Quark propagator 00000 Mesons 0000 Baryons 000 Summary O

# Symmetries of hadrons after unbreaking the chiral symmetry

#### L.Ya. Glozman, C.B. Lang, Mario Schröck

Institut für Physik, FB Theoretische Physik, Universität Graz

STRONGnet 2012 Madrid, October 18, 2012

- [L.Ya. Glozman, C.B. Lang, M.S., Phys. Rev. D 86 (2012); arXiv:1205.4887]
- [M.S., Phys. Lett. B 711 (2012); arXiv:1112.5107]
- [C.B. Lang, M.S., Phys. Rev. D 84 (2011); arXiv:1107.5195]





| Motivation and introduction | Quark propagator | Mesons |
|-----------------------------|------------------|--------|
| 00000                       | 00000            | 0000   |

Baryons 000 Summary O

Motivation and introduction

Quark propagator

Mesons

Outline

Baryons

Summary



| Motivation | and | introduction |  |
|------------|-----|--------------|--|
| 00000      |     |              |  |

Quark propagator

Mesons 0000 Baryons 000 Summary O

# Key questions to QCD

- How is the hadron mass generated in the light quark sector?
- How important is chiral symmetry breaking for the hadron mass?
- Are confinement and chiral symmetry breaking directly interrelated?
- Is there parity doubling and does chiral symmetry get effectively restored in high-lying hadrons?
- Is there some other symmetry?



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 0000                        | 00000            | 0000   | 000     | 0       |
| The Banks–Cas               | her relation     |        |         |         |

The lowest eigenmodes of the Dirac operator are related to the quark condensate of the vacuum:

$$\left<\overline{\psi}\psi
ight>=-\pi
ho$$
(0)

- ρ(0): density of the lowest quasi-zero eigenmodes of the Dirac
   operator
- here the sequence of limits is important:  $V o \infty$  then  $m_q o 0$



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |

## "Unbreaking" chiral symmetry

- Our goal is to construct hadron correlators out of *reduced* quark propagators which exclude a variable number of the lowest Dirac eigenmodes (see also, e.g., [DeGrand, PRD 69 (2004)]).
- we use the Hermitian Dirac operator  $D_5 \equiv \gamma_5 D$  (real eigenvalues)
- split the quark propagator  $S \equiv D^{-1}$  into a low mode (Im) part and a *reduced* (red) part

$$\begin{split} S &= \sum_{i \le k} \mu_i^{-1} \ket{v_i} \bra{v_i} \gamma_5 + \sum_{i > k} \mu_i^{-1} \ket{v_i} \bra{v_i} \gamma_5 \\ &= S_{\mathrm{lm}(k)} + S_{\mathrm{red}(k)} \end{split}$$



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 0000                        | 00000            | 0000   | 000     | 0       |

## "Unbreaking" chiral symmetry

- Our goal is to construct hadron correlators out of *reduced* quark propagators which exclude a variable number of the lowest Dirac eigenmodes (see also, e.g., [DeGrand, PRD 69 (2004)]).
- we use the Hermitian Dirac operator  $D_5\equiv\gamma_5 D$  (real eigenvalues)
- split the quark propagator  $S \equiv D^{-1}$  into a low mode (Im) part and a *reduced* (red) part

$$\begin{split} S &= \sum_{i \le k} \mu_i^{-1} \ket{v_i} \langle v_i | \gamma_5 + \sum_{i > k} \mu_i^{-1} \ket{v_i} \langle v_i | \gamma_5 \\ &= S_{\mathrm{lm}(k)} + S_{\mathrm{red}(k)} \end{split}$$

• in this work we investigate the *reduced* (red) part of the propagator

$$S_{\mathrm{red}(k)} = S - S_{\mathrm{lm}(k)}$$



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |

# The chirally improved (CI) Dirac operator

[Gattringer, PRD 63 (2001) 114501], [Gattringer et al., Nucl. Phys. 597 (2001) B451]

- approximate solution to the Ginsparg-Wilson (GW) equation
- constructed by expanding the most general Dirac operator in a basis of simple operators,

$$D_{\rm CI}(x,y) = \sum_{i=1}^{16} c_{xy}^{(i)}(U) \Gamma_i + m_0 \mathbb{1},$$

sum runs over all elements  $\Gamma_i$  of the Clifford algebra. The coefficients  $c_{xy}^{(i)}(U)$  consist of path ordered products of the link variables U (here we use paths up to length four).

- Inserting this expansion into the GW equation then turns into a system of coupled quadratic equations for the expansion coefficients
- That expansion provides for a natural cutoff which turns the quadratic equations into a simple finite system.



| Motivation | and | introduction |  |
|------------|-----|--------------|--|
| 00000      |     |              |  |

The setup

Quark propagator 00000 Mesons 0000 Baryons 000 Summary O

#### • 161 configurations [Gattringer et al., PRD 79 (2009)]

- size  $16^3 \times 32$
- two degenerate flavors of light CI fermions,  $m_{\pi}=322(5)\,{
  m MeV}$
- lattice spacing  $a = 0.1440(12) \, \mathrm{fm}$
- three different kinds of quark sources: Jacobi smeared narrow (0.27 fm) and wide (0.55 fm) sources and a P wave like derivative source → serves a large operator basis for the variational method.



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | ●0000            | 0000   | 000     | 0       |

#### Nonperturbative quark propagator

The tree-level quark propagator is

$$S_0(p) = rac{1}{i p + m}$$

<sup>1</sup>Iattice gauge fixing on GPUs: [M.S., H. Vogt, LAT2012; arXiv:1209.4008]





| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | ●0000            | 0000   | 000     | 0       |

## Nonperturbative quark propagator

The tree-level quark propagator is

$$S_0(p) = rac{1}{i p + m}$$

turning on the interactions with the gluon fields

$$S_0(p) 
ightarrow S_{ ext{bare}}(a;p) = Z_2(\mu;a)S(\mu;p)$$

<sup>1</sup>lattice gauge fixing on GPUs: [M.S., H. Vogt, LAT2012; arXiv:1209.4008]

| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 0000             | 0000   | 000     | 0       |

#### Nonperturbative quark propagator

The tree-level quark propagator is

$$S_0(p) = rac{1}{i \not p + m}$$

turning on the interactions with the gluon fields

$$S_0(p) 
ightarrow S_{ ext{bare}}(a;p) = Z_2(\mu;a)S(\mu;p)$$

the renormalized quark propagator

We calculate  $S_{\text{bare}}(a; p)$  in minimal Landau gauge<sup>1</sup> on the lattice and therefrom extract

- the renormalization function  $Z(\mu; p^2)$
- the renormalization point independent mass function  $M(p^2)$

<sup>1</sup>lattice gauge fixing on GPUs: [M.S., H. Vogt, LAT2012; arXiv:1209.4008]



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |
|                             |                  |        |         |         |

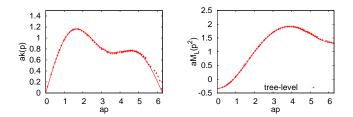
#### The CI quark propagator at tree-level

• The lattice quark propagator at tree-level differs from the continuum case due to discretization artifacts

$$S_L^{(0)}(p) = \left( \textit{iak} + \textit{aM}_L^{(0)}(p) 
ight)^{-1}$$
 .

• we extract the lattice momenta ak(p) and the tree-level mass function  $aM_L^{(0)}(p)$  and compare it to its analytic expressions




| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |
| <b>T</b> I <b>O</b> I I     |                  |        |         |         |

#### The CI quark propagator at tree-level

• The lattice quark propagator at tree-level differs from the continuum case due to discretization artifacts

$$S_L^{(0)}(p) = \left( \textit{iak} + \textit{aM}_L^{(0)}(p) 
ight)^{-1}$$
 .


• we extract the lattice momenta ak(p) and the tree-level mass function  $aM_L^{(0)}(p)$  and compare it to its analytic expressions

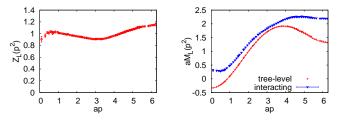




| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 0000             | 0000   | 000     | 0       |

# The interacting CI quark propagator




<sup>2</sup>[Skullerud et al., PRD 64 (2001) 074508]

M. Schröck



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 0000             | 0000   | 000     | 0       |

## The interacting CI quark propagator

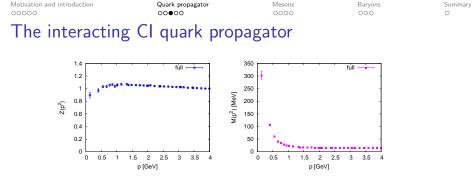


Improvement:

- tree-level improvement to reduce  $\mathcal{O}(a)$  errors of off-shell quantities
- tree-level correction to blank out tree-level discretization artifacts<sup>2</sup>:

$$Z_L(p) o rac{Z_L(p)}{Z_L^{(0)}(p)} , \quad aM_L(p) o rac{M_L(p)A_L^{(0)}(p)}{B_L^{(0)}(p) + m_{
m add}} am$$

 $\langle \alpha \rangle$ 


with  $am_{\rm add}$  such that  $B_L^{(0)}(0) = m$ 

 $\bullet\,$  a data cut at  $4\,{\rm GeV}$ 

<sup>2</sup>[Skullerud et al., PRD 64 (2001) 074508]

M. Schröck





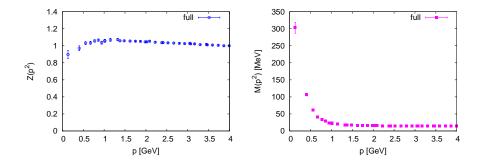
Improvement:

- tree-level improvement to reduce  $\mathcal{O}(a)$  errors of off-shell quantities
- tree-level correction to blank out tree-level discretization artifacts<sup>2</sup>:

$$Z_L(p) o rac{Z_L(p)}{Z_L^{(0)}(p)} , \quad aM_L(p) o rac{M_L(p)A_L^{(0)}(p)}{B_L^{(0)}(p) + m_{
m add}} am$$

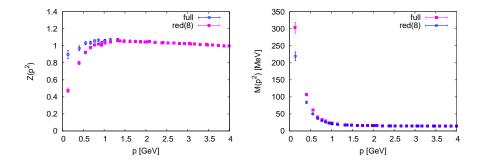
 $\langle \alpha \rangle$ 

with  $am_{\rm add}$  such that  $B_L^{(0)}(0) = m$ 


 $\bullet\,$  a data cut at  $4\,{\rm GeV}$ 

<sup>2</sup>[Skullerud et al., PRD 64 (2001) 074508]

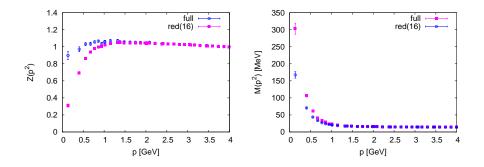
M. Schröck




| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |



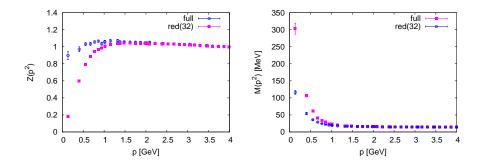



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |



- the dynamically generated mass decreases with the truncation level  $\rightarrow$  restoration of the chiral symmetry
- $Z(p^2)$  gets suppressed in the IR

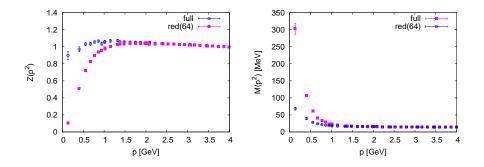



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |
|                             |                  |        |         |         |



- the dynamically generated mass decreases with the truncation level  $\rightarrow$  restoration of the chiral symmetry
- $Z(p^2)$  gets suppressed in the IR

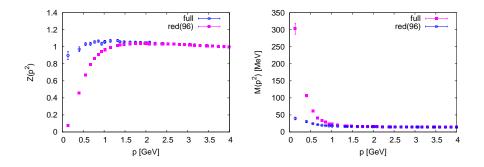



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |
|                             |                  |        |         |         |



- the dynamically generated mass decreases with the truncation level  $\rightarrow$  restoration of the chiral symmetry
- $Z(p^2)$  gets suppressed in the IR

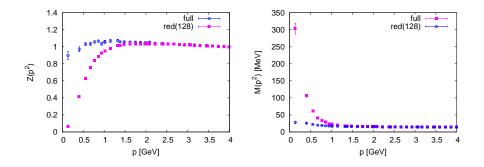



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |



- the dynamically generated mass decreases with the truncation level  $\rightarrow$  restoration of the chiral symmetry
- $Z(p^2)$  gets suppressed in the IR

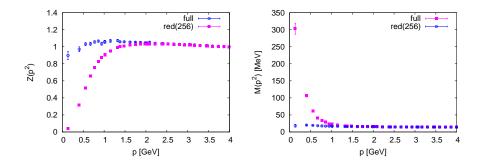



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |



- the dynamically generated mass decreases with the truncation level  $\rightarrow$  restoration of the chiral symmetry
- $Z(p^2)$  gets suppressed in the IR

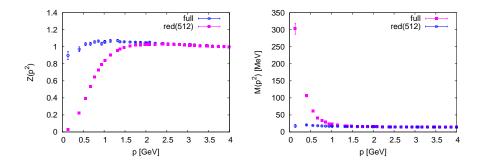



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |
|                             |                  |        |         |         |



- the dynamically generated mass decreases with the truncation level  $\rightarrow$  restoration of the chiral symmetry
- $Z(p^2)$  gets suppressed in the IR



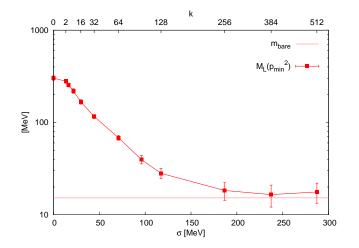

| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |



- the dynamically generated mass decreases with the truncation level  $\rightarrow$  restoration of the chiral symmetry
- $Z(p^2)$  gets suppressed in the IR



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |




- the dynamically generated mass decreases with the truncation level  $\rightarrow$  restoration of the chiral symmetry
- $Z(p^2)$  gets suppressed in the IR



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |
|                             |                  |        |         |         |

#### Dynamical quark mass generation vs. truncation level





| Damainalam                  | als finally as many a street. | and the lowerly | t       |         |
|-----------------------------|-------------------------------|-----------------|---------|---------|
| 00000                       | 00000                         | •000            | 000     | 0       |
| Motivation and introduction | Quark propagator              | Mesons          | Baryons | Summary |

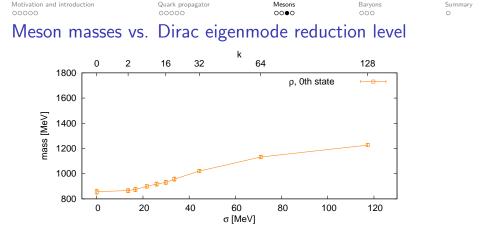
Reminder: chiral symmetry and its breaking

When neglecting the two lightest quark masses, the QCD Lagrangian becomes invariant under the symmetry group

 $SU(2)_L imes SU(2)_R imes U(1)_A$ 

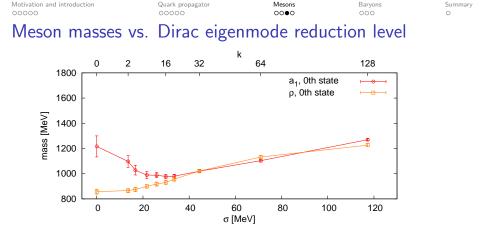
- axial vector part of the  $SU(2)_L \times SU(2)_R$  symmetry is broken spontaneously in the vacuum
- vector part is (approximately) preserved
- $U(1)_A$  axial symmetry is not only broken spontaneously but also explicitly (axial anomaly)




| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |
| Mesons                      |                  |        |         |         |

We explore the following isovector mesons which, in a chirally symmetric world, would be related via the following symmetries

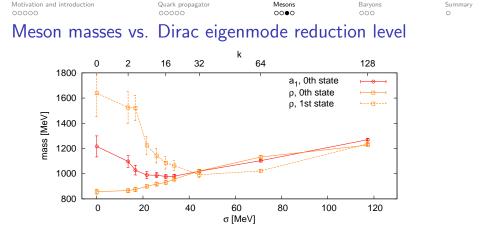
$$\frac{SU(2)_L \times SU(2)_R \text{ (axial)}}{\rho \longleftrightarrow a_1} \quad \begin{array}{c} U(1)_A \\ \hline \rho \longleftrightarrow b_1 \end{array}$$


- can we restore the chiral symmetry and if, what happens to confinement?
- how does the mass of the light mesons change?
- what happens to the  $U(1)_A$  axial symmetry?





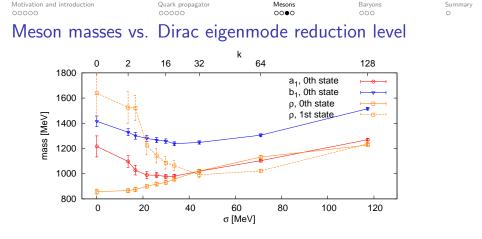
• heavy  $\rho$  meson: mass not due to dynamical chiral symmetry breaking






• heavy  $\rho$  meson: mass not due to dynamical chiral symmetry breaking • degeneracy of  $\rho$  and  $\rho$ ; restoration of the SU(2),  $\times SU(2)$ , chiral

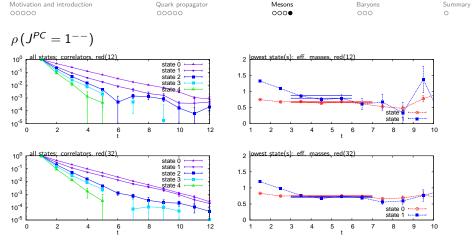
degeneracy of ρ and a<sub>1</sub>: restoration of the SU(2)<sub>L</sub> × SU(2)<sub>R</sub> chiral symmetry






• heavy  $\rho$  meson: mass not due to dynamical chiral symmetry breaking

- degeneracy of ρ and a<sub>1</sub>: restoration of the SU(2)<sub>L</sub> × SU(2)<sub>R</sub> chiral symmetry
- degeneracy of  $\rho$  and  $\rho'$ : hint to a higher symmetry which includes  $SU(2)_L \times SU(2)_R$  as a subgroup






• heavy  $\rho$  meson: mass not due to dynamical chiral symmetry breaking

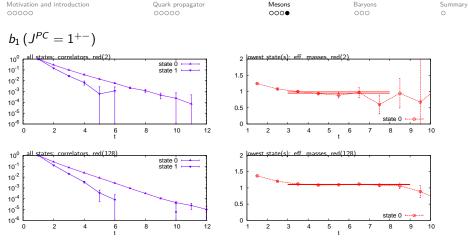
- degeneracy of ρ and a<sub>1</sub>: restoration of the SU(2)<sub>L</sub> × SU(2)<sub>R</sub> chiral symmetry
- degeneracy of  $\rho$  and  $\rho'$ : hint to a higher symmetry which includes  $SU(2)_L \times SU(2)_R$  as a subgroup
- nondegeneracy of  $\rho$  and  $b_1$ :  $U(1)_A$  remains broken, still existence of confined states






Do we really still observe exponentially decaying states?

- the noise in the correlators (l.h.s.) decreases under Dirac low-mode truncation
- as a consequence the effective mass plots (r.h.s.) become more stable than in full QCD!






Do we really still observe exponentially decaying states?

- the noise in the correlators (l.h.s.) decreases under Dirac low-mode truncation
- as a consequence the effective mass plots (r.h.s.) become more stable than in full QCD!



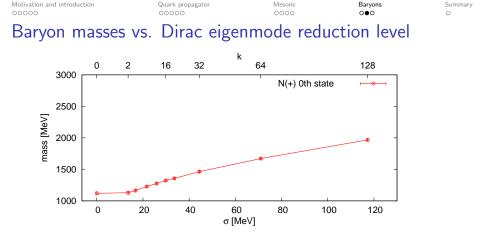


Do we really still observe exponentially decaying states?

- the noise in the correlators (l.h.s.) decreases under Dirac low-mode truncation
- as a consequence the effective mass plots (r.h.s.) become more stable than in full QCD!

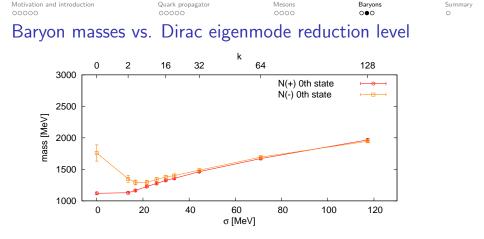


| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | •00     | 0       |
| Baryons                     |                  |        |         |         |


The  $\Delta-N$  splitting is usually attributed to the hyperfine spin-spin interaction between valence quarks. The realistic candidates for this interaction are

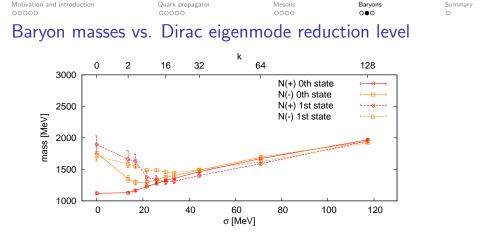
- the spin-spin color-magnetic interaction
- the flavor-spin interaction related to the spontaneous chiral symmetry breaking

What happens to the  $\Delta - N$  splitting after restoration of the chiral symmetry?


Do the masses of the nucleon and the N(1535) meet?

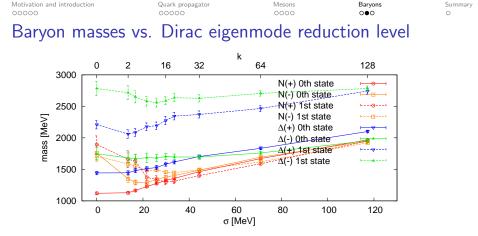





• heavy N(+): mass not due to dynamical chiral symmetry breaking





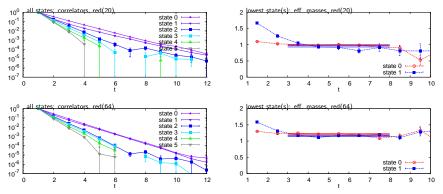

heavy N(+): mass not due to dynamical chiral symmetry breaking
parity doubling of N(+) and N(-)





- heavy N(+): mass not due to dynamical chiral symmetry breaking
- parity doubling of N(+) and N(-)
- degeneracy of two N(+) and N(-) states: hint to a higher symmetry which includes  $SU(2)_L \times SU(2)_R$  as a subgroup

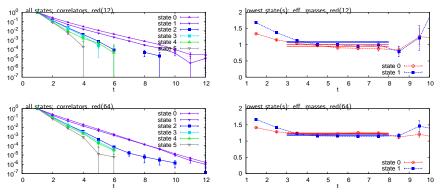





- heavy N(+): mass not due to dynamical chiral symmetry breaking
- parity doubling of N(+) and N(-)
- degeneracy of two N(+) and N(-) states: hint to a higher symmetry which includes  $SU(2)_L \times SU(2)_R$  as a subgroup
- distinguished excited states of  $\Delta(+)$  and  $\Delta(-)$ : confinement persists
- $\Delta$ -*N* splitting reduces to  $\approx 50\%$

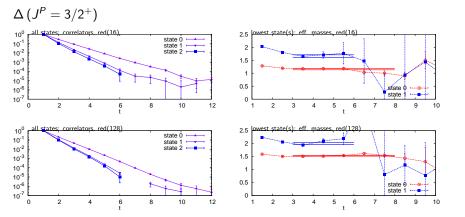


| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |
|                             |                  |        |         |         |



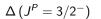


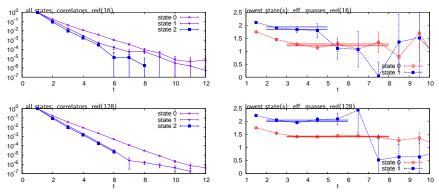




| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 00●     | 0       |
|                             |                  |        |         |         |









| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 00●     | 0       |
|                             |                  |        |         |         |





| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |
|                             |                  |        |         |         |

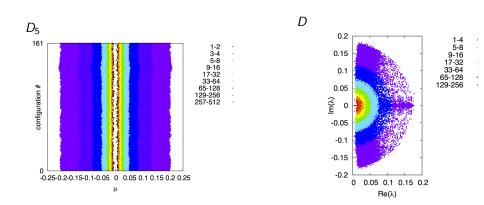






| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | ٠       |
| Summary                     |                  |        |         |         |

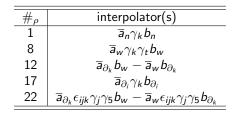
- low lying eigenvalues of the Dirac operator are associated with chiral symmetry breaking
- we have computed hadron propagators while removing increasingly more of the low lying eigenmodes of the Dirac operator
- the confinement properties remain intact, i.e., we still observe clear bound states for all of the studied hadrons
- the mass values of the vector meson chiral partners  $a_1$  and  $\rho$  approach each other: restoration of  $SU(2)_L \times SU(2)_R$
- no degeneracy between ho and  $b_1$ :  $U(1)_A$  axial anomaly untouched
- the nucleon and the N(1535) become degenerate
- the spin-spin color-magnetic interaction and the flavor-spin interaction are of equal importance for the  $\Delta N$  splitting




| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |
|                             |                  |        |         |         |

Extra slides.




| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |
| Eigenvalues                 |                  |        |         |         |





| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |





Interpolators for the  $\rho$ -meson,  $J^{PC} = 1^{--}$ . The first column shows the number, the second shows the explicit form of the interpolator. cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |
| $a_1$ interpolators         |                  |        |         |         |

| $\#_{a_1}$ | interpolator(s)                                                               |
|------------|-------------------------------------------------------------------------------|
| 1          | $\overline{a}_n \gamma_k \gamma_5 b_n$                                        |
| 2          | $\overline{a}_n \gamma_k \gamma_5 b_w + \overline{a}_w \gamma_k \gamma_5 b_n$ |
| 4          | $\overline{a}_w \gamma_k \gamma_5 b_w$                                        |

 $a_1$ -meson,  $J^{PC} = 1^{++}$ , cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |
| $b_1$ interpolators         |                  |        |         |         |

| : | $\#_{b_1}$ | interpolator(s)                                                                 |
|---|------------|---------------------------------------------------------------------------------|
|   | 6          | $\overline{a}_{\partial_k}\gamma_5 b_n - \overline{a}_n\gamma_5 b_{\partial_k}$ |
|   | 8          | $\overline{a}_{\partial_k}\gamma_5 b_w - \overline{a}_w\gamma_5 b_{\partial_k}$ |

 $b_1$ -meson,  $J^{PC} = 1^{+-}$ , cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]



Motivation and introduction

Quark propagator

Mesons

Baryons

Summary

## **N** interpolators

| • | $\mathcal{N}^{(i)} = \epsilon_{abc}  \Gamma_1^{(i)}  u_a \left( u_b^T  \Gamma_2^{(i)}  d_c - d_b^T  \Gamma_2^{(i)}  u_c \right)$ |
|---|----------------------------------------------------------------------------------------------------------------------------------|
| ۲ | N(+): 1, 2, 4, 14, 15, 18                                                                                                        |
| ۲ | N(-): 1, 7, 8, 9                                                                                                                 |

| $\chi^{(i)}$                  | г( <i>i</i> )             | $\Gamma_2^{(i)}$ | smearing               | #N |
|-------------------------------|---------------------------|------------------|------------------------|----|
|                               |                           |                  | (nn)n                  | 1  |
|                               |                           |                  | (nn)w                  | 2  |
|                               |                           |                  | (nw)n                  | 3  |
| $\chi^{(1)}$                  | 1                         | 6                | (nw)w                  | 4  |
| $\chi^{(1)}$                  | 1                         | $C \gamma_5$     | (ww)n                  | 5  |
|                               |                           |                  | (ww)w                  | 6  |
|                               |                           |                  | ( <i>nn</i> ) <i>n</i> | 7  |
|                               |                           |                  | (nn)w                  | 8  |
|                               |                           |                  | (nw)n                  | 9  |
| $\chi^{(2)}$                  |                           | с                | (nw)w                  | 10 |
| $\chi^{(-)}$                  | $\gamma_5$                | C                | (ww)n                  | 11 |
|                               |                           |                  | (ww)w                  | 12 |
|                               |                           |                  | ( <i>nn</i> ) <i>n</i> | 13 |
|                               |                           |                  | (nn)w                  | 14 |
|                               |                           |                  | (nw)n                  | 15 |
| χ <sup>(3)</sup> <i>i</i> 1 0 | Carra                     | (nw)w            | 16                     |    |
|                               | i 1 $C \gamma_t \gamma_5$ | (ww)n            | 17                     |    |
|                               |                           |                  | (ww)w                  | 18 |

cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]



M. Schröck

| Motivation | and | introduction |  |
|------------|-----|--------------|--|
| 00000      |     |              |  |

Quark propagator 00000 Mesons

Baryons 000 Summary O

## $\Delta$ interpolators

## • $\epsilon_{abc} u_a \left( u_b^T C \gamma_k u_c \right)$

- Δ(+): 1, 2, 3
   Δ(-): 1, 2, 3
- Δ(−): 1, 2, 3

| smearing $\#_{\Delta}$ $(nn)n$ 1 $(nn)w$ 2 $(nw)n$ 3 $(nw)w$ 4 $(ww)n$ 5 $(ww)w$ 6 |                        |    |
|------------------------------------------------------------------------------------|------------------------|----|
| (nn)w 2<br>(nw)n 3<br>(nw)w 4<br>(ww)n 5                                           | smearing               | #∆ |
| (nw)n 3<br>(nw)w 4<br>(ww)n 5                                                      | ( <i>nn</i> ) <i>n</i> | 1  |
| (nw)w 4<br>(ww)n 5                                                                 | (nn)w                  | 2  |
| (ww)n 5                                                                            | (nw)n                  | 3  |
| · · ·                                                                              | (nw)w                  | 4  |
| (14/14/)14/ 6                                                                      | (ww)n                  | 5  |
|                                                                                    | (ww)w                  | 6  |

cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |

Analytical expressions for the tree-level CI Dirac operator I

$$\begin{split} & \mathcal{M}_{L}^{(0)}(p) = s_{1} + 48s_{13} \\ & + (2s_{2} + 12s_{8})(\cos(p_{0}) + \cos(p_{1}) + \cos(p_{2}) + \cos(p_{3})) \\ & + (8s_{3} + 64s_{11})(\cos(p_{0})\cos(p_{1}) + \cos(p_{0})\cos(p_{2}) \\ & + \cos(p_{0})\cos(p_{3}) + \cos(p_{1})\cos(p_{2}) + \cos(p_{1})\cos(p_{3}) \\ & + \cos(p_{2})\cos(p_{3})) \\ & + 48s_{5}(\cos(p_{0})\cos(p_{1})\cos(p_{2}) + \cos(p_{0})\cos(p_{1})\cos(p_{3}) \\ & + \cos(p_{0})\cos(p_{2})\cos(p_{3}) + \cos(p_{1})\cos(p_{2})\cos(p_{3})) \\ & + 8s_{6}(\cos(p_{0})\cos(2p_{1}) + \cos(p_{0})\cos(2p_{2}) \\ & + \cos(p_{0})\cos(2p_{3}) + \cos(p_{1})\cos(2p_{2}) \\ & + \cos(p_{0})\cos(2p_{3}) + \cos(p_{2})\cos(2p_{3}) \\ & + \cos(2p_{0})\cos(p_{1}) + \cos(2p_{0})\cos(p_{2}) \\ & + \cos(2p_{0})\cos(p_{3}) + \cos(2p_{1})\cos(p_{2}) \\ & + \cos(2p_{1})\cos(p_{3}) + \cos(2p_{2})\cos(p_{3})) \\ & + 384s_{10}\cos(p_{0})\cos(p_{1})\cos(p_{2})\cos(p_{3}) \\ & + m_{0} \end{split}$$



| Motivation and introduction | Quark propagator | Mesons | Baryons | Summary |
|-----------------------------|------------------|--------|---------|---------|
| 00000                       | 00000            | 0000   | 000     | 0       |

Analytical expressions for the tree-level CI Dirac operator II

$$\begin{split} k_0 &= 2v_1 \sin(p_0) + 8v_2 \sin(p_0)(\cos(p_1) + \cos(p_2) + \cos(p_3)) \\ &+ (32v_4 + 16v_5) \sin(p_0)(\cos(p_1) \cos(p_2) + \cos(p_1) \cos(p_3)) \\ &+ \cos(p_2) \cos(p_3)), \\ k_1 &= 2v_1 \sin(p_1) + 8v_2 \sin(p_1)(\cos(p_0) + \cos(p_2) + \cos(p_3))) \\ &+ (32v_4 + 16v_5) \sin(p_1)(\cos(p_0) \cos(p_2) + \cos(p_0) \cos(p_3)) \\ &+ \cos(p_2) \cos(p_3)), \\ k_2 &= 2v_1 \sin(p_2) + 8v_2 \sin(p_2)(\cos(p_0) + \cos(p_1) + \cos(p_3))) \\ &+ (32v_4 + 16v_5) \sin(p_2)(\cos(p_0) \cos(p_1) + \cos(p_0) \cos(p_3)) \\ &+ \cos(p_1) \cos(p_3)), \\ k_3 &= 2v_1 \sin(p_3) + 8v_2 \sin(p_3)(\cos(p_0) + \cos(p_1) + \cos(p_2)) \\ &+ (32v_4 + 16v_5) \sin(p_3)(\cos(p_0) + \cos(p_1) + \cos(p_2)) \\ &+ (32v_4 + 16v_5) \sin(p_3)(\cos(p_0) \cos(p_1) + \cos(p_0) \cos(p_2) \\ &+ \cos(p_1) \cos(p_2)) \end{split}$$



Motivation and introduction

Quark propagator

Mesons 0000 Baryons 000 Summary O

## The relevant $D_{\rm CI}$ coefficients

| $0.1481599252 	imes 10^1$     |
|-------------------------------|
| $-0.5218251439 	imes 10^{-1}$ |
| $-0.1473643847 	imes 10^{-1}$ |
| $-0.2186103421 	imes 10^{-2}$ |
| $0.2133989696 	imes 10^{-2}$  |
| $-0.3997001821 	imes 10^{-2}$ |
| $-0.4951673735 	imes 10^{-3}$ |
| $-0.9836500799 	imes 10^{-3}$ |
| $0.7529838581 	imes 10^{-2}$  |
| $0.1972229309 	imes 10^{0}$   |
| $0.8252157565 	imes 10^{-2}$  |
| $0.5113056314 	imes 10^{-2}$  |
| $0.1736609425 	imes 10^{-2}$  |
| -0.077                        |
|                               |

