Disconnected contributions from GPU's

Alejandro Vaquero

Computational-based Science and Technology Research Center (CaSToRC) at The Cyprus Institute

In collaboration with:

Abdou Abdel-Rehim, CaSToRC at The Cyprus Institute Constantia Alexandrou, CaSToRC and University of Cyprus Giannis Koutsou, CaSToRC at The Cyprus Institute Alexei Strelchenko, CaSToRC at The Cyprus Institute

> Martha Constantinou, University of Cyprus Kyriacos Hadjiyiannakou, University of Cyprus

> > Simon Dinter, DESY, NIC Vincent Drach, DESY, NIC Karl Jansen, DESY, NIC

> > October 16th, 2012

Outline

- Brief introduction to disconnected contributions
- Stochastic procedures
- Truncated Solver Method (TSM)
- The one-end trick and other improvements
- GPU performance and scaling
- The summation method
- Results
- Conclusions and future plans

Motivation

- Determination of flavour singlet quantities η mass, nucleon form factors...
- Computations of non-perturbative nature

CaSToRC

We must rely on lattice methods

 $L(x) = \mathrm{Tr}\left[\mathsf{\Gamma} G(x;x) \right]$

Disconnected contributions

• For the evaluation of disconnected diagrams we need to compute all-to-all propagators

CaSToRC

- Very expensive from the computational point of view
- Neglected in most hadron structure studies

 $L(x) = \operatorname{Tr} \left[\mathsf{\Gamma} G(x; x) \right]$

Stochastic procedures

- Exact computation of the all-to-all unfeasible nowadays
- We can use stochastic techniques
 - Invert a random set of sources $|\eta_j\rangle$ that form a basis up to stochastic errors

- Properties
$$\begin{cases} \frac{1}{N} \sum_{j=1}^{N} |\eta_{j}\rangle = O\left(\frac{1}{\sqrt{N}}\right) \\ \frac{1}{N} \sum_{j=1}^{N} |\eta_{j}\rangle \langle \eta_{j}| = I + O\left(\frac{1}{\sqrt{N}}\right) \end{cases}$$

- In this work we use Z_2 and Z_4 noise sources
- So we get an unbiased estimation of the all-to-all propagator

$$M \ket{s_j} = \ket{\eta_j} \longrightarrow M_E^{-1} := rac{1}{N} \sum_{j=1}^N \ket{s_j} ra{\eta_j} pprox M^{-1}$$

Stochastic procedures

- Error decresases as $1/\sqrt{N}$, we usually need a large number of stochastic sources N
- Each stochastic source requires an inversion of the fermionic matrix

$$M\ket{s_j}=\ket{\eta_j}$$

- To reduce the stochastic noise, we want to increase *N* at a reduced cost
- The Truncated Solver Method (TSM) allows us to do this

The Truncated Solver Method

- First published in PoSLaT2007, 141 (G. Bali, S. Collins and A. Schäffer)
- Instead of solving $M |s_j\rangle = |\eta_j\rangle$ exactly, we aim at a low precision estimation
 - Cut the inverter (CG) at a certain number of iterations OR at a given precision $\rho^2 \sim 10^{-4}$
- ${\sc {\sc {\rm \circ}}}$ This is cheap (fast inversions) but inaccurate \longrightarrow We introduce a bias
- We compute the correction of the bias stochastically

$$M_E^{-1} := rac{1}{N_{HP}} \sum_{j=1}^{N_{HP}} \left(\ket{s_j} ig\langle \eta_j
ight|_{HP} - \ket{s_j} ig\langle \eta_j
ight|_{LP}
ight) + rac{1}{N_{LP}} \sum_{j=N_{HP}+1}^{N_{HP}+N_{LP}} \ket{s_j} ig\langle \eta_j
ight|_{LP}$$

The Truncated Solver Method

- If the convergence in the inversions is fast, we can get away with a low N_{HP}
- Error should decrease essentially as $1/\sqrt{N_{LP}}$
- Since the LP sources don't require an accurate inversion, we can take advantage of the half precision algorithms for GPU's

Mixed double/single ~ 100 GFlops Mixed double/half ~ 170 GFlops

- Two parameters to tune: precision of LP and N_{HP}/N_{LP} ratio
- Fine-tuning depends on the loop to be computed

Determination of the TSM parameters

- Data for $\bar{\psi}\gamma_3 D_3 \psi$, a piece of $\langle x \rangle_{u+d}$
- After 300 LP, hard to improve
- 24HP/300LP≈ 48HP are enough for all loops with local and one-derivative insertion

The one-end trick

 For twisted mass fermions, the difference of propagators in the twisted basis is

$$M_u^{-1} - M_d^{-1} = -2i\mu M_d^{-1} \gamma_5 M_u^{-1}$$

So, instead of computing the l.h.s. we do the r.h.s. as

$$\sum X \left(M_u^{-1} - M_d^{-1} \right) = -2i\mu \sum_r \left\langle s^{\dagger} X \gamma_5 s \right\rangle_r$$

In principle, the trick only works for the difference, but an alternative version can be developed for the sum

$$\sum X \left(M_u^{-1} + M_d^{-1} \right) = 2 \sum_r \left\langle s^{\dagger} \gamma_5 X \gamma_5 D_W s \right\rangle_r$$

The one-end trick

 Below a list of bilinears with its appropriate version of the one-end trick

Bilinear	Twisted Basis	Standard vv	Generalized vv
_	_		
$\psi\psi$	$i\psi\gamma_5 au_3\psi$	\checkmark	×
$ar{\psi} au_{3}\psi$	$iar{\psi}\gamma_5\psi$	×	\checkmark
$iar{\psi}\gamma_5\psi$	$-ar{\psi} au_{3}\psi$	\checkmark	×
$iar{\psi}\gamma_5 au_3\psi$	$-ar{\psi}\psi$	×	\checkmark
$ar\psi\gamma_\mu\psi$	$ar{\psi}\gamma_\mu\psi$	×	\checkmark
$ar{\psi}\gamma_5\gamma_\mu\psi$	$ar{\psi}\gamma_5\gamma_\mu\psi$	×	\checkmark
$ar{\psi}\gamma_\mu D_ u\psi$	$ar{\psi}\gamma_\mu D_ u \psi$	×	\checkmark
$ar{\psi}\gamma_\mu D_ u au_3 \psi$	$ar{\psi}\gamma_\mu D_ u au_3 \psi$	\checkmark	×
$ar{\psi}\gamma_5\gamma_\mu D_ u\psi$	$ar{\psi}\gamma_5\gamma_\mu {\sf D}_ u\psi$	×	\checkmark
$ar{\psi}\gamma_5\gamma_\mu D_ u au_3\psi$	$ar{\psi}\gamma_5\gamma_\mu D_ u au_3\psi$	\checkmark	×

GPU performance and scaling

CaSToRC

Strong scaling competitive up to 8 gpu

Strongly depends on local volume

GPU performance and scaling

Almost perfect weak scaling up to 16 gpu

Other improvements

- Generation of noise sources on-the-fly
 - Don't store propagators/sources, saving I/O storage (very important for LP sources)

- Implementation of contractions directly on GPU's
 - We take advantage of a massively parallel architecture
- Usage of cudaFFT library to generate all momenta

The summation method

- Alternative to the plateau method for computing ratios
- Excited states suppressed by e^{-mt_s} , instead of e^{-mt_i}
- \blacksquare Requires the 3pt at several $t_s \rightarrow$ more expensive for the connected
 - L. Maiani, G. Martinelli, M. L. Paciello, B. Taglienti, Nucl. Phys. B293, 420 (1987)
 - S. Güsken, arXiv:hep-lat/9906034v1
 - S. Capitani, B. Knippschild, M. Della Morte, H. Wittig, PoSLaT2010 147
- The 3pt is summed over t_i up to t_{Sink}

$$R_{SUM}\left(t_{s}
ight)=\sum_{t_{i}=0}^{t_{s}}R_{PLA}\left(t_{s},t_{i}
ight)$$

The summation method

- We usually require t_i >> 1 and t_s t_i >> 1 in order to remove undesirable contributions from excited states
 R_{PLA} (t_s, t_i) = R_{GS} + O (e^{-Kt_i}) + O (e^{-K'(t_s-t_i)})
- However, if we sum up to t_s, the unwanted contributions form a geometric series and become

$$R_{SUM}(t_s) = t_s R_{GS} + c \left(K, K'\right) + O \left(e^{-Kt_s}\right) + O \left(e^{-K't_s}\right)$$

CaSToRC

This way the contribution of excited states is always supressed by an e^{-Kts} factor

Results: $\sigma_{\pi N}$ disconnected

- The one-end trick for the difference works very well suppressing the noise
- Clear rise of the plateau as t_S grows
- \bullet Disconnected piece around $\sim 10-15\%$ of the connected piece

CaSToRC

< D > < P > < E > < E >

Results: Strange content of the nucleon

- Again, one-end trick for the difference
- Preliminary result, we will increase statistics
- The plateau seems to perfom better in this case

Results: $\sigma_{K\Delta}$ disconnected

 Preliminary result with small statistics, we need to investigate with more configurations if we have contamination here

Results: g_A disconnected

- One-end trick for the sum doesn't provide μ noise suppression
- Consistent with former determinations of disconnected *g*_A, G. Bali et al. Phys.Rev.Lett.108 (2012), 222001

CaSToRC

 \bullet Disconnected piece negative and $\sim 5-10\%$ of the connected piece

Conclusions

- GPU's suitable for computation of disconnected diagrams
- TSM highly reduces the variance while keeping the same computer cost
- The one-end trick for u d gives great results at low cost, but excludes flavour singlets
- The version for u + d doesn't perform so well
 - Noisy due to the presence of D_W or the lack of the noise suppression factor μ
 - Our current (partial) results for A_{20} and \tilde{A}_{20} are inconclusive

- The trick computes all time slices in a single inversion
 - We can use both the plateau and the summation method
 - Plateau and summation methods give consistent results
- It seems that some observables are affected by contamination coming from higher excitations

Future plans

Improve the signal for all the successful observables using all the available momenta and statistics

- Compare the one-end trick for the sum with time dilution, taking into account other improvements
 - Always in GPU's, to achieve maximum performance
- Focus on flavour singlets

