Lattice Artifacts in

Strongly interacting

Pol Vilaseca Mainar Stefan Sint
Trinity College Dublin

Strongly interacting theories

-Easily constructed with Yang-Mills fields coupled to fermion fields.

$$
\mathcal{L}=\frac{1}{4} F_{a}^{\mu \nu} F_{\mu \nu}^{a}+\sum_{j=1}^{N_{f}}\left(i \bar{\psi}_{j} \gamma_{\mu} D^{\mu} \psi_{j}\right)
$$

- Starting with such Lagrangian, we specify a particular theory by fixing
-The gauge group SU(N)
-The number of flavours Nf.
-The representation \mathbf{R}.
- Some examples
-Quantum Chromodynamics
-Dynamical EW Symmetry breaking (Technicolor).
- Unparticle Physics

Strongly interacting theories

-Beta-function: $\beta(g)=\mu \frac{\partial g}{\partial \mu}$
-Which, in perturbation theory

$$
\beta(g)=-b_{0} \frac{g^{3}}{(4 \pi)^{2}}-b_{1} \frac{g^{5}}{(4 \pi)^{4}}+\ldots
$$

$$
\begin{aligned}
& \left.b_{0}=\frac{11}{3} N_{c}-\frac{4}{3} \mathrm{~T}_{\mathrm{R}} N_{f}\right) \\
& b_{1}=\frac{34}{4} N_{c}^{2}-\frac{20}{3} N_{c} \mathrm{~T}_{\mathrm{R}} N_{f}-4 C_{2}(R) \mathrm{T}_{\mathrm{R}} N_{f}
\end{aligned}
$$

Strongly interacting theories

-Beta-function: $\beta(g)=\mu \frac{\partial g}{\partial \mu}$
-Which, in perturbation theory

$$
\beta(g)=-b_{0} \frac{g^{3}}{(4 \pi)^{2}}-b_{1} \frac{g^{5}}{(4 \pi)^{4}}+\ldots
$$

[Appelquist, Lane, Mahanta, Cohen, Georgi, Yamawaki, Schrock, Sannino,Tuominen, Dietrich]

The Schrodinger Functional

-Euclidean propagation amplitude from a field configuration in one boundary C to another field configuration in the oposite boundary C^{\prime}.
[Luescher et al. '92]

$$
\mathcal{Z}\left[C, C^{\prime}\right]=\int \mathcal{D}[A, \psi, \bar{\psi}] e^{-S[A, \psi, \bar{\psi}]}
$$

The Schrodinger Functional

-Euclidean propagation amplitude from a field configuration in one boundary C to another field configuration in the oposite boundary C^{\prime}.
[Luescher et al. '92]

$$
\mathcal{Z}\left[C, C^{\prime}\right]=\int \mathcal{D}[A, \psi, \bar{\psi}] e^{-S[A, \psi, \bar{\psi}]}
$$

-Boundary Conditions:
-Boundary gauge fields C and C' taken to be abelian and spatialy constant

$$
C_{k}=\frac{i}{L} \operatorname{diag}\left(\phi_{1 k}, \ldots, \phi_{N k}\right)
$$

- 2 Fermion regularizations:

SF [Sint '94]

$$
\begin{aligned}
\left.P_{+} \psi\right|_{x_{0}=0} & =\left.P_{-} \psi\right|_{x_{T}=0}=0 \\
\left.\bar{\psi} P_{-}\right|_{x_{0}=0} & =\left.\bar{\psi} P_{+}\right|_{x_{T}=0}=0
\end{aligned}
$$

χ SF [Sint '05-10]

$$
\begin{aligned}
\widetilde{Q}+\left.\psi\right|_{x_{0}=0} & =\widetilde{Q}-\left.\psi\right|_{x_{T}=0}=0 \\
\bar{\psi} \widetilde{Q}+\left.\right|_{x_{0}=0} & =\bar{\psi} \widetilde{Q}-\left.\right|_{x_{T}=0}=0
\end{aligned}
$$

The Schrodinger Functional

- C and C^{\prime}, induce a background abelian chromoelectric field B.
-The effective action of B

$$
\Gamma[B]=-\ln \mathcal{Z}\left[C, C^{\prime}\right]
$$

$$
\Gamma[B] \xrightarrow{g_{0} \rightarrow 0} \frac{1}{g_{0}^{2}} \Gamma_{0}[B]+\Gamma_{1}[B]+g_{0}^{2} \Gamma_{2}[B]+\ldots
$$

-If $m q=0$ and $T=L$, then L is the only scale. B depends on a parameter $B(\eta)$.
-Define a renormalized coupling $g(L)$

$$
\bar{g}^{2}(L)=\frac{\partial \Gamma_{0} /\left.\partial \eta\right|_{\eta=0}}{\partial \Gamma /\left.\partial \eta\right|_{\eta=0}}
$$

The Schrodinger Functional

C and C^{\prime}, induce a background abelian chromoelectric field B.
The effective action of B

$$
\Gamma[B]=-\ln \mathcal{Z}\left[C, C^{\prime}\right]
$$

$$
\Gamma[B] \xrightarrow{g_{0} \rightarrow 0} \frac{1}{g_{0}^{2}} \Gamma_{0}[B]+\Gamma_{1}[B]+g_{0}^{2} \Gamma_{2}[B]+\ldots
$$

If. $m q=0$ and $T=L$, thencers the onty scale.
B depends on a parameter $B(\eta)$
Define a renormalized coupling $g(L)$

$$
\bar{g}^{2}(L)=\frac{\partial \Gamma_{0} /\left.\partial \eta\right|_{\eta=0}}{\partial \Gamma /\left.\partial \eta\right|_{\eta=0}}
$$

The Schrodinger Functional

- C and C^{\prime}, induce a background abelian chromoelectric field B.
-The effective action of B

$$
\Gamma[B]=-\ln \mathcal{Z}\left[C, C^{\prime}\right]
$$

$$
\Gamma[B] \xrightarrow{g_{0} \rightarrow 0} \frac{1}{g_{0}^{2}} \Gamma_{0}[B]+\Gamma_{1}[B]+g_{0}^{2} \Gamma_{2}[B]+\ldots
$$

-If $m q=0$ and $T=L$, then L is the only scale. B depends on a parameter $B(\eta)$.
-Define a renormalized coupling $g(L)$

$$
\bar{g}^{2}(L)=\frac{\partial \Gamma_{0} /\left.\partial \eta\right|_{\eta=0}}{\partial \Gamma /\left.\partial \eta\right|_{\eta=0}}
$$

The Schrodinger Functional

- C and C^{\prime}, induce a background abelian chromoelectric field B .
-The effective action of B

$$
\begin{aligned}
& \Gamma[B]=-\ln \mathcal{Z}\left[C, C^{\prime}\right] \\
& \Gamma[B] \xrightarrow{g_{0} \rightarrow 0} \frac{1}{g_{0}^{2}} \Gamma_{0}[B]+\Gamma_{1}[B]+g_{0}^{2} \Gamma_{2}[B]+\ldots
\end{aligned}
$$

-If $\mathbf{m q}=0$ and $T=L$, then L is the only scale. B depends on a parameter $B(\eta)$.
-Define a renormalized coupling $g(L)$

$$
\bar{g}^{2}(L)=\frac{\partial \Gamma_{0} /\left.\partial \eta\right|_{\eta=0}}{\partial \Gamma /\left.\partial \eta\right|_{\eta=0}}
$$

The Schrodinger Functional

C and C^{\prime}, induce a background abelian chromoelectric field B.
The effective action of B

$$
\Gamma[B]=-\ln \mathcal{Z}\left[C, C^{\prime}\right]
$$

$$
\Gamma[B] \xrightarrow{g_{0} \rightarrow 0} \frac{1}{g_{0}^{2}} \Gamma_{0}[B]+\Gamma_{1}[B]+g_{0}^{2} \Gamma_{2}[B]+\ldots
$$

If. $\mathrm{mq}=0$ and $T=L$, thencers the onfl scale
B depends on a parameter $B(\eta)$

Define a renormalized coupling $g(L)$

$$
\bar{g}^{2}(L)=\frac{\partial \Gamma_{0} /\left.\partial \eta\right|_{\eta=0}}{\partial \Gamma /\left.\partial \eta\right|_{\eta=0}}
$$

The Schrodinger Functional

- C and C^{\prime}, induce a background abelian chromoelectric field B .
-The effective action of B

$$
\begin{aligned}
& \Gamma[B]=-\ln \mathcal{Z}\left[C, C^{\prime}\right] \\
& \Gamma[B] \xrightarrow{g_{0} \rightarrow 0} \frac{1}{g_{0}^{2}} \Gamma_{0}[B]+\Gamma_{1}[B]+g_{0}^{2} \Gamma_{2}[B]+\ldots
\end{aligned}
$$

-If $\mathbf{m q}=0$ and $T=L$, then L is the only scale. B depends on a parameter $B(\eta)$.

-Define a renormalized coupling $g(\mathrm{~L})$

$$
\bar{g}^{2}(L)=\frac{\partial \Gamma_{0} /\left.\partial \eta\right|_{\eta=0}}{\partial \Gamma /\left.\partial \eta\right|_{\eta=0}}
$$

Monitoring cutoff effects

-The Step Scaling Function, an integrated version of the beta function

$$
\left.\sigma(s, u) \equiv \bar{g}^{2}(s L)\right|_{u=\bar{g}^{2}(L)}
$$

With a lattice counterpart:

$$
\Sigma(s=2, u, L / a)=\left.\bar{g}^{2}(2 L)\right|_{u=\bar{g}^{2}(L)}
$$

- In perturbation theory:

$$
\sigma(u) \xrightarrow{g_{0} \rightarrow 0} u+\sigma_{1} u^{2}+O\left(u^{3}\right)
$$

$$
\Sigma(u, L / a) \xrightarrow{g_{0} \rightarrow 0} u+\Sigma_{1}(L / a) u^{2}+O\left(u^{3}\right) \quad \sigma_{1}=2 b_{0} \ln (2)
$$

Monitoring cutoff effects

-The Step Scaling Function, an integrated version of the beta function

$$
\left.\sigma(s, u) \equiv \bar{g}^{2}(s L)\right|_{u=\bar{g}^{2}(L)}
$$ With a lattice counterpart:

$$
\Sigma(s=2, u, L / a)=\left.\bar{g}^{2}(2 L)\right|_{u=\bar{g}^{2}(L)}
$$

- In perturbation theory:
-Relative cuttoff effects:
$\sigma(u) \xrightarrow{g_{0} \rightarrow 0} u\left(\sigma_{1} u^{j}+O\left(u^{3}\right) \longrightarrow \delta_{1}(a / L)=\frac{\Sigma_{1}(a / L)-\sigma_{1}}{\sigma_{1}}\right.$

$$
\Sigma(u, L / a) \xrightarrow{g_{0} \rightarrow 0} u-\Sigma_{1}(L / a) \sigma^{2}+O\left(u^{3}\right) \quad \sigma_{1}=2 b_{0} \ln (2)
$$

Monitoring cutoff effects

-The Step Scaling Function, an integrated version of the beta function

$$
\left.\sigma(s, u) \equiv \bar{g}^{2}(s L)\right|_{u=\bar{g}^{2}(L)}
$$ With a lattice counterpart:

$$
\Sigma(s=2, u, L / a)=\left.\bar{g}^{2}(2 L)\right|_{u=\bar{g}^{2}(L)}
$$

- In perturbation theory:

-Relative cuttoff effects:

$\sigma(u) \xrightarrow{g_{0} \rightarrow 0} u-\sigma_{1} u+O\left(u^{3}\right) \longrightarrow \delta_{1}(a / L)=\frac{\Sigma_{1}(a / L)-\sigma_{1}}{\sigma_{1}}$

$$
\Sigma(u, L / a) \xrightarrow{g_{0} \rightarrow 0} u\left(\Sigma_{1}(L / a)\right)^{2}+O\left(u^{3}\right) \quad \sigma_{1}=2 b_{0} \ln (2)
$$

-The coupling:

$$
\bar{g}^{2} \xrightarrow{g_{0} \rightarrow 0} g_{0}^{2}+p_{1} g_{0}^{4}+O\left(g_{0}^{6}\right)
$$

$$
p_{1}(L / a)=p_{1,0}(L / a)+n_{f} p_{1,1}(L / a)
$$

Monitoring cutoff effects

-The Step Scaling Function, an integrated version of the beta function

$$
\left.\sigma(s, u) \equiv \bar{g}^{2}(s L)\right|_{u=\bar{g}^{2}(L)}
$$ With a lattice counterpart:

$$
\Sigma(s=2, u, L / a)=\left.\bar{g}^{2}(2 L)\right|_{u=\bar{g}^{2}(L)}
$$

- In perturbation theory: -Relative cuttoff effects:
$\sigma(u) \xrightarrow{g_{0} \rightarrow 0} u-\sigma_{1} u+O\left(u^{3}\right) \longrightarrow \delta_{1}(a / L)=\frac{\Sigma_{1}(a / L)-\sigma_{1}}{\sigma_{1}}$

$$
\Sigma(u, L / a) \xrightarrow{g_{0} \rightarrow 0} u\left(\Sigma_{1}(L / a)\right)^{2}+O\left(u^{3}\right) \quad \sigma_{1}=2 b_{0} \ln (2)
$$

-The coupling:

$$
\bar{g}^{2} \xrightarrow{g_{0} \rightarrow 0} g_{0}^{2}+p_{1} g_{0}^{4}+O\left(g_{0}^{6}\right)
$$

$$
\left.p_{1}(L / a)=p_{1,0}(L / a)+n p_{1,1} L / a\right)
$$

Monitoring cutoff effects

$$
\delta_{1,0}(a / L)=\frac{\Sigma_{1,0}(a / L)-\sigma_{1,0}}{\sigma_{1,0}} \quad \delta_{1,1}(a / L)=\frac{\Sigma_{1,1}(a / L)-\sigma_{1,1}}{\sigma_{1,1}}
$$

-The coupling:

$$
\bar{g}^{2} \xrightarrow{g_{0} \rightarrow 0} g_{0}^{2}+p_{1} g_{0}^{4}+O\left(g_{0}^{6}\right)
$$

$$
\left.p_{1}(L / a)=p_{1,0}(L / a)+n p_{1,1} L / a\right)
$$

Monitoring cutoff effects

$$
\delta_{1,0}(a / L)=\frac{\Sigma_{1,0}(a / L)-\sigma_{1,0}}{\sigma_{1,0}} \quad \delta_{1,1}(a / L)=\frac{\Sigma_{1,1}(a / L)-\sigma_{1,1}}{\sigma_{1,1}}
$$

Cutoff effects of 100% are equivalent to missing Nf by a factor 2 !!!!

$$
N_{f} \Sigma_{1,1}=\left(1+\delta_{1,1}\right) N_{f} \sigma_{1,1} \approx 2 N_{f} \sigma_{1,1}
$$

$$
\delta_{1,1}=100 \%
$$

-The coupling:

$$
\bar{g}^{2} \xrightarrow{g_{0} \rightarrow 0} g_{0}^{2}+p_{1} g_{0}^{4}+O\left(g_{0}^{6}\right)
$$

$$
\left.p_{1}(L / a)=p_{1,0}(L / a)+n p_{1,1} L / a\right)
$$

Towards an optimal regularization.

- Spatial bc for fermion fields are periodic up to a phase $\boldsymbol{\theta}$.

$$
\begin{aligned}
& \psi(x+L \hat{k})=e^{i \theta / L} \psi(x) \\
& \bar{\psi}(x+L \hat{k})=e^{-i \theta / L} \bar{\psi}(x)
\end{aligned}
$$

-Condition number:

$$
\kappa\left(\Delta_{2}\right)=\left(\frac{\lambda_{\max }}{\lambda_{0}}\right)^{-1 / 2}
$$

Towards an optimal regularization.

- Spatial bc for fermion fields are periodic up to a phase $\boldsymbol{\theta}$.

$$
\begin{aligned}
& \psi(x+L \hat{k})=e^{i \theta / L} \psi(x) \\
& \bar{\psi}(x+L \hat{k})=e^{-i \theta / L} \bar{\psi}(x)
\end{aligned}
$$

-Condition number:

$$
\kappa\left(\Delta_{2}\right)=\left(\frac{\lambda_{\max }}{\lambda_{0}}\right)^{-1 / 2}
$$

Towards an optimal regularization.

-SF: O(a) effects coming from bulk and boundaries.

- Boundary counterterms: ct, $\overline{\mathrm{t}}$.
- Bulk counterterm, clover term: Csw
- χ SF: Only boundary counterterms : $c_{t}, d_{s}, Z_{f}\left(\operatorname{dim}\left(z_{f}\right)=3\right)$

Towards an optimal regularization.

-SF: O(a) effects coming from bulk and boundaries.

- Boundary counterterms: $\mathrm{Ct}, \tilde{\mathrm{Ct}}$.
- Bulk counterterm, clover term: C sw
- χ SF: Only boundary counterterms: $c_{t}, d_{s}, z_{f}\left(\operatorname{dim}\left(z_{t}\right)=3\right)$

SF

$$
\begin{aligned}
c_{S W} & =c_{S W}^{(0)}+c_{S W}^{(1)} g_{0}^{2}+O\left(g_{0}^{4}\right) \\
c_{t} & =c_{t}^{(0)}+c_{t}^{(1)} g_{0}^{2}+O\left(g_{0}^{4}\right) \\
\widetilde{c}_{t} & =\widetilde{c}_{t}^{(0)}+\widetilde{c}_{t}^{(1)} g_{0}^{2}+O\left(g_{0}^{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
c_{t} & =c_{t}^{(0)}+c_{t}^{(1)} g_{0}^{2}+O\left(g_{0}^{4}\right) \\
z_{f} & =z_{f}^{(0)}+z_{f}^{(1)} g_{0}^{2}+O\left(g_{0}^{4}\right) \\
d_{s} & =d_{s}^{(0)}+d_{s}^{(1)} g_{0}^{2}+O\left(g_{0}^{4}\right)
\end{aligned}
$$

Towards an optimal regularization.

-SF: O(a) effects coming from bulk and boundaries.

- Boundary counterterms: $\mathrm{Ct}, \tilde{\mathrm{Ct}}$.
- Bulk counterterm, clover term: C sw
- χ SF: Only boundary counterterms: $c_{t}, d_{s}, z_{f}\left(\operatorname{dim}\left(z_{i}\right)=3\right)$

SF

$$
z_{f}^{(0)}=1, d_{s}^{(0)}=1 / 2
$$

$p_{1}(L / a)$

Cutoff effects:

Fundamental

Cutoff effects:

Fundamental
SF

Symmetric

Cutoff effects:

Fundamental
SF

XSF

Symmetric raLarge higher order cutoff effects!!!!

Cutoff effects:

Fundamental
SF

ХSF

Symmetric raVeeeery large higher order cutoff effects!!!!!!!!

Cutoff effects:

- Symmetric (or adjoint) fields see a field

$$
C_{k}=\frac{i}{L} \operatorname{diag}\left(\phi_{k 1}^{R}, \phi_{k 2}^{R}, \ldots, \phi_{k N}^{R}\right)
$$

$$
\begin{array}{r}
\phi_{1}^{S}=2 \phi_{1} \\
\phi_{2}^{S}=\phi_{1}+\phi_{2} \\
\phi_{3}^{S}=\phi_{1}+\phi_{3} \\
\phi_{4}^{S}=2 \phi_{2}
\end{array}
$$

-The Background Field is made weaker:
$\phi_{5}^{S}=\phi_{2}+\phi_{3}$

$$
\phi_{6}^{S}=2 \phi_{3}
$$

$$
\phi_{i}^{S} \rightarrow \phi_{i}^{S} / 2
$$

Symmetric

Cutoff effects:

- Symmetric (or adjoint) fields see a field

$$
C_{k}=\frac{i}{L} \operatorname{diag}\left(\phi_{k 1}^{R}, \phi_{k 2}^{R}, \ldots, \phi_{k N}^{R}\right)
$$

$$
\begin{array}{r}
\phi_{1}^{S}=2 \phi_{1} \\
\phi_{2}^{S}=\phi_{1}+\phi_{2} \\
\phi_{3}^{S}=\phi_{1}+\phi_{3} \\
\phi_{4}^{S}=2 \phi_{2}
\end{array}
$$

-The Background Field is made weaker:

$$
\phi_{i}^{S} \rightarrow \phi_{i}^{S} / 2
$$

Symmetric \quad BF $\quad B F / 2$ [Sint, V., Lattice 2011]

Cutoff effects:

Problems alleviated, but...
\bullet Modified BF \longrightarrow pure gauge part must be recomputed.
-Non-symmetric fields induce big statistical fluctuations.

Symmetric $\quad B F \rightarrow B F / 2$ [Sint, V ., Lattice 2011]

Removing higher order effects:

-The parameter η is added to define the coupling

$$
C_{k}=\frac{i}{L} \operatorname{diag}\left(\phi_{1 k}, \ldots, \phi_{N k}\right)+\left.\frac{i}{L} \eta \lambda_{8}\right|_{\eta=0}
$$

-The BF can depend on an extra parameter v.

$$
\eta \lambda_{8} \longrightarrow \eta\left(\lambda_{8}+\nu \lambda_{3}\right)
$$

-A whole familly of renormalized couplings can be defined

$$
\frac{1}{\bar{g}_{\nu}^{2}(L)}=\frac{1}{\bar{g}^{2}(L)}-\nu \bar{v}(L)
$$

$$
\bar{v}(L)=\left.\frac{1}{\kappa} \frac{\partial}{\partial \nu}\left\{\left.\frac{\partial \Gamma}{\partial \eta}\right|_{\eta=0}\right\}\right|_{\nu=0}
$$

Removing higher order effects:

- Modifying v all the familly of couplings can be explored

SF

XSF

$\begin{array}{|cc|}\bullet & v=1 \\ \bullet & v=0 \\ & v=-1\end{array}$

Removing higher order effects:

- Modifying v all the familly of couplings can be explored
-Cutoff effects dramatically reduced.
-The BF is not modified (no extra calculations needed).
-The quantities g and v can be computed once, and the optimal v chosen a posteriori.

Removing higher order effects:

- Modifying v all the familly of couplings can be explored
-Cutoff effects dramatically reduced.
-The BF is not modified (no extra calculations needed).
-The quantities g and v can be computed once, and the optimal v chosen a posteriori.
-SU(2): Only one abelian direction.
-Consider non-abelian directions in the algebra.

$$
\eta \tau_{3} \longrightarrow \eta\left(\tau_{3}+\sum_{i=1}^{2} \nu_{i} \tau_{i}\right)
$$

$$
\frac{1}{\bar{g}_{\vec{V}}^{2}(L)}=\frac{1}{\bar{g}^{2}(L)}-\sum_{i=1}^{2} \nu_{i} \bar{v}_{i}(L)
$$

Removing higher order effects:

-The full theory, for fundamental $\mathrm{nf}=4$, and adjoint and symmetric $\mathrm{nf}=2$. χ SF

Conclusions:

-We want to study the coupling g of strongly interacting theories.
-We put them in the lattice.
-Cutoff effects are the enemy. They must be terminated.
-They are large, hence we develop alternative strategies.
-We remove them

- At O(a) through Symanzik's improvement.
- At higher orders through a redefinition of the coupling.
-The χ SF regularization works particularly well.
-The condition number is minimized by a choice of spatial BC.

......so that is the story II!

Cox re
Go raibh míle maith agat !! Slán go fóill !!!

