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isospin symmetry

ELEMENTARY
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@ among the questions left open by the
standard model there is the origin of flavour

@ the two lightest quarks, the up and the down,
have different masses and different electric
charges

Q@ nevertheless
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O for these reasons the group of rotations in
this bidimensional (complex) " flavour” space
is a good and very useful approximate
symmetry of the real world
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isospin symmetry

@ rotations in the bidimensional flavour space

. D[U] + mayq 0 L 1ol u
(a d)eio'% u Jolg

0 D[U] + myq d

O the two light quarks are into an SU(2) doublet and hadrons can be classified according to the representations of the
"angular momentum” algebra

@ from isospin symmetry combined with parity we know, for example, that an even number of pseudoscalar mesons cannot
scatter (trough QCD) into an odd number of pseudoscalar mesons,

Ag %
K% — nm — nm (7r7r|H€VS=1|K0) =
———

8
forbidden Az e

@ where the strong phases §g and §o coincide with the scattering phases

O unexplained experimental evidence Ag > Ay, the so called AT = 1/2 rule



. Vud Vus Vb
VCKM = Ved Ves Veb
Via  Vis Vi

except for the ones in the third row, CKM matrix elements can be extracted
by (semi)leptonic decay rates, according to

experiment

V. =
9f theory



Unitarity of the CKM matrix implies several relations among the different
couplings, three of these are the so-called unitarity triangles:

Vud Vs + VeaVis + VeaVis = 0
VusVigp + Ves Vi + Vis Viy, = 0

VudVib + VeaVip + ViaVip = 0

the unitarity triangle is the scalar product of the d-column times the
b-column of the CKM matrix



why isospin breaking?

we do have a lot of precise experimental measurements in the quark flavour sector of the standard model that, combined with
CKM unitarity (first row), allow us to measure hadronic matrix elements
M.Antonelli et al. Eur.Phys.J.C69 (2010)
G.Colangelo talk at Lattice2012
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lattice QCD is still needed to postdict these quantities and, in case, to falsify the standard model



Fr/Fr & Ff’r(O) summary from FLAG

concerning theoretical predictions, and lattice QCD in particular, these matrix elements are among the well known quantities
FALG Eur.Phys.J. C71 (2011)
G.Colangelo talk at Lattice2012
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to do better we should include effects that we have been neglecting up to now. ..



Fr/Fr & Ff’r(q2) beyond the isospin limit

@ it is useful to divide the isospin breaking effects into strong and electromagnetic ones,

M # Mg cu # g
SN——— N———
QCD QED

O in the particular and (lucky) case of these observables, the correction to the isospin symmetric limit due to the difference of
the up and down quark masses (QCD) can be estimated in chiral perturbation theory,

K — ~
F+ (0) = 0.956(8) 0.8% I;;iK — 1.193(5) ~ 0.5%
b

+.0

K0 2

+77([” 1 = 0.029(4) Fr+/Fot — —0.0022(6)
KOx 2 Fi /F.

Fy (%) ocD K/om QCD

A. Kastner, H. Neufeld Eur.Phys.J.C57 (2008) V. Cirigliano, H. Neufeld Phys.Lett. B700 (2011)

@ we need first principle lattice QCD calculations to avoid uncertainties coming from the effective theory

@ but the home message is: reducing the error on these quantities without taking into account isospin breaking is useless. ..
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the gauge configurations

8 amk, aml L/a Neonf a (fm) Zp(MS,2GeV)

3.80 0.0080 0.0194 24 150 0.0977(31) 0.411(12)
0.0110 24 150

3.90 0.0030 0.0177 32 150 0.0847(23) 0.437(07)
0.0040 32 150
0.0040 24 150
0.0064 24 150
0.0085 24 150
0.0100 24 150

4.05 0.0030 0.0154 32 150 0.0671(16) 0.477(06)
0.0060 32 150
0.0080 32 150

4.20 0.0020 0.0129 48 100 0.0536(12) 0.501(20)
0.0065 32 150

O gauge configurations for this study have been taken from the gauge ensembles made publicly available by the ETMC
collaboration

O caveat: the Twisted Mass discretization breaks isospin at finite lattice spacing
@ we have been working in a mixed-action setup by introducing O(az) errors coming from violations of unitarity

@ in what follows | shall illustrate our method without discussing these technical details by thinking to a isospin-symmetric
lattice regularization



isospin breaking on the lattice

@ the calculation of QED isospin breaking effects on the lattice it has been done for the first time in
Duncan, Eichten, Thacker, Phys. Rev. Lett. 76 (1996)

@ QED is treated in the quenched approximation in its “non-compact” formulation
Q@ because the photons are massless and unconfined this approach may introduce large finite volume effects. . .

@ we shall come back on QED effects later in this talk
@ the calculation of QCD isospin breaking effects on the lattice poses a theoretical problem

z = /DUDwe—Sg[UHsf[U;m%de

/DU e 59Ul det(D[U] + ma) det(D[U] + myq)

must be real and >0

@ if my, # mg but very light, this can be only achieved by recurring to non (ultra) local and, consequently, very expensive
fermion formulations

@ furthermore the effect is very small and it can be extremely difficult to see it with limited statistical accuracy



our QCD isospin breaking on the lattice

@ our idea is to calculate QCD isospin corrections at first order in Am,, g = (mg — my)/2:

S = a(D[U]+ my)u+d(D[U]+my)d
Amgg8
—T
_ _ mg — My _
= @ (DU]+myq)u+d(DU]+ myq)d— (au — dd)
So
@ the calculation of an observable proceeds as follows
(0) — A(0) J DU e=SalU1=SolUl+am.aS o [ py = SIWVI=SHY) (1 4 Am,,8) 0
B = —84[U]=SoU]+A El - — 50 .

[/ DUe glUl=SolUl+Am,q [DUe SglU]=5%[U] (14 AmyqS)

= (O)+Amug(8 0) — Amyq(S)
N o’

=0



O to insert Gu — dd within a correlation function amounts (after fermionic Wick contractions) to calculate the same
observables but with light propagators squared

s B . B 1 n Amayg
7 DlUHmua—Amud  ~ D[U]+ myq  (DIU] + myq)?
1 Amyq

s _ 1 _
¢ DIUTFmyatAmya DU+ mua  (DIU] + mya)?

O relations that can be represented diagrammatically as




our QCD isospin breaking on the lattice: notation

in the following, two-point functions of pseudoscalar mesons will be represented graphically as

Crtp— (7)== =" T aysd(e) dysu(0))
Cptp—(t,F) = - =3 TP T Gy s(x) Fysu(0))

nucleon two-point functions as,

chen - b —Ab—

= Ze_i5.5< [Eabc(ﬁac'}’s‘il{)ﬁc

z

1440 1+
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0
} (@) [edef ug(ul Cysdy)| (0))

three point functions as

c =3 e P F TR FD) (43557, T/2) 5yMu(F, ) ay°d(0))

z,y

n R
10, — (PR, Pr) = —



our QCD isospin breaking on the lattice: notation

in the following, two-point functions of pseudoscalar mesons will be represented graphically as

Crn(t,?) = - =3 P T (aysd(z) dysu(0))
Crr(t,P) = - = e P (ayss(z) sy5u(0))

nucleon two-point functions as,

e

—ipE _ 1£4° 1+4°
Stemr? ({ﬁabc(uaC’Ysg’f)uc 2 ](I) |:5def 5 ud(ugc’vsdf) (0))

+ -
CNN(t» P)

T

three point functions as

Cl (¢ Pk, Pr) = — A =S e P E TR E0) (405 5(5, T/2) syMu(E, t) 5" d(0))
z,q



our QCD isospin breaking on the lattice: two point functions

O at first order in Am,, 4 pion mass and decay constants don't get a correction (here 7E but it works also for 70 because
(mlISllw) = (1, I3]|1, 0|1, I3) = 0)

<z> - <<i‘> : @%.: C ot

O the kaons do get a correction

Crtr-® = - <:> =- O - @ +0@am,)

O this means that at first order (&, stays for relative variation while A for absolute variation),

Cr0 0 ()

;

s (FK) _ AuFg  AyFn | Fi — Fpy
“ - - =

Fr Fg Fr Fg



what do we expect from “corrected” correlation functions?

let’s consider the euclidean correlation function in the full perturbed theory, CKOKO (t), and in the symmetric unperturbed
theory, C' i (t):

— _ _mA
Crogo() = S (dyss(F 1) 5y5d(0)) = >_ (0ldys55(0)[n™) (n®|5v5d(0)0) e~ Fn*
T n
2
_ G0 —Bgot
2E 0
Gk gt
C t = —_— K
KK (1) Y e +

where the fact that the leading exponential is the same is not obvious and follows from the fact that our perturbation S is flavour
diagonal (e.g. does not happen for insertions of the weak hamiltonian)

by using non degenerate perturbation theory (I3 is conserved), we have

B0 = Ex + AEk = Eg + Am,q(K|S|K)

(n|S|K)

|K%) = |K) + |AK) = |K) + Amyq > |n) .

n#K



what do we expect from “corrected” correlation functions?
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our QCD isospin breaking on the lattice: kaons two point functions

aB{ (1)
A
.
.
.
N
-
& Cyx(pit) /aA miy
g
e w

|

25

5 10 15 20 25

My AMp

Bic(p) = M +p ABx(p) =

@ by considering pseudoscalar-pseudoscalar correlators and by taking into account the finite time extent of the lattice, we fit
correlations at different p according to,

G2 e~ EKT/2

) + AEg(t — T/2) tanh [Ex (t — T/2)] + . ..
2E i

CrK (P, t) =46 (

@ and extract F'ir and 6 F'i¢ according to

Gg Amy g
F = (ms + myq) —o SF = — %4 L 5Gx — 26M ¢
M ms + Myq



our QCD isospin breaking on the lattice: kaons two point functions

are we sure that the slopes correspond to AE i ?
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@ the solid lines are not fitted, but theoretically predicted by using calculated M and AM

@ this kind of accuracy on kinematics at p # 0 is possible thanks to the use of twisted boundary conditions
G.M. de Divitiis, R. Petronzio, N.T. Phys.Lett. B595 (2004)
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our QCD isospin breaking on the lattice: kaons two point functions

are we sure that the intercepts correspond to 6 Fiic 7
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O the solid lines are not fitted, but drawn by using Fr (p = 0) and § i (p = 0)

@ this kind of accuracy on kinematics at p # 0 is possible thanks to the use of twisted boundary conditions
G.M. de Divitiis, R. Petronzio, N.T. Phys.Lett. B595 (2004)

L) = oi® 0 2mn
Pz + L) = e P(x) — P—Z+T



extracting [mg — mu]QOD: QED corrections J

@ in order to extract ZAdeCD = [mg — mu]QcD we need experimental inputs and we cannot neglect QED corrections

O If we work at first order in the QED coupling constant and Am,, 4 and neglect terms of O(cem Amy,q), some of the
relevant Feynman diagrams entering kaons two point functions are

ACkk(t) = - —e, L F

O the electromagnetic corrections to C ¢ i (t) are logarithmically divergent, corresponding to the renormalization of the
quark masses, and the separation of QED and QCD effects is ambiguous (prescription dependent)

Q@ in the chiral limit QED corrections to M?(O — MIQ(Jr and Mf‘_o — M_f_Jr are the same (Dashen's theorem)

@ beyond the chiral limit violations to Dashen’s theorem are parametrized in term of small parameters

e~ = 0.7(5) from FLAG: Eur.Phys.J. C71 (2011) our prescription, for the time being

2 2 QCD
[Myo — My ]

2 2 exrp 2 2 exrp 3 2
= [MKO - MK+] —(14e4) [M_KO - MW+] = 6.05(63) x 103 MeV

ey =0 —  5.16 x 10° MeV?



extracting [mgq — my]9CP: chiral-continuum extrapolations

28
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~ a26f B
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2 24p f Y ; f ]
3 3 | 7 mq — my] 2P (M35, 2GeV) = 2am@CP
g0 {2 1 1 s ] [ma ul ( ) wd
3 : 1 T
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myq (MeV)

chiral perturbation theory formulae can be derived from known results
ny = 2+ 1: Gasser and Leutwyler Nucl. Phys. B250(1985)
non unitary ny = 2: S.Sharpe Phys. Rev. D56(1997)

2
AME

= Bo {1 + 2(myg +ms)Bo(208 — as) 4 4myqBo (206 — ay)
Amy, g
. N L Mg + Myq . .
+Bom. log(2Bom.) + Bo ————% [m. log(2Bom.s) — myq log(2Bomaa)]
Mms — Myd

where o; are low energy constants and By = 2BO/(47ng)



calculating JFI?CD: chiral-continuum extrapolations

35
5
3 CD
P Frt /Fot 1]62
E 95 Fg /Fr
£ ey =0
<
> to be compared with
s
©
1 Fr+/Frt
FK/Fﬂ'

m,q (MeV)

chiral perturbation theory formulae can be derived from known results

xpt
_ 1]

—0.0039(3)(2)

—0.0032(3)

= —0.0022(6)

ny = 2+ 1: Gasser and Leutwyler Nucl. Phys. B250(1985)
non unitary ny = 2: S.Sharpe Phys. Rev. D56(1997)

6F Byg . Mg+ myq
= —<as — Bp—mm [
Amg g 2

Ms — Myd

where «; are low energy constants and Bo = 2B0/(47rFO2)

ms log(2Boms) — myq 10%(230mud)} }



calculating M,

_Mp
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the calculation of the

CNN(t)

SCNN(t)

neutron-proton mass difference proceeds along the same lines as in the KO-Kt case

e e

I e S Y B

= SWn —tAMpy +---



calculating M, — M,

AM
[M'n, _ MP}QCD 2Am QCD |: N

QCD
Amud:|

= 2.8(6)(3) MeV

05 : ‘ ‘ : ‘
0 10 20 30 40 50 60
i (MeV)
U R I e I P e N e B

1 e

= Wy —tAMpy + -

O here the results are at fixed lattice spacing a = 0.085 fm.

@ correlators have been computed by “Gaussian smearing” sink operators



calculating Jff" (a?)

form factors parametrizing semileptonic decays can be calculated with good precision by considering double ratios of three point
correlation functions
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calculating 5ff7r (a?)

in order to calculate QCD isospin breaking corrections to K — wfv form factors one needs to calculate,

(RIT {[J dbe BES= (@5 0) HES=1 (03 m) } 1K)
(x| T {/d4x 53 (@ 1) V;;} |K) — —
(r|T {J dbe HES= (@5 p) V&, } 1K)
a key difference with respect to the calculation of long distance effects for K — 7wvv and K-K mixing is that the isospin

breaking correction does not induce the decay of the kaon. ..

by using perturbation theory it can be shown that the isospin breaking corrections to the matrix elements is given by (all
t-dependent and wave function contributions cancel)

() - D
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the diagrammatic expansion in the KO = n tvis

— /\ =_/\+$—A+O(Amid)
d

and is different, because of the disconnected diagrams, from the Kt — 7% case
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calculating 5,ff7r (a?)
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what do we expect from corrected three point correlation functions?
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calculating 5ff"(q2) J

2x107
oF k2 4
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} FEm(0)
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d

@ in this work we have not calculated disconnected diagrams

@ we can only show results for the KO — 7~ £u case (above)

O this is a quantity that cannot be measured directly and the missing contribution, according to xpt, is expected to be much

bigger

@ the results given here make us confident on the possibility of completing the calculation by including disconnected diagrams



non-compact QED on the lattice

@ in order to perform combined QCD+QED lattice simulations one can use the non-compact formulation:

1
Sopp = 7 ¥ [Viav@ - viau@]®
T, v

— _3 > {A,,(:v)v; [vjAy(m) _ VjAM(x)] — AL (2)Vy [vj;A,,(x) - VjAH(x)]}
T, v

@ by using a covariant gauge fixing, one gets:

> Au@) [~V V] Aue)

N |

V;Au(z)=0 —_— SQED =

1
= 3 ST AL (k) [2sin(ky /2)]7 Ap(K)
k

@ note that the zero momentum mode is not constrained by any “derivative” gauge fixing, and there is a residual gauge
ambiguity to be addressed

V; [Au(z) +¢c] = V;Au(z)



non-compact QED on the lattice: gauge invariance

by assuming that one is able to sample properly the QED gauge potential Ap(x) (we shall discuss this point in the next few
slides), gauge invariance works as follows:

@ the QED links are defined by

Ay (@) —  Bu(z) = e eAn@®
9 QCD+QED covariant lattice derivatives are defined according to
P@)Viw(@) = d(@) Eu(@) Un(@)d(@ + u) — d(z) ¥(z)
O the “exact” gauge invariance is
¥(z) — "My ()
P(z) — P(x)e M)

Ap(x) — Au(@) + ViA@)



non-compact QED on the lattice: the american’'s way J

in order to sample the QED gauge potential, the strategy followed by other groups is the following

MILC Collaboration, PoS LATTICE2008 (2008) 127
T.Blum et al. Phys. Rev. D82 (2010)

[BMW Collaboration] PoS LATTICE2010 (2010) 121
[T. Ishikawa et al.] Phys. Rev. Lett. 109 (2012)

@ choose periodic boundary conditions for the gauge potential,

2mny,

Ap(e+ Lo) = Au(@)  — ku ="

1 . 2
—  SqEp =< > Au(k)* [2sin(ky /2)]7 Ay (k)
2k
#0
@ the action is quadratic and diagonal in momentum space so, by excluding the zero momentum mode, A,L(k) can be

obtained by an heat-bath algorithm (actually they choose a different gauge, diagonalize the action and perform a gaussian
sampling. ..) and the gauge potential in coordinate space is obtained by (fast) fourier transform

1 )
Au(z) = 1 Z elkIA,_L(k)
k20

@ it can be shown that the effect of neglecting the zero momentum mode is a finite volume effect. classically: add four
lagrange multipliers to the action,

1 1
Sopp 52 Au@ [V VI Au@) + 5 D EuAu)
oS
Ap(k =0) = oe. =Y Au(@)=0
H x

O at quantum level: this prescription does not affect short distance physics (no new divergences)



non-compact QED on the lattice: our approach

@ we want to deal with QED on the lattice at fixed order in the expansion with respect to aemm,

@ to this end, we need to expand the lattice action with respect to the electric charge

> %(@) {DU, E] - DU, 0]} ¢(z) =

+> ZeAu(Z){w(Z)U (Z) w(1+u) — P+ mU} (= ) w( )}

N

A n
> —Am)Au(x) {@(m)uu<x>WT”¢(x b+ B+ u)UJ(m)W%wm}

N

+...

e2
{ieAM(:c)V“(z) + ?Au(x)A”(x)T“(w) + ... }
BT

O the "Wilson” contribution is W = {1, i'~/5‘r3} in clover and twisted mass QCD respectively
O note: tadpole currents T () are required to have gauge invariance at order e?

@ note: the point split vector current is exactly conserved: V; VH(z)=0



non-compact QED on the lattice: our approach J

let us consider, for example, the following contribution to the mass splittings of the kaons:

42
—@ = —#20#”@—:@ T(0] 5()y5u(t) VI (2) VY () a(0)7s(0) 0)
T,y

where D, (¢ — y) is the propagator of the gauge potential A, : this means that we are also using the QED in its non-compact
lattice formulation. now, in order to properly define the lattice propagator of A, we must

O fix the QED gauge; we have used
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@ introduce the infrared regulated photon propagator,
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non-compact QED on the lattice: our approach

we have decided to work directly in coordinate space, thus avoiding fourier transforms, by applying the following stochastic
technique

O we extract a set of four independent real fields distributed according to a real Z5 distribution,

zBu(m)Bu(y) = 5;“) S(x —y)
B

@ for each field we solve numerically the equation
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@ by using the properties of the Z5 noise we thus obtain

S Bu(W)Cu[Biz] = D (z — 2) > Bu(y)Bu(2) = Dy, (x — y)
B B



non-compact QED on the lattice: our approach

coming back to our example, we get
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does it works?
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well, from the numerical point of view it seems to work. ok, what about the physics?



the physics: preliminaries

O let's start by considering a two-point correlator in the full theory (m,, 7# mq and eq # 0)
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where Oy is an interpolating operator having the quantum numbers of a given hadron H

O if H is a charged particle, the correlator C'y iy (t) is not QED gauge invariant. for this reason it is not possible, in general,
to extract physical informations directly from the residues of the different poles

@ on the other hand, the mass of the hadron is gauge invariant and finite in the continuum limit, provided that the parameters
of the actions have been properly renormalized. it follows that, at any given order in a perturbative expansion with respect

to any of the parameters of the action, the ratio Cfu” (t — 1)/Cfu” (t) is both gauge and renormalization group (RGI)
invariant

O by expanding the full theory with respect to the isospin symmetric theory (m,, = mg and eq = 0) and by considering

63 ~ mq — My = O(€), we shall find expressions of the form
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where we have defined 9¢ f(t) = f(t) — f(t — 1)



the physics: a first look at the pions

by expanding the two-point function of an interpolating operator having the quantum numbers of the neutral pion, we get
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the fermion disconnected diagram in the first line vanishes by parity in the continuum and will be neglected in the following



the physics: a first look at the pions

by expanding the two-point function of an interpolating operator having the quantum numbers of the charged pions, we get
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+[isosymmetric vac. pol.]

the tadpole diagrams in the first line are a (OZI violating) “dynamical QED effect” and are presumably not negligible. we have
implemented them in the code and we are running with several stochastic sources per gauge configurations (we get a signall) but

we shall neglect the corresponding contribution in the following ...



the physics: a first look at the pions VERY PRELIMINARY
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the physics: a first look at the pions

VERY PRELIMINARY

by taking into account finite volume
corrections as calculated in xpt+QED, we
get
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outlooks

@ first results obtained by applying our method look very promising

@ the method is general and can be applied to many observables, even at second order
@ we shall also refine our results in the case of nucleon masses and form factors

@ finish the computation of QED effects by quantifying all the systematics

O first small steps toward the calculation of other observables that are relevant for phenomenological applications (long
distance effects, etc.)

@ U-spin corrections?

(surface of the unitarity triangle) oc (mi — mi) (mg — mi) (‘mg — mg)



