long autocorrelations.
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Effect of the smoothing

Autocorrelation time of E vs smoothing range (a=0.05fm).

100
Tint [
80 B

40 .

N | N | N | N | N | N |
% "0z 04 06 08 1. 12
tt,

m /8t smoothing radius — ¢ = £y Smoothing over r =~ ry
B 7, Saturates with 7y, = 93 + ae¢/%.
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Scaling tfowards continuum limit

Autocorrelation function vs scaled MC time
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m Energy (on time slice) shows very good scaling.
m Large cut-off effects in topological observables.
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Scaling towards continuum limit: 7y VS a2
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(L/a)?

m HMC and SMDy 3 show same scaling up to a constant.

— universal behavior

m Topological observables well described by

_ 2
Tint = C1 + 02/(1

m Also @2 and @2 show a? scaling for a — 0.
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Large T

m Simulations so far on relatively short lattices.
m Bound. cond. break time franslation invariance.

m Effect from boundaries exponentially suppressed with
distance.

m Need slightly longer lattices.

M UM
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Large T

‘ T T T
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m Various T fora = 0.067fm.
m Effect of boundary small at xy ~ 0.7fm.

m Behavior in center of short lattices representative of
large T.
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Large T

Finite volume

m For T — oo the effect of the b.c. vanishes.
m But also the effect on observables vanishes as V1,

Dependence on T

m Width of distribution of @ is oc VTL3,

m Change of charge through boundary o« VL3,
— expect 1y o< T, for random walk

m For each T, there is an a from which the boundary
tunneling dominates over the bulk tunneling.
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Dynamical fermions

Action

m N;= 2+ 1 NP improved Wilson fermions
m lwasaki gauge action
m 64 x 323 lattice with @ = 0.09fm

m studied extensively by PACS-CS AOKI ET AL'09, 10
m m, =200MeV
mm,L=3

Algorithm M. LUSCHER, S.5."12

m Reweighting to avoid stability problems.

m Generated with new public openQCD code.
http://cern.ch/luscher/openQCD
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Effect of the boundary: gauge observables
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m Wilson flow time ¢t = ¢,

m Smoothing radius r = v/8t ~ 0.5 fm.

m Correlation length 1/(am,) ~ 11

m Plateau starting ~ 1 fm from boundary.
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Fermions and open boundary conditions

0.01 f— : ‘
G{Xg:1)

0.001 ¢

0.0001 |

', | source atyy/a=1

1le-05 — : : : :
10 20 30 40 50 60
Xp/a
m Chiral perturbation theory with Dirichlet b.c.
G(x0,y0) o sinh(m (T — x¢)) sinh(my) for yo <xo

m Valid if sufficiently away from boundary (= 0.5 fm).
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Summary I: Open boundary conditions

m To remove the regulator from, a series of fine lattices
has to be simulated.

m Particularly important for e.g. heavy quarks.

m With periodic boundary conditions, fopology gets
stuck
—use open boundary in time
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Summary IIl: Renormalizable algorithms

m Algorithms can be studied using field theory.

m The free field scaling of the HMC does not hold with
inferactions.

m Likely in Langevin universality class.
m NO macroscopic steps.
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Summary lll: Cost of simulation

m Fixed volume
a* points

m Fixed acceptance (2nd order integrator).
a1 step size
m Scaling of 7, — a~2 length

Total cost « a7

Total cost

Total cost o a~ "

Factor 2 in latftice spacing « factor 128 cost.
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