Determining V_{us} from semi leptonic Kaon decays

Karthee Sivalingam

PA Boyle, JM Flynn, A J \ddot{u} ttner, CT Sachrajda, J Zanotti

AGENDA

To tell a story of

And if its "Malarkey" ...

CKM Matrix

CKM Matrix contains information on the strength of flavour-changing weak decays.

Search deviations from unitarity \rightarrow search for physics beyond the SM.

The most sensitive test of the unitarity of the CKM matrix is provided by the relation

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 - \delta$$

In the above unitarity test, $|V_{ud}|$ is precisely determined, $|V_{ub}|$ is usually neglected as it is very small , so that leaves us with $|V_{us}|$

V_{us}

Semi-leptonic decays involve changes to flavors of quarks, or mixing of quarks, and from these processes we can determine CKM matrix elements

 $K \to \pi l \nu(Kl3)$ semi-leptonic decay process leads to the determination of $|V_{us}|$ In a Kl3 decay, the decay rate can be written as

$$\Gamma = \frac{G_F^2 M_K^2 C^2}{192\pi^2} \quad S_{ew} (1 + \delta_{em}) \quad |V_{us}|^2 \quad \left| f_+(0) \right|^2$$
Known constants Known corrections formfactor

The decay rate can be precisely estimated from experiments of semi-leptonic $K\to\pi$ decays and hence the value of the product $\left|f_+(0)\right|^2 |V_{us}|^2$

The determination of $f_+(0)$ using Lattice QCD is important in estimating V_{us} .

$$f_+(0)$$

 $f_+(0)$ is defined from the $K o\pi$ matrix element of the weak vector current (V_μ) at zero momentum transfer

$$\langle \pi(p') | V_{\mu} | K(p) \rangle = \left(p_{\mu} + p'_{\mu} \right) f_{+}(\mathbf{q^2}) + \left(p_{\mu} - p'_{\mu} \right) f_{-}(\mathbf{q^2})$$
where $\mathbf{q^2} = (\mathbf{p} - \mathbf{p'})^2$

current conservation implies that $f_+(0)$ =1 [SU(3) flavour limit m_π^2 = m_K^2]

Ademollo-Gatto Theorem: SU(3) breaking effects in

$$f_{+}(0) = 1 + f_{2} + f_{4} + O(p^{6}), f_{n} = O(m_{\pi}^{n}, K, \eta)$$

 $\Delta f = 1 + f_{2} - f_{+}(0)$

standard result from Leutwyler & Roos (1984) Δf = -0.016(8)

$\langle \pi(\boldsymbol{p_f}) | V_{\mu} | K(\boldsymbol{p_i}) \rangle$

Construct ratios of correlation functions, such that we can extract the matrix element $\langle \pi(\boldsymbol{p_f}) | V_{\mu} | K(\boldsymbol{p_i}) \rangle$

$$\langle \pi(\boldsymbol{p_f}) | V_{\mu} | K(\boldsymbol{p_i}) \rangle = \begin{cases} R_{1,p_i,p_f} = 4\sqrt{E_i E_f} \sqrt{\frac{C_{K\pi}(p_i, p_f)C_{\pi K}(p_f, p_i)}{C_K(p_i)C_{\pi}(p_f)}} \\ R_{2,p_i,p_f} = 2\sqrt{E_i E_f} \sqrt{\frac{C_{K\pi}(p_i, p_f)C_{\pi K}(p_f, p_i)}{C_{KK}(p_i, p_i)C_{\pi \pi}(p_f, p_f)}} \end{cases}$$

Where $C_K(p_i)$ is the Kaon two point functions $C_{K\pi}(p_i,p_f)$ is the Kaon to Pion three point function and similarly ...

So far ...

CKM Matrix

$$f_+(0)$$

$$K \rightarrow \pi$$
 formfactor at zero momentum transfer

 $K \to \pi$ matrix element of the

 $\overline{R_{1,K,\pi}}$, $\overline{R_{2,K,\pi}}$

Ratios of correlation functions

So far

We have a map!!
That's it ???

Existing Method

Measure 2-pt and 3-pt correlation functions from Lattice QCD simulations

Periodic boundary condition results in hadronic momenta (p) quantized as $p_i = \frac{2\pi}{L} n_i$ where L is the cubic volume, n_i 's are integers.

Calculate $f_+(q^2)$ for different q by constructing ratios Find $f_+(0)$ by interpolating to $q^2=0$

Simulations performed at mass higher than the physical mass.

Extrapolate $f_+(0)$ result to that of actual physical mass of mesons. (chiral extrapolation)

Errors due to interpolation, extrapolation and finite volume effects.

Interpolation to $q^2 = 0$

$$f_{+}(0)_{pole} = 0.9774(35)$$

$$f_+(0)_{quad} = 0.9749(59)$$

~ 0.2% Systematic error from difference in pole and quadratic fits

Twisted boundary condition

Twisted boundary condition allows momenta smaller than $2\pi/L$ to be simulated

By partially twisting the boundary conditions of the quarks (θ_i, θ_f) , the momentum transfer q^2 can be modified as follows

$$q^{2} = \left\{ \left[E_{i}(\vec{p}_{i}) - E_{f}(\vec{p}_{f}) \right]^{2} - \left[\left(p_{\overrightarrow{FT},i} + \frac{\vec{\theta}_{i}}{L} \right) - \left(p_{\overrightarrow{FT},f} + \frac{\vec{\theta}_{f}}{L} \right) \right] \right\}$$

We can evaluate $K \to \pi$ formfactor by applying twist to Kaon or pion such that $q^2=0$. The twist angle can be evaluated as

$$\left|\overrightarrow{\theta}_{K}\right| = L\sqrt{\frac{\left(m_{K}^{2}+m_{\pi}^{2}\right)}{2m_{\pi}}-m_{K}^{2}} \qquad \left|\overrightarrow{\theta}_{\pi}\right| = 0$$

$$\left|\vec{\theta}_{\pi}\right| = L\sqrt{\frac{\left(m_{K}^{2}+m_{\pi}^{2}\right)}{2m_{K}}-m_{\pi}^{2}} \qquad \left|\vec{\theta}_{K}\right| = 0$$

Twisted boundary results

 $f_{+}(0) = 0.9757(44)$

[PA Boyle et al arXiv:1004.0886v1]

Chiral Extrapolation

Measurement performed on a variety of ensembles with different Lattice spacings, volumes, action and strange quark mass using the

serious speed to reach ...

Volume	a^{-1}	Gauge action	N ^{ens}	m_{π} (MeV)	# configs
$32^3 \times 64 \times 32$	1.35	Iwasaki +DSDR	2	170,250	196,162
$32^3 \times 64 \times 16$	2.28	Iwasaki	3	300,355,405	136,153,12
$24^3 \times 64 \times 16$	1.73	Iwasaki	4	330,420,560,670	90,90,45,45

With DWF action, we need some serious power to measure all that!!!

Our previous result - $|f_{+}(0)|$ = 0.9599(34)_{stat} $\binom{+31}{-43}_{\chi}$ (14)_a

dominated by uncertainty in chiral extrapolations

Hardware

The measurement is don't using the following resources

STFC's DiRAC facility at

JUGENE at "Jülich Supercomputing Centre" (JSC)

DiRAC/BGQ facility at Edinburgh

BlueGene/Q Overview

 $16 \times PowerPC 64$ bit compute cores

16 KB L1 data cache, 4KB L1p prefetch engine, 32 MB L2 cache, 16GB DDR3

4 threads per core, 64 threads per chip

Quad double precision short vector (SIMD) fpu

U	FP/Memory/	Bandwidth GB/s
	GFlops	204.8
	L1	820
	L2	563
	DDR	42.7
	Torus	40

Most processors in the world spend 95% of their time idle stalled on

Software

BAGEL is a QCD specific library that generates architecture specific assembly code

-written by P.A.Boyle et al.

Programmer specifies the register usage , loop unrolling strategies and declaring the memory access/prefetch pattern.

For each processor, BAGEL constructs a pipeline for plan of usage.

Algorithms: CG, Multi-shift CG, Mixed precision CG

Actions: Wilson, Wilson twisted mass, DWF, 5d Overlap, Clover

Data Analysis

 $f_+(\mathbf{0})$ is evaluated directly at $q^2=0$, by constructing ratios $R_{\alpha,K\pi}$ and solving the following simultaneous equations.

$$R_{\alpha,K\pi}(\overrightarrow{\theta_K}, \overrightarrow{0}, V_t) = (E_K + m_{\pi}) f_{+}^{K\pi}(\mathbf{0}) + (E_K - m_{\pi}) f_{-}^{K\pi}(\mathbf{0})$$

$$R_{\alpha,K\pi}(\overrightarrow{0}, \overrightarrow{\theta_{\pi}}, V_t) = (m_K + E_{\pi}) f_{+}^{K\pi}(\mathbf{0}) + (m_K - E_{\pi}) f_{-}^{K\pi}(\mathbf{0})$$

$$R_{\alpha,K\pi}(\overrightarrow{\theta_K}, \overrightarrow{0}, V_i) = \theta_{K,i} \qquad f_{+}^{K\pi}(\mathbf{0}) + \theta_{K,i} \qquad f_{-}^{K\pi}(\mathbf{0})$$

$$R_{\alpha,K\pi}(\overrightarrow{0}, \overrightarrow{\theta_{\pi}}, V_i) = \theta_{\pi,i} \qquad f_{+}^{K\pi}(\mathbf{0}) + \theta_{\pi,i} \qquad f_{-}^{K\pi}(\mathbf{0})$$

where i=x,y,z.

We expect $f_+(\mathbf{0})$ determined from twisting pion or Kaon to match! But for ensembles with $m_\pi=250 MeV$, they are inconsistent, and for $m_\pi=170 MeV$, It becomes so noisy that we cannot the Kaon ratios.

$f_{+}(0)$ vs twist

The simultaneous equations needs to be studied for dependence of $f_+(0)$ and $f_-(0)$ on twist choices.

The slope of $f_{+}(0)$ to $f_{-}(0)$ is given

$m_{\pi} = 250 \overline{MeV}$

PION ONLY

Kaon only

$m_{\pi} = 250 MeV$

PION ONLY + KAON ONLY

Pion and Kaon

Global fit

We can define scalar form factor $f_0(0)$

$$f_0(0) = f_+(0) + \frac{q^2}{m_K^2 - m_{\pi}^2} f_-(0)$$

Simultaneous fit all data to $\,q^2$, $m_\pi^{\,2}$, $m_K^{\,2}$ using the ansatz

$$f_0(q^2, m_{\pi}^2, m_{K}^2) = \frac{1 + f_2 + (m_{K}^2 - m_{\pi}^2)^2 \{A_0 + A_1(m_{K}^2 + m_{\pi}^2)\}}{1 - q^2 / (M_0 + M_1(m_{K}^2 + m_{\pi}^2))^2}$$

With four fit parameters A_0 , A_1 , M_0 , M_1

Expression motivated from the Ademollo-Gatto Theorem

$f_{+}(0)$ vs m_{π}^{-2} dependence -no strange quark mass correction

 $f_+(0)$ vs m_π^2 dependence with correction for strange quark mass $f_0(q^2,m_\pi^{\ latt},m_K^{\ latt})$ - $f_0(q^2,m_\pi^{\ phys},m_K^{\ phys})$

$f_+(0)$ vs m_π^2 dependence with correction $f_0(q^2,m_\pi^{latt},m_K^{latt})$ - $f_0(q^2,m_\pi^{phys},m_K^{phys})$

$f_+(0)$ vs $m_\pi{}^2$ dependence with correction $f_0(q^2,m_\pi{}^{latt},m_K{}^{latt})$ - $f_0(q^2,m_\pi{}^{phys},m_K{}^{phys})$

Comparison of Lattice results (blue squares) with various model estimates based on ${}_{\rm X}{\rm PT}$ (red triangles)

PA Boyle et al PRL 100,141601 (2008)

Comparison of Lattice results (blue squares) with various model estimates based on ${}_{\rm X}{\rm PT}$ (red triangles)

RBC+UKQCD 2012 - Expected Preliminary result

Conclusion

- \checkmark We can determine CKM Matrix element V_{us} precisely using kl3 semi-leptonic decays
- \checkmark Measurement made on different lattice spacing and volume with $\,m_{\pi}$ as low as 170 MeV
- \checkmark Twisting Kaon only to get q^2 =0 is unreliable and twisting pion and Kaon together offers better solution.
- \checkmark Chiral extrapolation error for ${m f_+}^{K\pi}(0)$ can be almost be halved
- Future simulations at physical pion mass.

