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Motivation

L (x) = Tr [ΓG (x ; x)]

� Determination of flavour singlet quantities
η mass, nucleon form factors...

� Computations of non-perturbative nature
� We must rely on lattice methods



CaSToRC

Disconnected contributions

L (x) = Tr [ΓG (x ; x)]

� For the evaluation of disconnected diagrams
we need to compute all-to-all propagators

� Very expensive from the computational
point of view

� Neglected in most hadron structure
studies
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Stochastic procedures

� Exact computation of the all-to-all unfeasible nowadays
� We can use stochastic techniques

– Invert a random set of sources |ηj〉 that form a basis up to
stochastic errors

– Properties


1
N

∑N
j=1 |ηj〉 = O

(
1√
N

)
1
N

∑N
j=1 |ηj〉 〈ηj | = I + O

(
1√
N

)
– In this work we use Z2 and Z4 noise sources

� So we get an unbiased estimation of the all-to-all
propagator

M |sj〉 = |ηj〉 −→ M−1E :=
1

N

N∑
j=1

|sj〉 〈ηj | ≈ M−1
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Stochastic procedures

� Error decresases as 1/
√
N, we usually need a large

number of stochastic sources N
� Each stochastic source requires an inversion of the

fermionic matrix

M |sj〉 = |ηj〉
� To reduce the stochastic noise, we want to increase N at

a reduced cost
� The Truncated Solver Method (TSM) allows us to do this
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The Truncated Solver Method

� First published in PoSLaT2007, 141 (G. Bali, S. Collins
and A. Schäffer)

� Instead of solving M |sj〉 = |ηj〉 exactly, we aim at a low
precision estimation

– Cut the inverter (CG) at a certain number of iterations OR at a
given precision ρ2 ∼ 10−4

� This is cheap (fast inversions) but inaccurate −→ We
introduce a bias

� We compute the correction of the bias stochastically

M−1
E :=

1

NHP

NHP∑
j=1

(
|sj〉 〈ηj |HP − |sj〉 〈ηj |LP

)
+

1

NLP

NHP+NLP∑
j=NHP+1

|sj〉 〈ηj |LP
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The Truncated Solver Method

� If the convergence in the inversions is fast, we can get
away with a low NHP

� Error should decrease essentially as 1/
√
NLP

� Since the LP sources don’t require an accurate inversion,
we can take advantage of the half precision algorithms
for GPU’s

Mixed double/single ∼ 100 GFlops Mixed double/half ∼ 170 GFlops

� Two parameters to tune: precision of LP and NHP/NLP

ratio
� Fine-tuning depends on the loop to be computed
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Determination of the TSM parameters
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� Data for ψ̄γ3D3ψ,
a piece of 〈x〉u+d

� After 300 LP, hard
to improve

� 24HP/300LP≈
48HP are enough
for all loops with
local and
one-derivative
insertion
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The one-end trick

� For twisted mass fermions, the difference of propagators
in the twisted basis is

M−1u −M−1d = −2iµM−1d γ5M
−1
u

� So, instead of computing the l.h.s. we do the r.h.s. as∑
X
(
M−1u −M−1d

)
= −2iµ

∑
r

〈
s†Xγ5s

〉
r

� In principle, the trick only works for the difference, but
an alternative version can be developed for the sum∑

X
(
M−1u + M−1d

)
= 2

∑
r

〈
s†γ5Xγ5DW s

〉
r
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The one-end trick

� Below a list of bilinears with its appropiate version of the
one-end trick

Bilinear Twisted Basis Standard vv Generalized vv

ψ̄ψ iψ̄γ5τ3ψ X 8

ψ̄τ3ψ iψ̄γ5ψ 8 X
iψ̄γ5ψ −ψ̄τ3ψ X 8

iψ̄γ5τ3ψ −ψ̄ψ 8 X
ψ̄γµψ ψ̄γµψ 8 X
ψ̄γ5γµψ ψ̄γ5γµψ 8 X
ψ̄γµDνψ ψ̄γµDνψ 8 X
ψ̄γµDντ3ψ ψ̄γµDντ3ψ X 8

ψ̄γ5γµDνψ ψ̄γ5γµDνψ 8 X
ψ̄γ5γµDντ3ψ ψ̄γ5γµDντ3ψ X 8
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GPU performance and scaling
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� Strong scaling competitive up to 8 gpu
� Strongly depends on local volume
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GPU performance and scaling
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� Almost perfect weak scaling up to 16 gpu
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Other improvements

� Generation of noise sources on-the-fly
– Don’t store propagators/sources, saving I/O - storage (very

important for LP sources)
� Implementation of contractions directly on GPU’s

– We take advantage of a massively parallel architecture

� Usage of cudaFFT library to generate all momenta
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The summation method

� Alternative to the plateau method for computing ratios
� Excited states suppressed by e−mts , instead of e−mti

� Requires the 3pt at several ts → more expensive for the
connected

– L. Maiani, G. Martinelli, M. L. Paciello, B. Taglienti, Nucl.
Phys. B293, 420 (1987)

– S. Güsken, arXiv:hep-lat/9906034v1
– S. Capitani, B. Knippschild, M. Della Morte, H. Wittig,

PoSLaT2010 147

� The 3pt is summed over ti up to tSink

RSUM (ts) =

ts∑
ti=0

RPLA (ts , ti )
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The summation method

� We usually require ti >> 1 and ts − ti >> 1 in order to
remove undesirable contributions from excited states

RPLA (ts , ti ) = RGS + O
(
e−Kti

)
+ O

(
e−K

′(ts−ti )
)

� However, if we sum up to ts , the unwanted contributions
form a geometric series and become

RSUM (ts) = tsRGS + c
(
K ,K ′

)
+ O

(
e−Kts

)
+ O

(
e−K

′ts
)

� This way the contribution of excited states is always
supressed by an e−Kts factor
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Results: σπN disconnected
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� The one-end trick for the difference works very well
suppressing the noise

� Clear rise of the plateau as tS grows
� Disconnected piece around ∼ 10− 15% of the connected

piece
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Results: Strange content of the nucleon
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� Again, one-end trick for the difference
� Preliminary result, we will increase statistics
� The plateau seems to perfom better in this case
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Results: σK∆ disconnected

� Preliminary result with small statistics, we need to
investigate with more configurations if we have
contamination here
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Results: gA disconnected
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� One-end trick for the sum doesn’t provide µ noise
suppression

� Consistent with former determinations of disconnected
gA, G. Bali et al. Phys.Rev.Lett.108 (2012), 222001

� Disconnected piece negative and ∼ 5− 10% of the
connected piece
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Conclusions

� GPU’s suitable for computation of disconnected diagrams
� TSM highly reduces the variance while keeping the same

computer cost
� The one-end trick for u − d gives great results at low

cost, but excludes flavour singlets
� The version for u + d doesn’t perform so well

– Noisy due to the presence of DW or the lack of the noise
suppression factor µ

– Our current (partial) results for A20 and Ã20 are inconclusive
� The trick computes all time slices in a single inversion

– We can use both the plateau and the summation method
– Plateau and summation methods give consistent results

� It seems that some observables are affected by
contamination coming from higher excitations
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Future plans

� Improve the signal for all the successful observables using
all the available momenta and statistics

� Compare the one-end trick for the sum with time
dilution, taking into account other improvements

– Always in GPU’s, to achieve maximum performance

� Focus on flavour singlets


