A Bayesian analysis with Machine Learning of EFT Operators in Direct Dark Matter Detection

Outline

DM-nucleon interaction with NR-EFT

Outline

XENONnT 20ty

DM-nucleon interaction with NR-EFT

DM differential rate for a DD experiment

Outline

Outline

Outline

Outline

Non-relativistic effective field theory (NR-EFT)

DM-nucleon non-relativistic effective field theory (NR-EFT)

For DM particles with spin up to $1 / 2$, the effective DM-nucleon scattering interaction Lagrangian

$$
\begin{array}{ccc}
\mathcal{L}_{\mathrm{EFT}}=\sum_{\tau} \sum_{i} c_{i}^{\tau} \mathcal{O}_{i} \bar{\chi} \chi \bar{\tau} \tau & \begin{array}{c}
\mathrm{i}=14 \text { possible } \\
\text { interactions }
\end{array} \\
c_{i}^{0} \mathbb{1}_{2 \times 2}+c_{i}^{1} \tau_{3} & c_{i}^{0}=\frac{1}{2}\left(c_{i}^{p}+c_{i}^{n}\right) & \begin{array}{l}
\text { O1: spin-independent (SI) } \\
\text { O4: spin-dependent (SD) }
\end{array} \\
\text { isospin basis } & c_{i}^{1}=\frac{1}{2}\left(c_{i}^{p}-c_{i}^{n}\right) & \begin{array}{c}
\text { usually shown assuming } \\
\text { isoscalar interactions }
\end{array} \\
c^{o}: \text { isoscalar } & \text { nucleon basis } & \text { isovector } \\
c^{\prime}: \text { c. proton } & c^{b}=c^{n} c^{0}=\mathbf{1} \text { and } c^{l}=0
\end{array}
$$

DM-nucleon non-relativistic effective field theory (NR-EFT)

For DM particles with spin up to $1 / 2$, the effective DM-nucleon scattering interaction Lagrangian

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{\tau} \sum_{i} c_{i}^{\tau} \mathcal{O}_{i} \bar{\chi} \chi \bar{\tau} \tau \quad \begin{aligned}
& \mathrm{i}=14 \text { possible } \\
& \text { interactions }
\end{aligned}
$$

Change to polar coordinates:

$$
\begin{aligned}
& c_{i}^{0}=\frac{1}{2}\left(c_{i}^{p}+c_{i}^{n}\right)=A_{i} \sin \left(\theta_{i}\right) \\
& c_{i}^{1}=\frac{1}{2}\left(c_{i}^{p}-c_{i}^{n}\right)=A_{i} \cos \left(\theta_{i}\right)
\end{aligned}
$$

Natural choice for the EFT parameter space because the interaction cross section:

$$
\sigma_{i} \propto A_{i}^{2}
$$

For SI (O_{1})

$$
\sigma_{\chi \mathcal{N}}^{\mathrm{SI}}=\frac{A_{1}^{2} \mu_{\chi \mathcal{N}}^{2}}{\pi}
$$

DM-nucleon non-relativistic effective field theory (NR-EFT)

For DM particles with spin up to $1 / 2$, the effective DM-nucleon scattering interaction Lagrangian

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{\tau} \sum_{i} c_{i}^{\tau} \mathcal{O}_{i} \bar{\chi} \chi \bar{\tau} \tau \quad \begin{aligned}
& \mathrm{i}=14 \text { possible } \\
& \text { interactions }
\end{aligned}
$$

$$
\begin{aligned}
& c_{i}^{0}=\frac{1}{2}\left(c_{i}^{p}+c_{i}^{n}\right)=A_{i} \sin \left(\theta_{i}\right) \\
& c_{i}^{1}=\frac{1}{2}\left(c_{i}^{p}-c_{i}^{n}\right)=A_{i} \cos \left(\theta_{i}\right)
\end{aligned}
$$

For each operator 2 parameters amplitude (cross-section) phase

+ DM mass

$$
\left(\sigma_{\mathrm{i}},,_{\mathrm{i}}, \mathrm{~m}_{\mathrm{DM}}\right)
$$

Data sample generation

DM Differential rate

From NR-EFT operators to differential rate with WimPyDD

Inputs:

- Operator
- Parameters \rightarrow amplitude (cross-section) phase
DM mass
- DM halo model
- DD experiment (XENONnT)

Output:

DM Differential rate

From NR-EFT operators to differential rate with WimPyDD

Inputs:

- Operator
- Parameters \rightarrow amplitude (cross-section) phase
DM mass
- DM halo model
- DD experiment (XENONnT)

Data Representation: csi s scs plane

XENONnT 2oty

We generate a ok pseudo experiments per operator varying σ, θ, and $m_{D M}$

Data Representation: number of events

XENONnT 2oty

We generate a rok pseudo experiments per operator varying σ, θ, and $m_{D M}$

Data Representation: differential rate

XENONnT 2oty

We generate a ok pseudo experiments per operator varying σ, θ, and $m_{D M}$
curves

Analysis with SWYFT

Data analysis to obtain posteriors

SWYFT \rightarrow Sampling-based inference tool that estimates likelihood to evidence ratio with ML algorithms to obtain marginal and joint posteriors

Matching (parameter, data) \rightarrow label 1

$$
\left(\left(\sigma^{\left.\mathrm{j}, \mathrm{e}^{\mathrm{j}}, \mathrm{~m}_{\mathrm{DM}}^{\mathrm{j}}\right), \mathrm{m}_{\mathrm{m}}^{\mathrm{j}}=}\right.\right.
$$

\rightarrow Scrambled (parameter, data) \rightarrow label o

Data analysis to obtain posteriors

SWYFT \rightarrow Sampling-based inference tool that estimates likelihood to evidence ratio with ML algorithms to obtain marginal and joint posteriors

Matching (parameter, data) \rightarrow label 1

$$
\left(\left(\sigma^{\mathrm{j}}, e^{\mathrm{j}}, \mathrm{~m}_{\mathrm{DM}}^{\mathrm{j}}\right),\right.
$$

Scrambled (parameter, data) \rightarrow label o

$$
r(\mathbf{x} ; \mathbf{z}) \equiv \frac{p(\mathbf{x} \mid \mathbf{z})}{p(\mathbf{x})}=\frac{p(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z})}=\frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x}) p(\mathbf{z})}
$$

Data analysis to obtain posteriors

SWYFT \rightarrow Sampling-based inference tool that estimates likelihood to evidence ratio with ML algorithms to obtain marginal and joint posteriors

New data sample $\mathrm{x}^{\text {new }}$

Trained binary classifier

For another data sample \rightarrow we do not need to train everything again, use the same classifier

Results
Results
Results

\square
 \square

$$
0
$$

 ?

ReSuits
Results
Results
Results
Results -
\square

,
\qquad
\qquad

Posteriors

this is a gaussian as an example, not the actual posterior!
Once we trained SWYFT we can compute the posterior for any

Reconstruction of parameters

this is a gaussian as an example, not the actual posterior!
Once we trained SWYFT we can compute the posterior for any new pseudo experiment

We define a σ_{th} threshold:

$$
\sigma_{\mathrm{th}}=10^{-49} \mathrm{~cm}^{2} \rightarrow \text { NO SIGNAL! }
$$

Then, we can reconstruct σ if:

$$
\int_{\sigma_{t h}}^{\text {inf }} \mathrm{P}(\sigma \mid \mathrm{x})>0.90
$$

Reconstruction of parameters

this is a gaussian as an example, not the actual posterior!
Once we trained SWYFT we can compute the posterior for any new pseudo experiment

We define a $\sigma_{\text {th }}$ threshold:

$$
\sigma_{\mathrm{th}}=10^{-49} \mathrm{~cm}^{2} \rightarrow \text { NO SIGNAL! }
$$

Then, we can reconstruct σ if:

$$
\int_{\sigma_{t h}}^{\text {inf }} \mathrm{P}(\sigma \mid \mathrm{x})>0.90
$$

Reconstruction of parameters

this is a gaussian as an example, not the actual posterior!
Once we trained SWYFT we can compute the posterior for any new pseudo experiment

We define a σ_{th} threshold:

$$
\sigma_{\mathrm{th}}=10^{-49} \mathrm{~cm}^{2} \rightarrow \text { NO SIGNAL! }
$$

Then, we can reconstruct σ if:

$$
\int_{\sigma_{t h}}^{\text {inf }} \mathrm{P}(\sigma \mid \mathrm{x})>0.90
$$

Results

Data:

entire cS1 vs cS2 plane differential rate total number of events
examples with O1 (SI)
$\mathrm{m}_{\mathrm{DM}} \simeq 100 \mathrm{GeV} \rightarrow$ fixed $\theta=\pi / 2 \quad \rightarrow$ fixed
threshold:
$\sigma_{\mathrm{th}}=10^{-49} \mathrm{~cm}^{2}$

Results

Data:

entire cS1 vs cS2 plane

These are all the posteriors for

> O1 (SI)
$\mathrm{m}_{\mathrm{DM}} \simeq 100 \mathrm{GeV} \rightarrow$ fixed
$\sigma=2.410^{-47} \mathrm{~cm}^{2} \rightarrow$ fixed
threshold:

$$
\sigma_{\mathrm{th}}=1 \mathrm{O}^{-49} \mathrm{~cm}^{2}
$$

Results: σ reconstruction plot

Ol operator XENONnT 2oty

This panel is the usually shown SI parameter space
$\begin{array}{ll}\text { Data: } & \text { differential rate } \\ & \text { entire cSi vs cS2 plane }\end{array}$

Results: σ reconstruction plot

O4 operator XENONnT 2oty

total number of events
Data: differential rate entire cS1 vs cS2 plane

Conclusions

preliminary results

- A Bayesian analysis to explore the reach of direct detection experiments that can be applied to any DM model (translate it into NR-EFT)
- O1 (SI) and O4 (SD) presented here as examples,
- SWYFT, a data driven tool, allows a really fast estimation of posteriors,
- we computed the parameter space where σ that can be reconstructed,
- we compared:
total number of events vs the differential rate vs the full $\mathrm{cS} 1, \mathrm{CS} 2$ space.
- Next:

Apply to other NR-EFT operators
Different DD experiments
Reconstruct σ, m, Θ at the same time
\rightarrow combine operators
\rightarrow combine experiments

Thank you!

Back-up -

Abstract

号

-

\qquad

DM-nucleon non-relativistic effective field theory (NR-EFT)

For DM particles with spin up to $1 / 2$, the effective DM-nucleon scattering interaction Lagrangian

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{\tau} \sum_{i} c_{i}^{\tau} \mathcal{O}_{i} \bar{\chi} \chi \bar{\tau} \tau \quad \begin{aligned}
& \mathrm{i}=14 \text { possible } \\
& \text { interactions }
\end{aligned}
$$

$$
\begin{aligned}
& i \frac{\vec{q}}{m_{N}}, \quad \vec{v}^{\perp}, \quad \vec{S}_{\chi}, \quad \vec{S}_{N} . \\
& \vec{v} \equiv \vec{v}_{\chi, \text { in }}-\vec{v}_{N, \text { in }} \\
& \vec{v}^{\perp}=\vec{v}+\frac{\vec{q}}{2 \mu_{N}} \\
& \text { momentum transfer, spin } \\
& \text { operators, relative velocity } \\
& \mathcal{O}_{1}=1_{\chi} 1_{N} \\
& \mathcal{O}_{3}=i \vec{S}_{N} \cdot\left(\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp}\right) \\
& \mathcal{O}_{4}=\vec{S}_{\chi} \cdot \vec{S}_{N} \\
& \mathcal{O}_{5}=i \vec{S}_{\chi} \cdot\left(\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp}\right) \\
& \mathcal{O}_{6}=\left(\vec{S}_{\chi} \cdot \frac{\vec{q}_{N}}{m_{N}}\right)\left(\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}\right) \\
& \mathcal{O}_{7}=\vec{S}_{N} \cdot \vec{v}^{\perp} \\
& \mathcal{O}_{8}=\vec{S}_{\chi} \cdot \vec{v}^{\perp} \\
& \begin{array}{l}
\mathcal{O}_{9}=i \vec{S}_{\chi} \cdot\left(\vec{S}_{N} \times \frac{\vec{q}}{m_{N}}\right) \\
\mathcal{O}_{10}=i \vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}} \\
\mathcal{O}_{11}=i \vec{S}_{\chi} \cdot \frac{q}{m_{N}} \\
\mathcal{O}_{12}=\vec{S}_{\chi} \cdot\left(\vec{S}_{N} \times \vec{v}^{\perp}\right) \\
\mathcal{O}_{13}=i\left(\vec{S}_{\chi} \cdot \vec{v}^{\perp}\right)\left(\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}\right) \\
\mathcal{O}_{14}=i\left(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}\right)\left(\vec{S}_{N} \cdot \vec{v}^{\perp}\right) \\
\mathcal{O}_{15}=-\left(\vec{S}_{\chi} \cdot \frac{q}{m_{N}}\right)\left(\left(\vec{S}_{N} \times \vec{v}^{\perp}\right) \cdot \frac{\vec{q}}{m_{N}}\right)
\end{array}
\end{aligned}
$$

DM-nucleon non-relativistic effective field theory (NR-EFT)

For DM particles with spin up to $1 / 2$, the effective DM-nucleon scattering interaction Lagrangian

$$
\begin{array}{ccc}
\mathcal{L}_{\mathrm{EFT}}=\sum_{\tau} \sum_{i} c_{i}^{\tau} \mathcal{O}_{i} \bar{\chi} \chi \bar{\tau} \tau & \begin{array}{c}
\mathrm{i}=14 \text { possible } \\
\text { interactions }
\end{array} \\
c_{i}^{0} \mathbb{1}_{2 \times 2}+c_{i}^{1} \tau_{3} & c_{i}^{0}=\frac{1}{2}\left(c_{i}^{p}+c_{i}^{n}\right) & \begin{array}{l}
\text { O1: spin-independent (SI) } \\
\text { O4: spin-dependent (SD) }
\end{array} \\
\text { isospin basis } & c_{i}^{1}=\frac{1}{2}\left(c_{i}^{p}-c_{i}^{n}\right) & \begin{array}{c}
\text { usually shown assuming } \\
\text { isoscalar interactions }
\end{array} \\
c^{o}: \text { isoscalar } & \text { nucleon basis } & \text { isovector } \\
c^{\prime}: \text { c. proton } & c^{b}=c^{n} c^{0}=\mathbf{1} \text { and } c^{l}=0
\end{array}
$$

DM-nucleon non-relativistic effective field theory (NR-EFT)

For DM particles with spin up to $1 / 2$, the effective DM-nucleon scattering interaction Lagrangian

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{\tau} \sum_{i} c_{i}^{\tau} \mathcal{O}_{i} \bar{\chi} \chi \bar{\tau} \tau \quad \begin{aligned}
& \mathrm{i}=14 \text { possible } \\
& \text { interactions }
\end{aligned}
$$

Change to polar coordinates:

$$
\begin{aligned}
& c_{i}^{0}=\frac{1}{2}\left(c_{i}^{p}+c_{i}^{n}\right)=A_{i} \sin \left(\theta_{i}\right) \\
& c_{i}^{1}=\frac{1}{2}\left(c_{i}^{p}-c_{i}^{n}\right)=A_{i} \cos \left(\theta_{i}\right)
\end{aligned}
$$

Natural choice for the EFT parameter space because the interaction cross section:

$$
\sigma_{i} \propto A_{i}^{2}
$$

For SI (O_{1})

$$
\sigma_{\chi \mathcal{N}}^{\mathrm{SI}}=\frac{A_{1}^{2} \mu_{\chi \mathcal{N}}^{2}}{\pi}
$$

DM-nucleon non-relativistic effective field theory (NR-EFT)

Contact interaction between a spin $1 / 2 \mathrm{DM}$ and nucleon

$$
\begin{gathered}
\mathcal{L}_{\mathrm{int}}^{\mathrm{SI}}(\vec{x})=c_{1} \bar{\Psi}_{\chi}(\vec{x}) \Psi_{\chi}(\vec{x}) \bar{\Psi}_{N}(\vec{x}) \Psi_{N}(\vec{x}) \\
U_{\chi}(p)=\sqrt{\frac{E+m}{2 m}}\binom{\xi_{\chi}}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m_{\chi}} \xi_{\chi}} \sim\binom{\xi_{\chi}}{\frac{\vec{\sigma} \cdot \vec{p}_{2}^{2 m}}{2 m_{\chi}} \xi_{\chi}} \quad \begin{array}{l}
\text { at low momenta. } \\
\text { Idem for the nucleon spinor } \\
\xi \text { Pauli spinors }
\end{array}
\end{gathered}
$$

at leading order in p / m

$$
c_{1} 1_{\chi} 1_{N} \equiv c_{1} \mathcal{O}_{1}
$$

DM-nucleon non-relativistic effective field theory (NR-EFT)

Another interaction

$$
\mathcal{L}_{\mathrm{int}}^{\mathrm{SD}}=c_{4} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \bar{N} \gamma_{\mu} \gamma^{5} N
$$

the dominant contribution in the non-relativistic limit comes from the spatial indices

$$
\bar{\chi} \gamma^{i} \gamma^{5} \chi \sim \xi_{\chi}^{\dagger} \sigma^{i} \xi_{\chi}
$$

$$
\text { Since } \hat{\mathrm{S}}^{\mathrm{i}=\sigma^{\mathrm{i} / 2}} \quad-4 c_{4} \vec{S}_{\chi} \cdot \vec{S}_{N} \equiv-4 c_{4} \mathcal{O}_{4}
$$

Data analysis to obtain posteriors

SWYFT \rightarrow Sampling-based inference tool that estimates likelihood to evidence ratio with ML algorithms to obtain marginal and joint posteriors

	MCMC	SWYFT
Forward Model	$\mathrm{x}=\mathrm{f}($ parameters $)$	$\mathrm{x}=\mathrm{f}$ (parameters)
Likelihood	$\mathrm{L}(\mathrm{x}, \mathrm{f}$ (parameters))	Data Driven
Samples	All parameters space	
>\# samples		
Amortization	NO	Only Interesting parameters
		YES

Motivation

Bayes' Rule: determine a probability distribution over model parameters $\boldsymbol{\theta}$ given an observation \mathbf{x}

Samples tipically generated with Markov Chain Monte Carlo (MCMC) or Nested sampling

BOSS, Ivanov+ 1909.05277

Neural Ratio Estimation (NRE)

Approximate density ratios.
Class 1: Matching (data, parameter) pairs

Strategy: We estimate posteriors-toprior ratio by training a binary classifier to discriminate between matching and scrambled (data, parameter) pairs.

MARGINAL

> MCMC or Nested sampling methods produce samples from the posterior distribution.
> Classical methods require sampling the full joint posterior, so that they are slow to converge.
> Novel approaches in the field of simulationbased inference (SBI) are starting to overcome these obstacles.

Instead of estimating all parameters...

50 parameters ~ 100 Million simulations
...we can choose what we care about

\square Parameters

Depending
on which
parameter is
scrambled

Results

Data:

entire cS1 vs cS2 plane

These are all the posteriors for

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{DM}} \simeq 100 \mathrm{GeV} \rightarrow \text { fixed } \\
& \theta^{=} \pi / 2 \rightarrow \text { fixed }
\end{aligned}
$$

red $\rightarrow \sigma$ not reconstructed
~no signal, \sim similar posteriors
black $\rightarrow \sigma$ reconstructed

Data:
the entire CSi_{1} vs cS2 plane

Data:
 the total number of events

Testing with:

Results

$\mathrm{m}_{\mathrm{DM}}=84.6 \mathrm{GeV} \rightarrow$ fixed
$\theta=\pi / 2 \rightarrow$ fixed

