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isospin symmetry

among the questions left open by the
standard model there is the origin of flavour

the two lightest quarks, the up and the down,
have different masses and different electric
charges

nevertheless

md −mu
ΛQCD

� 1

(eu − ed)αem � 1

for these reasons the group of rotations in
this bidimensional (complex) ”flavour” space
is a good and very useful approximate
symmetry of the real world



isospin symmetry

rotations in the bidimensional flavour space
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the two light quarks are into an SU(2) doublet and hadrons can be classified according to the representations of the
”angular momentum” algebra

from isospin symmetry combined with parity we know, for example, that an even number of pseudoscalar mesons cannot
scatter (trough QCD) into an odd number of pseudoscalar mesons,

K
0 −→ ππ−→ πππ| {z }

forbidden

〈ππ|H∆S=1
W |K0〉 =

8<: A0 e
iδ0

A2 e
iδ2

where the strong phases δ0 and δ2 coincide with the scattering phases

unexplained experimental evidence A0 � A2, the so called ∆I = 1/2 rule

. . .



why isospin breaking?

V̂
CKM

=

0@ Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

1A

except for the ones in the third row, CKM matrix elements can be extracted
by (semi)leptonic decay rates, according to

Vgf =
experiment

theory

Vgf



why isospin breaking?

Unitarity of the CKM matrix implies several relations among the different
couplings, three of these are the so-called unitarity triangles:

VudV
?
us + VcdV

?
cs + VtdV

?
ts = 0

VusV
?
ub + VcsV

?
cb + VtsV

?
tb = 0

VudV
?
ub + VcdV

?
cb + VtdV

?
tb = 0

the unitarity triangle is the scalar product of the d-column times the
b-column of the CKM matrix

1.4 Violation in the Standard Model 21
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Figure 1-2. The rescaled Unitarity Triangle, all sides divided by .

The rescaled Unitarity Triangle (Fig. 1-2) is derived from (1.82) by (a) choosing a phase convention

such that is real, and (b) dividing the lengths of all sides by ; (a) aligns one side

of the triangle with the real axis, and (b) makes the length of this side 1. The form of the triangle

is unchanged. Two vertices of the rescaled Unitarity Triangle are thus fixed at (0,0) and (1,0). The

coordinates of the remaining vertex are denoted by . It is customary these days to express the

CKM-matrix in terms of four Wolfenstein parameters with playing

the role of an expansion parameter and representing the -violating phase [27]:

(1.83)

is small, and for each element in , the expansion parameter is actually . Hence it is sufficient

to keep only the first few terms in this expansion. The relation between the parameters of (1.78)

and (1.83) is given by

(1.84)

This specifies the higher order terms in (1.83).
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why isospin breaking?

we do have a lot of precise experimental measurements in the quark flavour sector of the standard model that, combined with
CKM unitarity (first row), allow us to measure hadronic matrix elements

M.Antonelli et al. Eur.Phys.J.C69 (2010)
G.Colangelo talk at Lattice20128>>>><>>>>:

˛̨̨
VusFK
VudFπ

˛̨̨
= 0.2758(5)

˛̨̨
VusF

Kπ
+ (0)

˛̨̨
= 0.2163(5)

8>><>>:
|Vud|2 + |Vus|2 = 1

|Vud| = 0.97425(22)

where |Vud| comes by combining 20 super-allowed nuclear β-decays and |Vub| has been neglected because smaller than the
uncertainty on the other terms, combine to give

|Vus| = 0.22544(95)

F
Kπ
+ (0) = 0.9595(46)

FK

Fπ
= 1.1919(57)

Intro FLAG-2 Current status of the review Conclusions

Vus and Vud – figures
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lattice result for f+(0), Nf = 2+1
lattice result for fK/f

π
, Nf = 2+1

lattice result for f+(0), Nf = 2 
lattice results for Nf = 2+1 combined
lattice result for fK/f

π
, Nf = 2

lattice results for Nf = 2 combined
unitarity
nuclear β decay

lattice QCD is still needed to postdict these quantities and, in case, to falsify the standard model



FK/Fπ & FKπ+ (0) summary from FLAG

concerning theoretical predictions, and lattice QCD in particular, these matrix elements are among the well known quantities
FALG Eur.Phys.J. C71 (2011)

G.Colangelo talk at Lattice2012

Intro FLAG-2 Current status of the review Conclusions

Analysis assuming CKM unitarity
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Assuming unitarity lattice predicts |Vud | with the same precision
as super-allowed Fermi β-decays

F
Kπ
+ (0) = 0.956(8) ∼ 0.8%

FK

Fπ
= 1.193(5) ∼ 0.5%

to do better we should include effects that we have been neglecting up to now. . .



FK/Fπ & FKπ+ (q2) beyond the isospin limit

it is useful to divide the isospin breaking effects into strong and electromagnetic ones,

mu 6= md| {z }
QCD

eu 6= ed| {z }
QED

in the particular and (lucky) case of these observables, the correction to the isospin symmetric limit due to the difference of
the up and down quark masses (QCD) can be estimated in chiral perturbation theory,

8>>>>>><>>>>>>:

FKπ+ (0) = 0.956(8) ∼ 0.8%

0@ FK
+π0

+ (q2)

FK
0π−

+ (q2)
− 1

1A
QCD

= 0.029(4)

A. Kastner, H. Neufeld Eur.Phys.J.C57 (2008)

8>>>>><>>>>>:

FK
Fπ

= 1.193(5) ∼ 0.5%

„
F
K+/Fπ+
FK/Fπ

− 1

«
QCD

= −0.0022(6)

V. Cirigliano, H. Neufeld Phys.Lett. B700 (2011)

we need first principle lattice QCD calculations to avoid uncertainties coming from the effective theory

but the home message is: reducing the error on these quantities without taking into account isospin breaking is useless. . .
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the gauge configurations

β amLud amLs L/a Nconf a (fm) ZP (MS, 2GeV )

3.80 0.0080 0.0194 24 150 0.0977(31) 0.411(12)
0.0110 24 150

3.90 0.0030 0.0177 32 150 0.0847(23) 0.437(07)
0.0040 32 150
0.0040 24 150
0.0064 24 150
0.0085 24 150
0.0100 24 150

4.05 0.0030 0.0154 32 150 0.0671(16) 0.477(06)
0.0060 32 150
0.0080 32 150

4.20 0.0020 0.0129 48 100 0.0536(12) 0.501(20)
0.0065 32 150

gauge configurations for this study have been taken from the gauge ensembles made publicly available by the ETMC
collaboration

caveat: the Twisted Mass discretization breaks isospin at finite lattice spacing

we have been working in a mixed-action setup by introducing O(a2) errors coming from violations of unitarity

in what follows I shall illustrate our method without discussing these technical details by thinking to a isospin-symmetric
lattice regularization



isospin breaking on the lattice

the calculation of QED isospin breaking effects on the lattice it has been done for the first time in
Duncan, Eichten, Thacker, Phys. Rev. Lett. 76 (1996)

QED is treated in the quenched approximation in its “non-compact” formulation

because the photons are massless and unconfined this approach may introduce large finite volume effects. . .

we shall come back on QED effects later in this talk

the calculation of QCD isospin breaking effects on the lattice poses a theoretical problem

Z =

Z
DUDψ e

−Sg [U]+Sf [U;mu,md]

=

Z
DU e

−Sg [U]
det(D[U ] +mu) det(D[U ] +md)| {z }

must be real and >0

if mu 6= md but very light, this can be only achieved by recurring to non (ultra) local and, consequently, very expensive
fermion formulations

furthermore the effect is very small and it can be extremely difficult to see it with limited statistical accuracy



our QCD isospin breaking on the lattice

our idea is to calculate QCD isospin corrections at first order in ∆mud = (md −mu)/2:

S = ū (D[U ] +mu)u + d̄ (D[U ] +md) d

= ū (D[U ] +mud)u + d̄ (D[U ] +mud) d| {z }
S0

−

∆mudŜz }| {
md −mu

2
(ūu− d̄d)

the calculation of an observable proceeds as follows

〈O〉 −∆〈O〉 =

R
DU e−Sg [U]−S0[U]+∆mudŜ OR
DU e−Sg [U]−S0[U]+∆mudŜ

=

R
DU e

−Sg [U]−S0
f [U]

(1 + ∆mudŜ) OR
DU e

−Sg [U]−S0
f

[U]
(1 + ∆mudŜ)

= 〈O〉 + ∆mud〈Ŝ O〉 −∆mud〈Ŝ〉| {z }
=0



our QCD isospin breaking on the lattice

to insert ūu− d̄d within a correlation function amounts (after fermionic Wick contractions) to calculate the same
observables but with light propagators squared

Su = 1
D[U]+mud−∆mud

=
1

D[U ] +mud
+

∆mud

(D[U ] +mud)2

Sd = 1
D[U]+mud+∆mud

=
1

D[U ] +mud
−

∆mud

(D[U ] +mud)2

relations that can be represented diagrammatically as

u

= + + · · ·

d

= − + · · ·



our QCD isospin breaking on the lattice: notation

in the following, two-point functions of pseudoscalar mesons will be represented graphically as

C
π+π− (t, ~p) = − =

X
~x

e
−i~p·~x〈 ūγ5d(x) d̄γ5u(0) 〉

C
K+K− (t, ~p) = − =

X
~x

e
−i~p·~x〈 ūγ5s(x) s̄γ5u(0) 〉

nucleon two-point functions as,

C
±
pp(t, ~p) = − +

=
X
~x

e
−i~p·~x〈

"
εabc(ūaCγ5d̄

T
b )ūc

1± γ0

2

#
(x)

"
εdef

1± γ0

2
ud(u

T
e Cγ5df )

#
(0) 〉

three point functions as

C
µ

K0π−
(t; ~pK , ~pπ) = − =

X
~x,~y

e
−i~pπ·~xe−i~pK ·(~x−~y)〈 d̄γ5

s(~y, T/2) s̄γ
µ
u(~x, t) ūγ

5
d(0) 〉



our QCD isospin breaking on the lattice: notation

in the following, two-point functions of pseudoscalar mesons will be represented graphically as

Cππ(t, ~p) = − =
X
~x

e
−i~p·~x〈 ūγ5d(x) d̄γ5u(0) 〉

CKK(t, ~p) = − =
X
~x

e
−i~p·~x〈 ūγ5s(x) s̄γ5u(0) 〉

nucleon two-point functions as,

C
±
NN (t, ~p) = − +

=
X
~x

e
−i~p·~x〈

"
εabc(ūaCγ5d̄

T
b )ūc

1± γ0

2

#
(x)

"
εdef

1± γ0

2
ud(u

T
e Cγ5df )

#
(0) 〉

three point functions as

C
µ
Kπ

(t; ~pK , ~pπ) = − =
X
~x,~y

e
−i~pπ·~xe−i~pK ·(~x−~y)〈 d̄γ5

s(~y, T/2) s̄γ
µ
u(~x, t) ūγ

5
d(0) 〉



our QCD isospin breaking on the lattice: two point functions

at first order in ∆mud pion mass and decay constants don’t get a correction (here π± but it works also for π0 because

〈π‖Ŝ‖π〉 = 〈1, I3‖1, 0‖1, I3〉 = 0)

u

d

= + − + · · · = +O(∆m
2
ud)

the kaons do get a correction

C
K+K− (t) = −

s

u

= − − +O(∆m
2
ud)

C
K0K0 (t) = −

s

d

= − + +O(∆m
2
ud)

this means that at first order (δ. stays for relative variation while ∆. for absolute variation),

δu

„
FK

Fπ

«
=

∆uFK

FK
−

∆uFπ

Fπ
=
FK − FK+

FK



what do we expect from “corrected” correlation functions?

let’s consider the euclidean correlation function in the full perturbed theory, C
K0K0 (t), and in the symmetric unperturbed

theory, CKK(t):

C
K0K0 (t) =

X
~x

〈d̄γ5s(~x, t) s̄γ5d(0)〉 =
X
n

〈0|d̄γ5s(0)|n∆〉 〈n∆|s̄γ5d(0)|0〉 e−E
∆
n t

=
G2
K0

2E
K0

e
−E

K0 t + · · ·

CKK(t) =
G2
K

2EK
e
−EKt + · · ·

where the fact that the leading exponential is the same is not obvious and follows from the fact that our perturbation Ŝ is flavour
diagonal (e.g. does not happen for insertions of the weak hamiltonian)

by using non degenerate perturbation theory (I3 is conserved), we have

E
K0 = EK + ∆EK = EK + ∆mud〈K|Ŝ|K〉

|K0〉 = |K〉 + |∆K〉 = |K〉 + ∆mud
X
n6=K

|n〉
〈n|Ŝ|K〉
EK − En



what do we expect from “corrected” correlation functions?

− =
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2EK
e
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"
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our QCD isospin breaking on the lattice: kaons two point functions
aE

Kef
f (
t)

0.2

0.3

0.4

0.5

0.6

t/a
5 10 15 20 25

E2
K(p) = M2

K + p2

δ 
C

K
K
(p

,t)
 / 

aΔ
 m

udL

−125

−100

−75

−50

−25

0

25

t/a
5 10 15 20 25

∆EK(p) =
MK∆MKq
M2
K

+p2

by considering pseudoscalar-pseudoscalar correlators and by taking into account the finite time extent of the lattice, we fit
correlations at different ~p according to,

δCKK(~p, t) = δ

 
G2
Ke
−EKT/2

2EK

!
+ ∆EK(t− T/2) tanh [EK(t− T/2)] + . . .

and extract FK and δFK according to

FK = (ms +mud)
GK

M2
K

δFK =
∆mud

ms +mud
+ δGK − 2δMK



our QCD isospin breaking on the lattice: kaons two point functions

are we sure that the slopes correspond to ∆EK?

(a
E

K
)2

0.05

0.075

0.1

0.125

0.15

0.175

(ap)2
0 0.025 0.05 0.075 0.1

E2
K(p) = M2

K + p2

Δ 
E

K
 / 
Δ 

m
udL

2

2.5

3

3.5

4

4.5

5

(ap)2

0 0.025 0.05 0.075 0.1

∆EK(p) =
MK∆MKq
M2
K

+p2

the solid lines are not fitted, but theoretically predicted by using calculated M and ∆M

this kind of accuracy on kinematics at p 6= 0 is possible thanks to the use of twisted boundary conditions
G.M. de Divitiis, R. Petronzio, N.T. Phys.Lett. B595 (2004)

ψ(x + L) = e
iθ
ψ(x) −→ p =

θ

L
+

2πn

L



our QCD isospin breaking on the lattice: kaons two point functions

are we sure that the intercepts correspond to δFK?

aF
K
 ×

 1
05

0.32

0.33

0.34
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0.36

0.37

(ap)2
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K)

δ 
F

K
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aΔ
 m

udL
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δFK(p) = δFK(M2
K)

the solid lines are not fitted, but drawn by using FK(p = 0) and δFK(p = 0)

this kind of accuracy on kinematics at p 6= 0 is possible thanks to the use of twisted boundary conditions
G.M. de Divitiis, R. Petronzio, N.T. Phys.Lett. B595 (2004)

ψ(x + L) = e
iθ
ψ(x) −→ p =

θ

L
+

2πn

L



extracting [md −mu]QCD: QED corrections

in order to extract 2∆m
QCD
ud

= [md −mu]QCD we need experimental inputs and we cannot neglect QED corrections

If we work at first order in the QED coupling constant and ∆mud and neglect terms of O(αem∆mud), some of the
relevant Feynman diagrams entering kaons two point functions are

∆CKK(t) = −
e2d − e

2
u

2
− es

ed − eu
2

+ · · ·

the electromagnetic corrections to CKK(t) are logarithmically divergent, corresponding to the renormalization of the
quark masses, and the separation of QED and QCD effects is ambiguous (prescription dependent)

in the chiral limit QED corrections to M2
K0 −M

2
K+ and M2

π0 −M
2
π+ are the same (Dashen’s theorem)

beyond the chiral limit violations to Dashen’s theorem are parametrized in term of small parameters

εγ = 0.7(5) from FLAG: Eur.Phys.J. C71 (2011) our prescription, for the time being

h
M

2
K0 −M

2
K+

iQCD
=
h
M

2
K0 −M

2
K+

iexp
− (1 + εγ)

h
M

2
π0 −M

2
π+

iexp
= 6.05(63)× 10

3 MeV2

εγ = 0 → 5.16× 10
3 MeV2



extracting [md −mu]QCD: chiral-continuum extrapolations
Δ 

M
K2
 / 
Δ 

m
ud

 (
M

eV
) 

× 
10

-3

1.8

2

2.2

2.4

2.6

2.8

mud (MeV)
0 10 20 30 40 50 60

[md −mu]
QCD

(MS, 2GeV ) = 2∆m
QCD
ud

= 2.35(8)(24) MeV

chiral perturbation theory formulae can be derived from known results
nf = 2 + 1: Gasser and Leutwyler Nucl. Phys. B250(1985)

non unitary nf = 2: S.Sharpe Phys. Rev. D56(1997)

∆M2
K

∆mud
= B0

n
1 + 2(mud +ms)B̂0(2α8 − α5) + 4mudB̂0(2α6 − α4)

+B̂0ms log(2B̂0ms) + B̂0
ms +mud

ms −mud

h
ms log(2B̂0ms)−mud log(2B̂0mud)

i)

where αi are low energy constants and B̂0 = 2B0/(4πF
2
0 )



calculating δFQCDK : chiral-continuum extrapolations
δ 

F
K
 / 
Δ 

m
ud

 (
M

eV
-1
) 

× 
10

3

1

1.5

2

2.5

3

3.5

mud (MeV)
0 10 20 30 40 50 60

"
F
K+/Fπ+

FK/Fπ
− 1

#QCD
= −0.0039(3)(2)

εγ = 0 −→ −0.0032(3)

to be compared with

"
F
K+/Fπ+

FK/Fπ
− 1

#χpt
= −0.0022(6)

chiral perturbation theory formulae can be derived from known results
nf = 2 + 1: Gasser and Leutwyler Nucl. Phys. B250(1985)

non unitary nf = 2: S.Sharpe Phys. Rev. D56(1997)

δFK

∆mud
=
B0

2

(
α5 − B̂0

ms +mud

ms −mud

h
ms log(2B̂0ms)−mud log(2B̂0mud)

i)

where αi are low energy constants and B̂0 = 2B0/(4πF
2
0 )



calculating Mn −Mp
aM

Nef
f (
t)

0.2

0.4

0.6

0.8

1

1.2

t/a
0 5 10 15 20

δ 
C

N
N
(t

)/
 a
Δ 

m
udL

−40

−30

−20

−10

0

10

t/a
2 4 6 8 10 12 14 16

the calculation of the neutron-proton mass difference proceeds along the same lines as in the K0-K+ case

CNN (t) = − + = WNe
−MNt + · · ·

δCNN (t) = −
− −

− +

+
− −

− +

= δWN − t∆MN + · · ·



calculating Mn −Mp

Δ 
M

N
 / 
Δ 

m
ud

0.5

0.75

1

1.25

1.5

1.75

2

mud (MeV)
0 10 20 30 40 50 60

ˆ
Mn −Mp

˜QCD
= 2∆m

QCD
ud

"
∆MN

∆mud

#QCD
= 2.8(6)(3) MeV

δCNN (t) = −
− −

− +

+
− −

− +

= δWN − t∆MN + · · ·

here the results are at fixed lattice spacing a = 0.085 fm.

correlators have been computed by “Gaussian smearing” sink operators



calculating δfKπ+ (q2)

form factors parametrizing semileptonic decays can be calculated with good precision by considering double ratios of three point
correlation functions

〈π|V µsu|K〉
2
p
EπEK

=

vuuuuuuuuuuuut
= [ 

R
0 K
π(

t)
 ]

1/
2

0.6

0.7

0.8

0.9

1

1.1

t/a
0 2 4 6 8 10 12 14 16 18 20 22 24

and

〈π|V 0
su|K〉 = (EK + Eπ)f

Kπ
+ + (EK − Eπ)f

Kπ
−

〈π|~Vsu|K〉 = (~pi + ~pf )f
Kπ
+ + (~pi − ~pf )f

Kπ
−

f +K
π (q

2 )

0.6
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calculating δfKπ+ (q2)

in order to calculate QCD isospin breaking corrections to K → π`ν form factors one needs to calculate,

〈π|T
Z

d
4
x S

3
(x;µ) V

µ
su

ff
|K〉 −→

8>>><>>>:
〈K̄|T

nR
d4x H∆S=1

W (x;µ) H∆S=1
W (0;µ)

o
|K〉

〈π|T
nR

d4x H∆S=1
W (x;µ) V µem

o
|K〉

a key difference with respect to the calculation of long distance effects for K → πνν and K-K̄ mixing is that the isospin
breaking correction does not induce the decay of the kaon. . .

by using perturbation theory it can be shown that the isospin breaking corrections to the matrix elements is given by (all
t-dependent and wave function contributions cancel)

δ

(
〈π|V µsu|K〉
2
p
EπEK

)
= δ

8>>>>>>>>>><>>>>>>>>>>:

vuuuuuuuuuuuut

9>>>>>>>>>>=>>>>>>>>>>;

=
1

2

8>>>>><>>>>>:
δ + δ − δ − δ

| {z }
=0

9>>>>>=>>>>>;



calculating δfKπ+ (q2)

the diagrammatic expansion in the K0 → π−`ν is

−

s u

d

= − + − +O(∆m
2
ud)

and is different, because of the disconnected diagrams, from the K+ → π0`ν case

− + − = − + −

− − +

+ − +

= − − − + 2 +O(∆m
2
ud)



calculating δfKπ+ (q2)
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what do we expect from corrected three point correlation functions?

C
µ
Kπ

(t) = Z
µ
Kπ

e
−EKt e−Eπ(T−t)

∆C
µ
Kπ

(t) =
“
∆Z

µ
Kπ
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∆EKt

”
e
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δC
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calculating δfKπ+ (q2)
δ f 

f +K
π (q

2 )

−4×10−3

−2×10−3

0

2×10−3

q2 (GeV2)
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24 fK0π−
+ (0)− fKπ+ (0)

fKπ+ (0)

35QCD = 0.85(18)(1)× 10
−4

−

s u

d

= − + − +O(∆m
2
ud)

in this work we have not calculated disconnected diagrams

we can only show results for the K0 → π−`ν case (above)

this is a quantity that cannot be measured directly and the missing contribution, according to χpt, is expected to be much
bigger

the results given here make us confident on the possibility of completing the calculation by including disconnected diagrams



non-compact QED on the lattice

in order to perform combined QCD+QED lattice simulations one can use the non-compact formulation:

SQED =
1

4

X
x;µ,ν

h
∇+
µAν(x)−∇+

ν Aµ(x)
i2

= −
1

4

X
x;µ,ν

n
Aν(x)∇−µ

h
∇+
µAν(x)−∇+

ν Aµ(x)
i
− Aµ(x)∇−ν

h
∇+
µAν(x)−∇+

ν Aµ(x)
io

by using a covariant gauge fixing, one gets:

∇−µ Aµ(x) = 0 −→ SQED =
1

2

X
x

Aµ(x)
h
−∇−ν ∇

+
ν

i
Aµ(x)

=
1

2

X
k

A
?
µ(k) [2 sin(kν/2)]

2
Aµ(k)

note that the zero momentum mode is not constrained by any “derivative” gauge fixing, and there is a residual gauge
ambiguity to be addressed

∇−µ
ˆ
Aµ(x) + c

˜
= ∇−µ Aµ(x)



non-compact QED on the lattice: gauge invariance

by assuming that one is able to sample properly the QED gauge potential Aµ(x) (we shall discuss this point in the next few
slides), gauge invariance works as follows:

the QED links are defined by

Aµ(x) −→ Eµ(x) = e
−ieAµ(x)

QCD+QED covariant lattice derivatives are defined according to

ψ̄(x)∇+
µψ(x) = ψ̄(x) Eµ(x) Uµ(x)ψ(x + µ)− ψ̄(x) ψ(x)

the “exact” gauge invariance is

ψ(x) −→ e
ieλ(x)

ψ(x)

ψ̄(x) −→ ψ̄(x)e
−ieλ(x)

Aµ(x) −→ Aµ(x) +∇+
µ λ(x)



non-compact QED on the lattice: the american’s way

in order to sample the QED gauge potential, the strategy followed by other groups is the following
. . .

MILC Collaboration, PoS LATTICE2008 (2008) 127
T.Blum et al. Phys. Rev. D82 (2010)

[BMW Collaboration] PoS LATTICE2010 (2010) 121
[T. Ishikawa et al.] Phys. Rev. Lett. 109 (2012)

choose periodic boundary conditions for the gauge potential,

Aµ(x + Lν̂) = Aµ(x) −→ kµ =
2πnµ

L
−→ SQED =

1

2

X
k 6=0

Aµ(k)
?

[2 sin(kν/2)]
2
Aµ(k)

the action is quadratic and diagonal in momentum space so, by excluding the zero momentum mode, Aµ(k) can be
obtained by an heat-bath algorithm (actually they choose a different gauge, diagonalize the action and perform a gaussian
sampling. . . ) and the gauge potential in coordinate space is obtained by (fast) fourier transform

Aµ(x) =
1

L4

X
k 6=0

e
ikx

Aµ(k)

it can be shown that the effect of neglecting the zero momentum mode is a finite volume effect. classically: add four
lagrange multipliers to the action,

SQED −→
1

2

X
x

Aµ(x)
h
−∇−ν ∇

+
ν

i
Aµ(x) +

1

L3

X
x

ξµAµ(x)

Aµ(k = 0) =
∂S

∂ξµ
=
X
x

Aµ(x) = 0

at quantum level: this prescription does not affect short distance physics (no new divergences)



non-compact QED on the lattice: our approach

we want to deal with QED on the lattice at fixed order in the expansion with respect to αem

to this end, we need to expand the lattice action with respect to the electric charge

X
x

ψ̄(x) {D[U,E]−D[U, 0]}ψ(x) =

+
X
x,µ

ieAµ(x)

(
ψ̄(x)Uµ(x)

W − γµ

2
ψ(x + µ)− ψ̄(x + µ)U

†
µ(x)

W + γµ

2
ψ(x)

)

+
X
x,µ

e2

2
Aµ(x)Aµ(x)

(
ψ̄(x)Uµ(x)

W − γµ

2
ψ(x + µ) + ψ̄(x + µ)U

†
µ(x)

W + γµ

2
ψ(x)

)

+ . . .

=
X
x,µ

(
ieAµ(x)V

µ
(x) +

e2

2
Aµ(x)Aµ(x)T

µ
(x) + . . .

)

the ”Wilson” contribution is W = {1, iγ5τ
3} in clover and twisted mass QCD respectively

note: tadpole currents Tµ(x) are required to have gauge invariance at order e2

note: the point split vector current is exactly conserved: ∇−µ V
µ(x) = 0



non-compact QED on the lattice: our approach

let us consider, for example, the following contribution to the mass splittings of the kaons:

− = −
eseuê

2

2

X
x,y

Dµν(x− y) T 〈0| s̄(t)γ5u(t)V
µ
s (x)V

ν
u (y) ū(0)γ5s(0) |0〉

where Dµν(x− y) is the propagator of the gauge potential Aµ: this means that we are also using the QED in its non-compact
lattice formulation. now, in order to properly define the lattice propagator of Aµ we must

fix the QED gauge; we have used

∇−µ Aµ(x) = 0 −→ SQED =
1

2

X
x

Aµ(x)
h
−∇−ν ∇

+
ν

i
Aµ(x) =

1

2

X
k

Aµ(k) [2 sin(kν/2)]
2
Aµ(k)

introduce the infrared regulated photon propagator,

P
⊥
φ(x) = φ(x)−

1

V

X
y

φ(y)

D
⊥
µν(x− y) =

"
P
⊥ δµν

−∇−ρ ∇
+
ρ

P
⊥
#

(x− y) =
X
k 6=0

eik(x−y)

[2 sin(kν/2)]2



non-compact QED on the lattice: our approach

we have decided to work directly in coordinate space, thus avoiding fourier transforms, by applying the following stochastic
technique

we extract a set of four independent real fields distributed according to a real Z2 distribution,

X
B

Bµ(x)Bν(y) = δµν δ(x− y)

for each field we solve numerically the equation

[−∇−ν ∇
+
ν ]Cµ[B; x] = P

⊥
Bµ(x) −→ Cµ[B; x] =

"
1

−∇−ν ∇
+
ν

P
⊥
#
Bµ(x)

=

"
P
⊥ 1

−∇−ν ∇
+
ν

P
⊥
#
Bµ(x)

=
X
z

D
⊥

(x− z)Bµ(z)

by using the properties of the Z2 noise we thus obtain

X
B

Bµ(y)Cν [B; x] = D
⊥

(x− z)
X
B

Bµ(y)Bν(z) = D
⊥
µν(x− y)



non-compact QED on the lattice: our approach

coming back to our example, we get

− = −
eseuê

2

2

X
x,y

D
⊥
µν(x− y) T 〈0| s̄(t)γ5u(t)V

µ
s (x)V

ν
u (y) ū(0)γ5s(0) |0〉

= −
eseuê

2

2

X
B

X
x,y

Bµ(y)Cν [B; x] T 〈0| s̄(t)γ5u(t)V
µ
s (x)V

ν
u (y) ū(0)γ5s(0) |0〉

does it works?

∼
∂

∂e2
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well, from the numerical point of view it seems to work. ok, what about the physics?



the physics: preliminaries

let’s start by considering a two-point correlator in the full theory (mu 6= md and eq 6= 0)

C
full
HH

(t) = 〈 OH (t) O†
H

(0) 〉 −→ e
M
full
H =

C
full
HH

(t− 1)

C
full
HH

(t)
+ non leading exps.

where OH is an interpolating operator having the quantum numbers of a given hadron H

if H is a charged particle, the correlator CHH (t) is not QED gauge invariant. for this reason it is not possible, in general,
to extract physical informations directly from the residues of the different poles

on the other hand, the mass of the hadron is gauge invariant and finite in the continuum limit, provided that the parameters
of the actions have been properly renormalized. it follows that, at any given order in a perturbative expansion with respect

to any of the parameters of the action, the ratio C
full
HH

(t− 1)/C
full
HH

(t) is both gauge and renormalization group (RGI)
invariant

by expanding the full theory with respect to the isospin symmetric theory (mu = md and eq = 0) and by considering

e2q ∼ md −mu = O(ε), we shall find expressions of the form

C
full
HH

(t) = CHH (t)

"
1 + e

2 ∂e2CHH (t)

CHH (t)
+ ∆mud

∂∆mud
CHH (t)

CHH (t)
+ . . .

#

M
full
H

−MH = −e2∂t
∂
e2CHH (t)

CHH (t)
−∆mud ∂t

∂∆mud
CHH (t)

CHH (t)
+ . . . ,

where we have defined ∂tf(t) = f(t)− f(t− 1)



the physics: a first look at the pions

by expanding the two-point function of an interpolating operator having the quantum numbers of the neutral pion, we get

M
π0 −Mπ = −

e2u + e2d

2
ê
2
∂t +

(eu − ed)2

2
ê
2
∂t

−(e
2
u + e

2
d)ê

2
∂t

+ − Cm

− (∆ku + ∆kd)∂t

+[isosymmetric vac. pol.]

the fermion disconnected diagram in the first line vanishes by parity in the continuum and will be neglected in the following



the physics: a first look at the pions

by expanding the two-point function of an interpolating operator having the quantum numbers of the charged pions, we get

M
π+ −Mπ = −euedê

2
∂t − (eu − ed)

2
ê
2
∂t

−

−(e
2
u + e

2
d)ê

2
∂t

+ − Cm

− (∆ku + ∆kd)∂t

+[isosymmetric vac. pol.]

the tadpole diagrams in the first line are a (OZI violating) “dynamical QED effect” and are presumably not negligible. we have

implemented them in the code and we are running with several stochastic sources per gauge configurations (we get a signal!) but

we shall neglect the corresponding contribution in the following . . .



the physics: a first look at the pions VERY PRELIMINARY

by taking the difference of the formulae
shown in the previous two slides we get

M
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(eu − ed)2ê2
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the physics: a first look at the pions VERY PRELIMINARY

by taking into account finite volume
corrections as calculated in χpt+QED, we
get

M
π+ −Mπ0 =

(eu − ed)2ê2

2
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outlooks

first results obtained by applying our method look very promising

the method is general and can be applied to many observables, even at second order

we shall also refine our results in the case of nucleon masses and form factors

finish the computation of QED effects by quantifying all the systematics

first small steps toward the calculation of other observables that are relevant for phenomenological applications (long
distance effects, etc.)

U -spin corrections?
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