Testing Sterile Neutrinos with Direct Detection and Spallation Source Experiments

DAVID ALONSO-GONZÁLEZ*

with D.W.P. Amaral, A. Bariego-Quintana, D. Cerdeño & M. de los Ríos

MultiDark20 (October 26th, Gandia)

[Akerib et al. 2203.08084 (2022)]

[Akerib et al. 2203.08084 (2022)]

[Akerib et al. 2203.08084 (2022)]

Predicted by the SM...

[Freedman (1974)]

$$\frac{d\sigma_{\nu N}}{dE_R} = \frac{G_F^2}{4\pi} Q_v^2 m_N \left(1 - \frac{m_N E_R}{2E_\nu^2}\right) F^2(E_R)$$
$$Q_v = N - (1 - 4\sin^2\theta_W)Z$$

Predicted by the SM...

[Freedman (1974)]

$$\frac{d\sigma_{\nu N}}{dE_R} = \frac{G_F^2}{4\pi} Q_v^2 m_N \left(1 - \frac{m_N E_R}{2E_\nu^2}\right) F^2(E_R)$$
$$Q_v = N - (1 - 4\sin^2\theta_W)Z$$

...and **experimentally detected** by COHERENT collaboration!

[Akimov et al. 1708.01294 (2017)]

CEVNS at Spallation Sources like **COHERENT**

$$N_{\rm CE\nu NS} = \sum_{\nu_{\alpha}} N_{\rm targ} \int_{E_{\rm th}}^{E_R^{\rm max}} \int_{E_{\nu}^{\rm min}}^{E_{\nu}^{\rm max}} \frac{\mathrm{d}N_{\nu_{\alpha}}}{\mathrm{d}E_{\nu}} \,\epsilon(E_R) \,\frac{\mathrm{d}\sigma_{\nu_{\alpha}\,N}}{\mathrm{d}E_R} \,\mathrm{d}E_{\nu} \,\mathrm{d}E_R$$

CEvNS at Spallation Sources like **COHERENT**

$$N_{\rm CE\nu NS} = \sum_{\nu_{\alpha}} N_{\rm targ} \int_{E_{\rm th}}^{E_R^{\rm max}} \int_{E_{\nu}^{\rm min}}^{E_{\nu}^{\rm max}} \frac{\mathrm{d}N_{\nu_{\alpha}}}{\mathrm{d}E_{\nu}} \,\epsilon(E_R) \,\frac{\mathrm{d}\sigma_{\nu_{\alpha}N}}{\mathrm{d}E_R} \,\mathrm{d}E_{\nu} \,\mathrm{d}E_R$$

CEVNS at Spallation Sources like **COHERENT**

$$N_{\rm CE\nu NS} = \sum_{\nu_{\alpha}} N_{\rm targ} \int_{E_{\rm th}}^{E_R^{\rm max}} \int_{E_{\nu}^{\rm min}}^{E_{\nu}^{\rm max}} \frac{\mathrm{d}N_{\nu_{\alpha}}}{\mathrm{d}E_{\nu}} \,\epsilon(E_R) \,\,\frac{\mathrm{d}\sigma_{\nu_{\alpha\,N}}}{\mathrm{d}E_R} \,\mathrm{d}E_{\nu} \,\mathrm{d}E_R$$

CEvNS at Spallation Sources like **COHERENT**

[Miranda et al. 2008.02759 (2020)]

Experiment	Mass [ton]	$E_{th} \; [\mathrm{keV_{nr}}]$	NPOT $[10^{23}/yr]$	r	L[m]	$\sigma_{ m sys}$
CENNS610	0.61	~ 20	1.5	0.08	28.4	8.5%
$\mathbf{ESS10}$	0.01	0.1	2.8	0.3	20	5%
CCM	7	10	0.177	0.0425	20	5%
ESS	1	20	2.8	0.3	20	5%

not low energy thresholds

$$\left| \frac{\mathrm{d}R}{\mathrm{d}E_R} = n_T \sum_{\nu_\alpha} \int_{E_\nu^{\min}} \frac{\mathrm{d}\phi_{\nu_e}}{\mathrm{d}E_\nu} P(\nu_e \to \nu_\alpha) \frac{\mathrm{d}\sigma_{\nu_\alpha T}}{\mathrm{d}E_R} \right| \mathrm{d}E_\nu$$

$$\left| \frac{\mathrm{d}R}{\mathrm{d}E_R} = n_T \sum_{\nu_\alpha} \int_{E_\nu^{\min}} \frac{\mathrm{d}\phi_{\nu_e}}{\mathrm{d}E_\nu} P(\nu_e \to \nu_\alpha) \frac{\mathrm{d}\sigma_{\nu_\alpha T}}{\mathrm{d}E_R} \right| \mathrm{d}E_\nu$$

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = n_T \sum_{\nu_\alpha} \int_{E_\nu^{\min}} \frac{\mathrm{d}\phi_{\nu_e}}{\mathrm{d}E_\nu} \ P(\nu_e \to \nu_\alpha) \ \frac{\mathrm{d}\sigma_{\nu_\alpha T}}{\mathrm{d}E_R} \ \mathrm{d}E_\nu$$

Electron recoil 10¹² pp 10^{10]} **SuperCDMS CNO** Neutrino Flux $[\mathrm{cm}^{-2} \mathrm{ s}^{-1}]$ MeV⁻¹ (nuclear recoil) 10^ε ⁸B 10 10⁴ 10² 10⁰ **Atmospheric** 10 10 10^{0} 10⁻¹ 10^{1} 10^{2} 10^{3} Neutrino Energy [MeV]

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = n_T \sum_{\nu_\alpha} \int_{E_\nu^{\min}} \frac{\mathrm{d}\phi_{\nu_e}}{\mathrm{d}E_\nu} \ P(\nu_e \to \nu_\alpha) \ \frac{\mathrm{d}\sigma_{\nu_\alpha T}}{\mathrm{d}E_R} \ \mathrm{d}E_\nu$$

Spallation Sources

Direct Detection

Spallation Sources	Direct Detection
Source: Spallation	Source: Sun
v_e , v_μ , $\overline{v_\mu}$	$v_e, \overline{v_e}, v_\mu, \overline{v_\mu}, v_\tau, \overline{v_\tau}$

Spallation Sources	Direct Detection	
Source: Spallation	Source: Sun	
v_e , v_μ , $\overline{v_\mu}$	$v_e, \overline{v_e}, v_\mu, \overline{v_\mu}, v_\tau, \overline{v_\tau}$	
Neutrinos up to 50 MeV	Neutrinos up to 20 MeV	

Spallation Sources	Direct Detection
Source: Spallation	Source: Sun
v_e , v_μ , $\overline{v_\mu}$	$v_e, \overline{v_e}, v_\mu, \overline{v_\mu}, v_\tau, \overline{v_\tau}$
Neutrinos up to 50 MeV	Neutrinos up to 20 MeV
Not small energy	Very small thresholds
thresholds	

Spallation Sources	Direct Detection
Source: Spallation	Source: Sun
v_e , v_μ , $\overline{v_\mu}$	$v_e, \overline{v_e}, v_\mu, \overline{v_\mu}, v_\tau, \overline{v_\tau}$
Neutrinos up to 50 MeV	Neutrinos up to 20 MeV
Not small energy	Very small thresholds
thresholds	

...so why not **combine** them?

[Pospelov 1103.3261 (2011)]

$$L_{SBN} \supset g_{Z'} \frac{1}{3} \sum_{q} \overline{q} \gamma_{\mu} Z'^{\mu} q + g_{Z'} \overline{\nu_{b}} \gamma_{\mu} Z'^{\mu} \nu_{b}$$

[Pospelov 1103.3261 (2011)]

$$L_{SBN} \supset g_{Z'} \frac{1}{3} \sum_{q} \overline{q} \gamma_{\mu} Z'^{\mu} q + g_{Z'} \overline{\nu_{b}} \gamma_{\mu} Z'^{\mu} \nu_{b}$$

 Z'^{μ} : baryonic vector boson $U(1)_B$ ($m_{Z'}$)

[Pospelov 1103.3261 (2011)]

$$L_{SBN} \supset g_{Z'} \frac{1}{3} \sum_{q} \overline{q} \gamma_{\mu} Z'^{\mu} q + g_{Z'} \overline{\nu_b} \gamma_{\mu} Z'^{\mu} \nu_b$$

 Z'^{μ} : baryonic vector boson $U(1)_B$ ($m_{Z'}$) $g_{Z'}$: $U(1)_B$ gauge coupling

[Pospelov 1103.3261 (2011)]

$$L_{SBN} \supset g_{Z'} \frac{1}{3} \sum_{q} \overline{q} \gamma_{\mu} Z'^{\mu} q + g_{Z'} \overline{\nu_{b}} \gamma_{\mu} Z'^{\mu} \nu_{b}$$

 Z'^{μ} : baryonic vector boson $U(1)_B$ $(m_{Z'})$ $g_{Z'}$: $U(1)_B$ gauge coupling v_b : sterile baryonic neutrino (m_4)

[Pospelov 1103.3261 (2011)]

$$L_{SBN} \supset g_{Z'} \frac{1}{3} \sum_{q} \overline{q} \gamma_{\mu} Z'^{\mu} q + g_{Z'} \overline{\nu_{b}} \gamma_{\mu} Z'^{\mu} \nu_{b}$$

PARAMETER SPACE

 $g_{Z^{\prime}}$, $m_{Z^{\prime}}$

 m_4 , $|U_{e4}|$, $|U_{\mu4}|$, $|U_{\tau4}|$

Predicted by the SM...

[Freedman (1974)]

$$\frac{d\sigma_{\nu N}}{dE_R} = \frac{G_F^2}{4\pi} Q_v^2 m_N \left(1 - \frac{m_N E_R}{2E_\nu^2}\right) F^2(E_R)$$
$$Q_v = N - (1 - 4\sin^2\theta_W)Z$$

...and **experimentally detected** by COHERENT collaboration!

[Akimov et al. 1708.01294 (2017)]

Predicted by the SM...

[Freedman (1974)]

$$\frac{d\sigma_{\nu N}}{dE_R} = \frac{G_F^2}{4\pi} Q_v^2 m_N \left(1 - \frac{m_N E_R}{2E_\nu^2}\right) F^2(E_R)$$
$$Q_v = N - (1 - 4\sin^2\theta_W)Z$$

...and **experimentally detected** by COHERENT collaboration!

[Akimov et al. 1708.01294 (2017)]

SBN predicts **upscattering** process:

	$\frac{\mathrm{d}\sigma_{\alpha 4}}{\mathrm{d}E_R} = \frac{g_{Z'}^4 A^2 U_{\alpha 4} ^2 m_A}{2\pi E_{\nu}^2 (2m_A E_R + m_{Z'}^2)^2}$	$\left[4E_{\nu}^{2} - 2E_{R}\left(m_{A} - E_{R} + 2E_{\nu}\right) - \frac{m_{4}^{2}}{m_{A}}\left(m_{A} - E_{R} - E_{\nu}\right)\right]$	$] F^2(E_R)$
--	--	---	--------------

Predicted by the SM...

[Freedman (1974)]

$$\frac{d\sigma_{\nu N}}{dE_R} = \frac{G_F^2}{4\pi} Q_v^2 m_N \left(1 - \frac{m_N E_R}{2E_\nu^2}\right) F^2(E_R)$$
$$Q_v = N - (1 - 4\sin^2\theta_W)Z$$

...and **experimentally detected** by COHERENT collaboration!

[Akimov et al. 1708.01294 (2017)]

SBN predicts **upscattering** process:

$$\boxed{\frac{\mathrm{d}\sigma_{\alpha 4}}{\mathrm{d}E_R} = \frac{g_{Z'}^4 A^2 \left|U_{\alpha 4}\right|^2 m_A}{2\pi E_\nu^2 \left(2m_A E_R + m_{Z'}^2\right)^2} \left[4E_\nu^2 - 2E_R \left(m_A - E_R + 2E_\nu\right) - \frac{m_4^2}{m_A} \left(m_A - E_R - E_\nu\right)\right] F^2(E_R)}$$

that may modify the expected recoil spectrum!

Let's fix **our scenario**...

$$L_{SBN} \supset \frac{1}{3} g_{Z'} \sum_{q} \bar{q} \gamma_{\mu} Z'^{\mu} q + g_{Z'} \overline{\nu_{b}} \gamma_{\mu} Z'^{\mu} \nu_{b}$$

Let's fix **our scenario**...

$$L_{SBN} \supset \frac{1}{3} g_{Z'} \sum_{q} \bar{q} \gamma_{\mu} Z'^{\mu} q + g_{Z'} \overline{\nu_{b}} \gamma_{\mu} Z'^{\mu} \nu_{b}$$

[Foguel et al. 2201.01788 (2022)] 9

Let's fix **our scenario**...

$$L_{SBN} \supset \frac{1}{3} g_{Z'} \sum_{q} \bar{q} \gamma_{\mu} Z'^{\mu} q + g_{Z'} \overline{\nu_{b}} \gamma_{\mu} Z'^{\mu} \nu_{b}$$

[Foguel et al. 2201.01788 (2022)] 9

Let's fix some **benchmark points...**

	$m_4 [{ m GeV}]$	$\left U_{e4}\right ^2$	$\left U_{\mu4} ight ^2$	$ U_{ au 4} ^2$
BP1a	2×10^{-3}	0	9×10^{-3}	0
BP1d	2×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP2a	9×10^{-3}	0	9×10^{-3}	0
BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP2d	9×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP3a	20×10^{-3}	0	9×10^{-3}	0
BP4a	40×10^{-3}	0	9×10^{-3}	0
BP5a	60×10^{-3}	0	9×10^{-3}	0

Let's fix some **benchmark points...**

	$m_4 [{ m GeV}]$	$ U_{e4} ^2$	$\left U_{\mu4}\right ^2$	$\left U_{ au 4}\right ^2$
BP1a	2×10^{-3}	0	9×10^{-3}	0
BP1d	2×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP2a	9×10^{-3}	0	9×10^{-3}	0
BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP2d	9×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP3a	20×10^{-3}	0	9×10^{-3}	0
BP4a	40×10^{-3}	0	9×10^{-3}	0
BP5a	60×10^{-3}	0	9×10^{-3}	0

Predicted SS energy spectra

11

SS+DD Profile likelihood results

Conclusions

- Sterile neutrino models can be probed with Spallation Source (SS) and Direct Detection (DD) experiments.
- DD will be able to access to very **low recoil energies, all the neutrino flavours** but not big masses.
- **SS** will be able to access to **heavier sterile neutrinos** but not to all neutrino flavours.
- **Combining** DD and SS may help...
 - improving the significance,
 - constraining the parameter space and allowing **parameter reconstruction** (specially in the neutrino mass m_4 and in τ mixing),
 - and allowing model discrimination (Sterile Baryonic Neutrino vs NSI).
- DD must reach smaller thresholds and the **uncertainty in solar neutrino fluxes need to be reduced** in order to be competitive.

Backup Slides

Direct Detection and Spallation Experiments to test the Baryonic Sterile Neutrino

SS experiment **fluxes**

DD + **SS**: why it's a good idea

- 1. Increase the **statistical significance** of a prospective discovery.
- 2. Improve the **parameter reconstruction** of the model.
- 3. Allow to **discriminate** between our model and other **models** that can give similar experimental evidence.

Let's fix some **benchmark points...**

	$m_4 [{ m GeV}]$	$ U_{e4} ^2$	$\left U_{\mu4}\right ^2$	$ U_{ au 4} ^2$
BP1a	2×10^{-3}	0	9×10^{-3}	0
BP1d	2×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP2a	9×10^{-3}	0	9×10^{-3}	0
BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP2d	9×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP3a	20×10^{-3}	0	9×10^{-3}	0
BP4a	40×10^{-3}	0	9×10^{-3}	0
BP5a	60×10^{-3}	0	9×10^{-3}	0

Let's fix some **benchmark points...**

	$m_4 [{ m GeV}]$	$\left U_{e4} ight ^2$	$ U_{\mu4} ^2$	$ U_{ au 4} ^2$
BP1a	2×10^{-3}	0	9×10^{-3}	0
BP1d	2×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP2a	9×10^{-3}	0	9×10^{-3}	0
BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP2d	9×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP3a	20×10^{-3}	0	9×10^{-3}	0
BP4a	40×10^{-3}	0	9×10^{-3}	0
BP5a	60×10^{-3}	0	9×10^{-3}	0

Let's fix some **benchmark points...**

	$m_4 [{ m GeV}]$	$ U_{e4} ^2$	$ U_{\mu4} ^2$	$ U_{ au 4} ^2$
BP1a	2×10^{-3}	0	9×10^{-3}	0
BP1d	2×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP2a	9×10^{-3}	0	9×10^{-3}	0
BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP2d	9×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP3a	20×10^{-3}	0	9×10^{-3}	0
BP4a	40×10^{-3}	0	9×10^{-3}	0
BP5a	60×10^{-3}	0	9×10^{-3}	0

