

ENTERING THE ERA OF NEUTRINO DIRECT DETECTION

JHEP 07 (2023) 071 [arXiv: 2302.12846]

In collaboration with Dorian Amaral, David Cerdeño and Andrew Cheek

Patrick Foldenauer

patrick.foldenauer@csic.es IFT (UAM-CSIC) Madrid

20th MultiDark Workshop, Gandía – Oct 26, 2023

HOW TO LOOK BEYOND SM?

- State-of-the-art DM experiments: multi ton liquid noble gas detectors (Xe, Ar)
- **Signature**: Incident particles produce prompt scintillation light in scattering (S1); secondary signal from electroluminescence in gaseous layer (S2)

PROBLEM: NEUTRINO BACKGROUND

- Incident energetic neutrinos can fake the DM signal, as they leave a similar signature
- Most importantly, irreducible solar neutrino background looks like typical WIMP signal!
- Typically ~ O(few) keV energy threshold for DM search (LUX has achieved 1.1 keV with NR/ER discrimination)
- These are typical solar neutrino (mostly ⁸*B*) scattering energies!

[DARWIN collaboration; JCAP 1611 (2016) no.11, 017]

NEUTRINO FLOOR

 Direct detection experiments will become sensitive to solar neutrino scattering (in particular coherent scattering)

[Snowmass CF1 Summary; 1310.8327]

TESTING NEW NEUTRINO PHYSICS AT DIRECT DETECTION

NON-STANDARD INTERACTIONS

Neutral current low-energy effective theory called non-standard interactions (NSI) •

$$\mathcal{L}_{\text{NSI}} = -2\sqrt{2} G_F \sum_{f,P,\alpha,\beta} \varepsilon_{\alpha\beta}^{fP} \left[\bar{\nu}_{\alpha} \gamma_{\rho} P_L \nu_{\beta} \right] \left[\bar{f} \gamma^{\rho} P f \right]$$

$$\varepsilon_{\alpha\beta}^{f} = \varepsilon_{\alpha\beta}^{\eta,\varphi} \xi^{f} \quad \Longrightarrow \quad \mathcal{L}_{\rm NSI} = -2\sqrt{2}G_{F} \left[\sum_{\alpha\beta} \varepsilon_{\alpha\beta}^{\eta,\varphi} \left(\bar{\nu}_{\alpha}\gamma_{\mu}P_{L}\nu_{\beta} \right) \right] \left[\sum_{f} \xi^{f} \bar{f}\gamma^{\mu}f \right]$$

• Ordinary matter is composed of
$$f = \{e, u, d\}$$
. Only these are relevant for matter effects and scattering. Propagation only sensitive to **vector component**.

$$\varepsilon^{f}_{\alpha\beta} = \varepsilon^{fL}_{\alpha\beta} + \varepsilon^{fR}_{\alpha\beta}$$

NON-STANDARD INTERACTIONS

• For direct detection **electron scattering** is crucial! We extend this parameterisation by **electron direction**

$$\varepsilon^f_{\alpha\beta} = \varepsilon^{\eta,\varphi}_{\alpha\beta}\xi^f$$

• Parametrising the direction in terms of $\{e, p, n\}$

 $\begin{aligned} \xi^e &= \sqrt{5} \, \cos \eta \, \sin \varphi \,, \\ \xi^p &= \sqrt{5} \, \cos \eta \, \cos \varphi \,, \\ \xi^n &= \sqrt{5} \, \sin \eta \end{aligned}$

7

- The angles η, φ run in the interval $[-\pi/2, \pi/2]$ and the radial component $\varepsilon_{\alpha\beta}^{\eta,\varphi}$ can be **positive and negative!**
- η is the angle in the $\{\xi^p, \xi^n\}$ plane, φ in the $\{\xi^p, \xi^e\}$ plane

RATE — NAIVE APPROACH

[Amaral, Cerdeno, PF, Reid; 2006.11225]

- Solar neutrinos produced in various processes, but initially always in electron flavour.
- Matter oscillation in solar medium dominates flavour composition reaching earth. \Rightarrow at ~10 MeV significant ν_{τ} (and ν_{μ}) admixture (⁸B flux)!
- Total rate in scattering experiment is written as

$$\frac{dR}{dE_R} = n_T \int_{E_{\nu}^{\min}} \frac{d\phi_{\nu}}{dE_{\nu}} \sum_{\nu_{\alpha}} P(\nu_e \to \nu_{\alpha}) \frac{d\sigma_{\nu_{\alpha}T}}{dE_R} dE_{\nu}$$

RATE — FIRST PRINCIPLES

- Neutrinos are produced in the core of the Sun as **pure** ν_e . Propagate through the solar matter to the surface of the Sun and **undergo matter oscillations**; free stream in vacuum to earth
- Scatter with detector into any neutrino final state. Have to sum over asymptotic final states

$$\begin{aligned} \left|\mathcal{A}_{\nu_{\alpha} \to \sum_{i} \nu_{i}}\right|^{2} &= \sum_{i} |\langle \nu_{i} S | \nu_{\alpha} \rangle|^{2} = \sum_{i} \left|\sum_{\beta} U_{\beta i}^{*} \langle \nu_{\beta} | S | \nu_{\alpha} \rangle\right|^{2} \\ \text{Asymptotic} \\ \text{outstate } i \\ \text{outstate } i \\ \end{aligned}$$

.9

RATE — FIRST PRINCIPLES

- Neutrinos are produced in the core of the Sun as **pure** ν_e . Propagate through the solar matter to the surface of the Sun and **undergo matter oscillations**; free stream in vacuum to earth
- Scatter with detector into any neutrino final state. Have to sum over asymptotic final states

$$\begin{split} \left|\mathcal{A}_{\nu_{\alpha}\to\sum_{i}\nu_{i}}\right|^{2} &= \sum_{i}\left|\sum_{\beta}U_{\beta i}^{*}\left\langle\nu_{\beta}|S_{\mathrm{int}}\left(\sum_{\gamma}|\nu_{\gamma}\rangle\langle\nu_{\gamma}|\right)S_{\mathrm{prop}}|\nu_{\alpha}\rangle\right|^{2} \\ &= \sum_{\beta,\gamma,\delta,\lambda}\overbrace{\sum_{i}U_{\beta i}^{*}U_{\lambda i}}^{\delta_{\beta\lambda}}\left\langle\nu_{\beta}|S_{\mathrm{int}}|\nu_{\gamma}\rangle\langle\nu_{\gamma}|S_{\mathrm{prop}}\left(\sum_{\rho}|\nu_{\rho}\rangle\langle\nu_{\rho}|\right)|\nu_{\alpha}\rangle\langle\nu_{\alpha}|\left(\sum_{\sigma}|\nu_{\sigma}\rangle\langle\nu_{\sigma}|\right)S_{\mathrm{prop}}^{\dagger}|\nu_{\delta}\rangle \\ &\times\left\langle\nu_{\delta}|S_{\mathrm{int}}^{\dagger}|\nu_{\lambda}\right\rangle \\ &= \sum_{\gamma,\delta,\rho,\sigma}\underbrace{(S_{\mathrm{prop}})_{\gamma\rho}\pi_{\rho\sigma}^{(\alpha)}(S_{\mathrm{prop}})_{\delta\sigma}^{*}}_{\equiv\rho_{\gamma\delta}^{(\alpha)}}\underbrace{\sum_{\beta}(S_{\mathrm{int}})_{\beta\delta}^{*}(S_{\mathrm{int}})_{\beta\gamma}}_{\mathcal{M}^{*}(\nu_{\delta}\to f)\mathcal{M}(\nu_{\gamma}\to f)} \\ &\text{Substitution density matrix} \end{split}$$

RATE — FIRST PRINCIPLES

- Neutrinos are produced in the core of the Sun as **pure** ν_e . Propagate through the solar matter to the surface of the Sun and **undergo matter oscillations**; free stream in vacuum to earth
- Scatter with detector into any neutrino final state. Have to sum over asymptotic final states

OLAR NEUTRINO PROPAGATION

Need neutrino **density matrix** $\rho^{(e)} = S \pi^{(e)} S^{\dagger}$

Need to solve three-flavour Schroedinger equation

where

 $i\frac{d}{dt}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix} = \begin{vmatrix}\frac{1}{2E_{\nu}}U\begin{pmatrix}0 & 0 & 0\\ 0 & \Delta m_{21}^{2} & 0\\ 0 & 0 & \Delta m_{21}^{2}\end{vmatrix} U^{\dagger} + \begin{pmatrix}\nu_{cc} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{vmatrix} \begin{vmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix}$

 $\Delta m_{ij}^2 = m_i^2 - m_j^2$

 $V_{cc} = \sqrt{2} G_F N_e(x)$

We define the PMNS matrix as •

$$U = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}}_{\equiv R_{23}} \underbrace{\begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix}}_{\equiv R_{13}} \underbrace{\begin{pmatrix} c_{12} & s_{12} e^{i\,\delta_{\rm CP}} & 0 \\ -s_{12} e^{-i\,\delta_{\rm CP}} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\equiv U_{12}}$$

11

SOLAR NEUTRINO PROPAGATION

- After orthogonal rotation of neutrino basis $O = R_{23}R_{13}$, can describe **neutrino propagation in the Sun** in terms of an **effective two-state mixing**.
- Assuming adiabaticity ($|\Delta E_{12}^m| \gg 2 |\dot{\theta}_{12}^m|$) within the Sun, get **full propagation S-matrix**

$$S \approx \underbrace{OU_{12}}_{U_{\rm PMNS}} \begin{pmatrix} \exp\left[-i \int_0^L \begin{pmatrix} E_1^m & 0\\ 0 & E_2^m \end{pmatrix} dx \right] & 0\\ 0 & \exp\left[-i \frac{\Delta m_{31}^2}{2 E_{\nu}}L\right] \end{pmatrix} \underbrace{U_{12}^m (x_0)^{\dagger} O^{\dagger}}_{U_{\rm PMNS}^m (x_0)^{\dagger}}$$

where defining $\Delta E_{21} \equiv \Delta m_{21}^2/(2E_{\nu})$ we find the **matter eigenvalues and mixing angle**

$$E_1^m = \frac{1}{2} \left[V_{cc} c_{13}^2 - \Delta E_{21} \sqrt{p^2 + q^2} \right], \quad E_2^m = \frac{1}{2} \left[V_{cc} c_{13}^2 + \Delta E_{21} \sqrt{p^2 + q^2} \right]$$
$$\sin 2\theta_{12}^m = \frac{p}{\sqrt{p^2 + q^2}}, \qquad \cos 2\theta_{12}^m = \frac{q}{\sqrt{p^2 + q^2}}$$

$$p = \sin 2\theta_{12} + 2\xi \varepsilon_N^{\eta,\varphi} \frac{V_{cc}}{\Delta E_{21}}, \qquad q = \cos 2\theta_{12} + (2\xi \varepsilon_D^{\eta,\varphi} - c_{13}^2) \frac{V_{cc}}{\Delta E_{21}}$$

12 with $\boldsymbol{\xi} \equiv \xi^e + \xi^p + Y_n(x)\xi^n$

SOLAR NEUTRINO SCATTERING

1. The generalised coherent elastic neutrino nucleus scattering (CEvNS) cross section is

$$\left(\frac{d\zeta_{\nu N}}{dE_R}\right)_{\alpha\beta} = \frac{G_F^2 M_N}{\pi} \left(1 - \frac{M_N E_R}{2E_\nu^2}\right) \left[\frac{1}{4} Q_{\nu N}^2 \delta_{\alpha\beta} - Q_{\nu N} G_{\alpha\beta}^{\rm NSI} + \sum_{\gamma} G_{\alpha\gamma}^{\rm NSI} G_{\gamma\beta}^{\rm NSI}\right] F^2(E_R)$$

with $Q_{\nu N} = N - (1 - 4\sin^2\theta_W) Z$ and $G_{\alpha\beta}^{\rm NSI} = (\xi^p Z + \xi^n N) \varepsilon_{\alpha\beta}^{\eta,\varphi}$

SOLAR NEUTRINO SCATTERING

1. The generalised coherent elastic neutrino nucleus scattering (CE ν NS) cross section is

$$\left(\frac{d\zeta_{\nu N}}{dE_R}\right)_{\alpha\beta} = \frac{G_F^2 M_N}{\pi} \left(1 - \frac{M_N E_R}{2E_\nu^2}\right) \left[\frac{1}{4} Q_{\nu N}^2 \delta_{\alpha\beta} - Q_{\nu N} G_{\alpha\beta}^{\rm NSI} + \sum_{\gamma} G_{\alpha\gamma}^{\rm NSI} G_{\gamma\beta}^{\rm NSI}\right] F^2(E_R)$$

with $Q_{\nu N} = N - (1 - 4\sin^2\theta_W) Z$ and $G_{\alpha\beta}^{\rm NSI} = (\xi^p Z + \xi^n N) \varepsilon_{\alpha\beta}^{\eta,\varphi}$

2. The generalised elastic neutrino-electron scattering (E ν ES) cross section:

$$\left(\frac{d\zeta_{\nu e}}{dE_R}\right)_{\alpha\beta} = \frac{2\,G_F^2\,m_e}{\pi} \sum_{\gamma} \left\{ G_{\alpha\gamma}^L G_{\gamma\beta}^L + G_{\alpha\gamma}^R G_{\gamma\beta}^R \left(1 - \frac{E_R}{E_\nu}\right)^2 - \left(G_{\alpha\gamma}^L G_{\gamma\beta}^R + G_{\alpha\gamma}^R G_{\gamma\beta}^L\right) \frac{m_e\,E_R}{2E_\nu^2} \right\}$$

with
$$g_P^f = T_f^3 - \sin^2 \theta_w Q_f^{\text{EM}}$$
 and (vector NSI only):
 $G_{\alpha\beta}^L = (\delta_{e\alpha} + g_L^e) \,\delta_{\alpha\beta} + \frac{1}{2} \,\varepsilon_{\alpha\beta}^{\eta,\varphi} \,\xi^e$, $G_{\alpha\beta}^R = g_R^e \,\delta_{\alpha\beta} + \frac{1}{2}$

13

NSI @ DIRECT DETECTION

SOLAR NEUTRINOS @ DD

- Including DD experiments has many advantages for NSI searches
- Sensitive to both nuclear and electron scattering
- Solar neutrino flux has large admixtures of ν_{τ} at high energies
- XENONnT published **first observation of 300 EvES events** (8% of BG)
- With future improvements, solar ν will dominate ER background for DM searches

Experiment	ε (t·yr)	$E_{th}^{\rm NR}$ (keV _{nr})	E_{th}^{ER} (keV _{ee})
LZ	15.34	3	1.46
XENONnT	20	3	1.51
DARWIN	200	3	1.51

15

NUCLEAR SCATTERING

NUCLEAR SCATTERING

- Consider one NSI coupling at a time and compare sensitivity to global fit limits from [Coloma et al., JHEP 02 (2020) 023]
- In the future DD can improve one existing constraints
- Target material dependent blind spot where neutron and proton NSI cancel

$$\eta = \tan^{-1} \left(-\frac{Z}{N} \cos \varphi \right)$$

• Blind spot due to **SM-NSI interference** terms in $CE\nu$ NS cross section

Diagonal:

$$\varepsilon_{\alpha\alpha}^{\eta,\varphi} = \frac{Q_{\nu N}}{\xi^p Z + \xi^n N}$$

[Amaral, Cheek, Cerdeño, PF; 2302.12846]

NUCLEAR SCATTERING

- Consider one NSI coupling at a time and compare sensitivity to global fit limits from [Coloma et al., JHEP 02 (2020) 023]
- In the future DD can improve one existing constraints
- Target material dependent blind spot where cross section vanishes

$$\eta = \tan^{-1} \left(-\frac{Z}{N} \cos \varphi \right)$$

• Blind spot due to **SM-NSI interference** terms in $CE\nu NS$ cross section

Diagonal:
$$\varepsilon_{\alpha\alpha}^{\eta,\varphi} = \frac{Q_{\nu N}}{\xi^p Z + \xi^n N}$$

Off-diagonal:

$$\int_{E_{\nu}^{\min}} \frac{d\phi_{\nu_e}}{dE_{\nu}} \left(1 - \frac{m_N E_R}{2E_{\nu}^2}\right) \left[(\xi^p Z + \xi^n N)(\rho_{\alpha\alpha} + \rho_{\beta\beta})\varepsilon_{\alpha\beta}^{\eta,\varphi} - 2Q_{\nu N}\rho_{\alpha} \right]$$

ADDING ELECTRON SCATTERING

- We show the sensitivities in the $\{\xi^p, \xi^e\}$ plane
- The **current limits** on the NSI for pure electron couplings is illustrated by the **green bar at** $\varphi = \pm \pi/2$
- ER sensitivities drop off towards $\varphi = 0$ (pure proton), whereas NR sensitivities become maximal
- Direct detection experiments have **excellent sensitivity to ER**!
- Future DARWIN can potentially improve by an order of magnitude over current electron NSI bounds
- Direct detection experiments become an important player for neutrino physics!

SNuDD

"Solar Neutrinos for Direct Detection"

 Implemented the full chain of propagation, scattering plus detector effects for NSI in solar ν in open-source Python package: <u>https://github.com/SNuDD/SNuDD.git</u>

PotEs Lindate DEADME	md commented notabaska	No description, website, or	topics
Patro Update README.	ma - commentea notebooks	9245219 5 days ago O to commits provided.	
build	First commit. Ready to test	last week	
data	second commit a new notebook show ho	w to perform scans last week ☆ 2 stars	
notebooks	Commented density nb	5 days ago 📀 2 watching	② 2 watching♀ 0 forks
snudd.egg-info	Commented density nb	5 days ago 😵 0 forks	
snudd	Documented scan nb + include bug fix	5 days ago	
.DS_Store	Documentation of rate scripts	5 days ago	Releases No releases published Create a new release
LICENSE	Initial commit	3 months ago	
README.md	Update README.md - commented noteb	coks 5 days ago Create a new release	
requirements.txt	First commit. Ready to test	last week	
setup.py	First commit. Ready to test	last week Packages	Packages
README.md		Publish your first package	
SNuDD		Contributors 4	
arXiv 2302.12846 SNuDD (Solar Neutrino neutrino scattering rate interactions (NSI). SNu experiments XENON, LI	s for Direct Detection) is a python package for ac s at direct detection (DD) experiments in the pres DD was developed and utilised for the NSI sensitiv JX-ZEPLIN and DARWIN in <i>A direct detection view</i>	curate computations of solar ence of non-standard neutrino vity estimates of the xenon-based DD v of the neutrino NSI landscape.	r al Cheek
When using SNuDD , pl	ease cite:		
D. W. P. Amaral, D. Cerc	Languages		
A direct detection view	of the neutrino NSI landscape,	Jupyter Notebook 94.9%	
arxiv.2302.12646 [nep		Python 5 1%	

CONCLUSIONS

- In the next years direct detection experiments will see large numbers of solar neutrinos
 ⇒ We get neutrino experiments for free!
- Direct detection sensitive to full NSI parameter space spanned by $\{\varepsilon^e, \varepsilon^p, \varepsilon^n\}$, both in propagation and scattering
- SNuDD (<u>https://github.com/SNuDD/SNuDD.git</u>) is the first tool on the market to make consistent rate prediction of solar neutrinos at DD
- In particular, future sensitivity to electronic recoils will provide complementary information to spallation source and oscillation experiments!

- Direct detection experiments will become an important player for neutrino physics!
- GOAL: Work towards global fit for NSIs including DD experiments!

BACKUP

NEUTRINO PROPAGATION

- In solar neutrino physics it is convenient to switch basis to $\hat{\nu} = O^{\dagger} \nu$ with $O = R_{23} R_{13}$
- The evolution of $\hat{m{
 u}}$ is then governed by the Hamiltonian

$$\hat{H} = \frac{1}{2E_{\nu}} \begin{pmatrix} c_{13}^2 A_{cc} + s_{12}^2 \Delta m_{21}^2 & s_{12} c_{12} e^{i\delta} \Delta m_{21}^2 & s_{13} c_{13} A_{cc} \\ s_{12} c_{12} e^{-i\delta} \Delta m_{21}^2 & c_{12}^2 \Delta m_{21}^2 & 0 \\ s_{13} c_{13} A_{cc} & 0 & s_{13}^2 A_{cc} + \Delta m_{31}^2 \end{pmatrix}$$

- If $\Delta m_{31}^2 \gg \Delta m_{21}^2 \sim A_{cc}$ the third eigenvalue Δm_{31}^2 will dominate the matrix and the third neutrino state decouples from the lighter ones \Rightarrow reduces to **two-state problem**
- Solar best fit values:

$$\Delta m_{31}^2 = \left(2.515^{+0.028}_{-0.028}\right) \times 10^{-3} \text{eV}^2$$
$$\Delta m_{21}^2 = \left(7.42^{+0.21}_{-0.20}\right) \times 10^{-5} \text{eV}^2$$
$$A_{cc} \sim 10^{-4} \text{eV}^2 \ @ E_{\nu} \sim 10 \text{ MeV}$$

[Esteban et al., JHEP **09** (2020) 178 & NuFIT 5.1 [http://www.nu-fit.org]]

[Bahcall et al., Astrophys. J. Suppl. **165** (2006) 400]

CENNS-10 RESULTS

- We repeat the analysis done for **pure upquark** NSIs ($\eta = \tan^{-1}(1/2)$, $\varphi = 0$)
- Two minima, since CENNS-10 LAr has observed slight excess w.r.t. SM
- Compare the results for **pure proton** ($\varphi = 0$) to **pure electron** ($\varphi = \pi/2$) in the charged fermion direction
- Constraints weaken in electron direction as the contribution to proton is minimal, also the location of the minima shift to higher $\varepsilon_{\alpha\beta}$

[Amaral, Cheek, Cerdeño, PF; 2302.12846] 10 6 $\Delta \chi^2$ $\Delta \chi^2$ 20 0 $^{-1}$ 1 $^{-1}$ 1 $\varepsilon_{ee}^{\eta,\varphi}$ $\varepsilon_{e\mu}^{\eta,\varphi}$ 10 $\Delta \chi^2$ $\Delta \chi^2$ 20 _1 $^{-1}$ 0 1 $arepsilon_{\mu\mu}^{\eta,\varphi}$ $\varepsilon_{c\tau}^{\eta,\varphi}$ = () $\Delta \chi^2$ $\varphi = \pi/2$ = 2.73-11 $\varepsilon_{\mu\tau}^{\eta,\varphi}$

CENNS-10 RESULTS

- We repeat the analysis done for **pure upquark** NSIs ($\eta = \tan^{-1}(1/2)$, $\varphi = 0$)
- Two minima, since **CENNS-10 LAr has** observed slight excess w.r.t. SM
- Compare the results for **pure proton** ($\varphi = 0$) to **pure electron** ($\varphi = \pi/2$) in the charged fermion direction
- Constraints weaken in electron direction as the contribution to proton is minimal, also the location of the minima shift to higher $\varepsilon_{\alpha\beta}$
- Since CEvNS is only sensitive to $\varepsilon^p_{\alpha\beta}$ in charged direction, the limits are expected to scale like $1/\cos\varphi$ due to parameterisation (for $\eta = 0$)

$$\xi^p = \sqrt{5} \, \cos \eta \, \cos \varphi$$

[Amaral, Cheek, Cerdeño, PF; 2302.12846]

BOREXINO

• Repeat simplistic Borexino-only analysis, only allowing for theoretical uncertainties:

 $\varepsilon_{ee}^{V} \in [-0.12, 0.08]$

[Khan et al., *Phys. Rev. D* 101, 055047 (2020)] [Coloma et al., *JHEP* 07 (2022) 138]

- At φ = 0 (pure proton) NSI only impact the neutrino propagation; cross section unaltered ⇒ NSI least constrained
- At φ = π/2 (pure electron) maximal effect both in propagation and cross section
 ⇒ most stringent bounds
- Off-diagonal more tightly constrained
 due to appearance of NSI elements twice in
 trace

$$\frac{dR}{dE_R} \propto \operatorname{Tr}\left[\boldsymbol{\rho} \, \frac{d\boldsymbol{\zeta}}{dE_R} \right]$$

[Amaral, Cheek, Cerdeño, PF; <u>2302.12846</u>]

BOREXINO

• For all off-diagonal NSI elements ($\varepsilon_{\alpha\beta}^{\eta,\varphi}, \alpha \neq \beta$), trace contains term proportional to $\rho_{\alpha\beta}$

$$\frac{dR}{dE_R} \propto A(E_R) \ \rho_{ee} + B(E_R) \ \varepsilon_{\alpha\beta}^{\eta,\varphi} \ \rho_{\alpha\beta} + C(E_R) \ \left(\xi^e \ \varepsilon_{\alpha\beta}^{\eta,\varphi}\right)^2 \left(\rho_{\alpha\alpha} + \rho_{\beta\beta}\right)$$

Without trace, this interference term would be **entirely missed!**

• Cross section symmetric under $\{\varepsilon_{\alpha\beta}^{\eta,\varphi},\varphi\} \rightarrow \{-\varepsilon_{\alpha\beta}^{\eta,\varphi},-\varphi\}$

<u>BUT:</u>

oscillation effects break symmetry via presence of full density matrix!

GLOBAL FITS - CURRENT

- Most robust limits are determined from global fits including both oscillation and coherent type experiments
- For complexity these have been only derived in $\{\xi^p, \xi^n\}$ plane characterised by angle η
- CEVNS cross section has a blind direction for $\eta = \tan^{-1}(-Z/N)$
- First COHERENT run with Csl target with average $Z/N \approx 1.407 \Rightarrow \text{degradation} @ \eta \approx -35.4^{\circ}$

[Coloma et al., JHEP 02 (2020) 023]

		Total Rate	Data Release t+E	Our Fit t+E Chicago	Our Fit t+E Duke
$= \tan^{-1}(1/2)$	ε^{u}_{ee}	[-0.012, +0.621]	[+0.043, +0.384]	[-0.032, +0.533]	[-0.004, +0.496]
	$\varepsilon^{u}_{\mu\mu}$	[-0.115, +0.405]	[-0.050, +0.062]	$[-0.094, +0.071] \oplus [+0.302, +0.429]$	$[-0.045, +0.108] \oplus [+0.290, +0.399]$
	$\varepsilon^u_{\tau\tau}$	[-0.116, +0.406]	[-0.050, +0.065]	$[-0.095, +0.125] \oplus [+0.302, +0.428]$	$[-0.045, +0.141] \oplus [+0.290, +0.399]$
	$\varepsilon^{u}_{e\mu}$	$\left[-0.059, +0.033 ight]$	[-0.055, +0.027]	[-0.060, +0.036]	[-0.060, +0.034]
	$\varepsilon^u_{e\tau}$	$\left[-0.250, +0.110 ight]$	[-0.141, +0.090]	[-0.243, +0.118]	[-0.222, +0.113]
	$\varepsilon^{u}_{\mu\tau}$	$\left[-0.012, +0.008 ight]$	[-0.006, +0.006]	[-0.013, +0.009]	[-0.012, +0.009]
$=\tan^{-1}(2)$	ε^d_{ee}	[-0.015, +0.566]	[+0.036, +0.354]	[-0.030, +0.468]	[-0.006, +0.434]
	$\varepsilon^d_{\mu\mu}$	$\left[-0.104, +0.363 ight]$	[-0.046, +0.057]	$[-0.083, +0.077] \oplus [+0.278, +0.384]$	$[-0.037, +0.099] \oplus [+0.267, +0.356]$
	$\varepsilon^d_{\tau\tau}$	$\left[-0.104, +0.363 ight]$	[-0.046, +0.059]	$[-0.083, +0.083] \oplus [+0.279, +0.383]$	$[-0.038, +0.104] \oplus [+0.268, +0.354]$
	$\varepsilon^d_{e\mu}$	$\left[-0.058, +0.032 ight]$	[-0.052, +0.024]	[-0.059, +0.034]	[-0.058, +0.034]
	$\varepsilon^d_{e\tau}$	$\left[-0.198, +0.103 ight]$	[-0.106, +0.082]	[-0.196, +0.107]	[-0.181, +0.101]
	$\varepsilon^d_{\mu\tau}$	[-0.008, +0.008]	[-0.005, +0.005]	[-0.008, +0.008]	[-0.007, +0.008]
$\eta = 0$	ε_{ee}^p	[-0.035, +2.056]	[+0.142, +1.239]	[-0.095, +1.812]	[-0.024, +1.723]
	$\varepsilon^p_{\mu\mu}$	$\left[-0.379, +1.402 ight]$	[-0.166, +0.204]	$[-0.312, +0.138] \oplus [+1.036, +1.456]$	$[-0.166, +0.337] \oplus [+0.952, +1.374]$
	$\varepsilon^p_{\tau\tau}$	[-0.379, +1.409]	[-0.168, +0.257]	$[-0.313, +0.478] \oplus [+1.038, +1.453]$	$[-0.167, +0.582] \oplus [+0.950, +1.382]$
	$\varepsilon^p_{e\mu}$	[-0.179, +0.112]	[-0.174, +0.086]	[-0.179, +0.120]	[-0.187, +0.131]
	$\varepsilon^p_{e\tau}$	$\left[-0.877, +0.340\right]$	[-0.503, +0.295]	[-0.841, +0.355]	[-0.817, +0.386]
	$\varepsilon^p_{\mu\tau}$	[-0.041, +0.025]	[-0.020, +0.019]	[-0.044, +0.026]	[-0.048, +0.030]

 $\eta = ta$

 $\eta = 1$