Prospects for DM-induced gamma-rays from galaxy clusters

27/10/2023

Judit Pérez-Romero

Work as part of the CTA Consortium and the Fermi-LAT Collaboration

judit.perez@ung.si

20th MultiDark Workshop, Gandía

Center for Astrophysics and Cosmology

DARK MATTER IN CDM COSMOLOGY

GAMMA-RAY DM SEARCHES

- Optimal conditions for indirect DM searches:
 - High DM density ($\phi_{\rm DM} \propto \rho_{\rm DM}^2$ for annihilation, $\phi_{\rm DM} \propto \rho_{\rm DM}$ for decay)
 - Massive nearby objects ($\phi_{\rm DM} \propto M/d_{Earth}^2$)
 - Low astrophysical background

- Largest gravitationally bound structures formed by gravitational collapse
- Masses of order ~10¹⁴-10¹⁵ M_{\odot}
- Components:
 - Baryonic Matter
 - Dark Matter (~80%)
- Several in local Universe

- Largest gravitationally bound structures formed by gravitational collapse
- Masses of order ~10¹⁴-10¹⁵ M $_{\odot}$
- Components:
 - Baryonic Matter
 - Dark Matter (~80%) ← High DM density
- Several in local Universe
 Closeby

Very massive objects Galaxy cluster

Dark matter density + shock finder

IllustrisTNG simulation - TNG100-1, https://www.tng-project.org/

Very massive objects

- Largest gravitationally bound structures formed by gravitational collapse
- Masses of order ~10¹⁴-10¹⁵ M $_{\odot}$
- Components:
 - Baryonic Matter
 - Dark Matter (~80%) ← High DM density
- Several in local Universe
 Closeby

- **Decay** Best possible targets to consider $\longrightarrow \phi_{\rm DM} \propto \rho_{\rm DM}$
- Annihilation Competitive to other prime targets

Very massive objects

- Largest gravitationally bound structures formed by gravitational collapse
- Masses of order ~ 10^{14} - 10^{15} M_{\odot}
- Components:
 - **Baryonic Matter**
 - High DM density Dark Matter (~80%) *
- Several in local Universe Closeby

- Best possible targets to consider $\longrightarrow \phi_{DM} \propto \rho_{DM}$ Decay
- Annihilation
- Competitive to other prime targets

Expected γ -ray emission from astrophysical processes Caveat

ASTROPHYSICAL GAMMA-RAY EMISSION IN GALAXY CLUSTERS

Chandra: NASA/CXC/SAO/Bulbul+14; XMM: ESA

- Components:
 - Dark Matter
 - Baryonic Matter
- Galaxies (~ 3% 5%)
 - Intra Cluster Medium (~ 15% 17%)
- Even supposedly virialized objects, a lot of activity
- Merger events Acceleration Feedback from galaxies and AGNs mechanisms Magnetic fields Turbulence Cosmic-rays (CRs) NGC 1275 in Perseus Galaxy Cluster Leptons Diffuse synchrotron emission < Ackermann+15 No clear detection but Hadrons [Fermi-LAT Collab.], γ -rays some hints claimed... Xi+18, Adam+21

CTA has superb capabilities for DM gamma-ray searches

PERSEUS GALAXY CLUSTER WITH CTA: A KEY SCIENCE PROJECT (KSP)

- Among local clusters, Perseus is the brightest in X-ray sky
- Cool-cored, relaxed cluster

Object	l [deg]	$b [\deg]$	$d_L [Mpc]$
Perseus	150.57	-13.26	75.01

 Hosts two Active Galactic Nuclei (AGN), both variable

Object	l [deg]	b [deg]
NGC1275	150.58	-13.26
IC310	150.18	-13.74

NGC 1275 aligned with X-rays centre

Optimal conditions for observation from the northern array

We use the lastest version of the CTA science tools with the latest Instrument Response Functions (IRFs) to perform the analysis

Prospects for gamma-ray observations of the Perseus galaxy cluster with the Cherenkov Telescope Array The CTA Consortium and P. de la Torre Luque (corresponding author JPR) Submmited to JCAP, [arXiv:2309.03712]

DARK MATTER MODELLING

PERSEUS DM MODELLING (I): MAIN HALO

Annihilation

$$J(l.o.s, \Delta\Omega, z) = \int_{\Delta\Omega} \int_{l.o.s} \underbrace{\rho_{DM}^2(r) dr}_{DM \text{ density profile}}$$

$$D(l.o.s, \Delta\Omega, z) = \int_{\Delta\Omega} \int_{l.o.s} \underbrace{\rho_{DM}(r) dr}_{Decay}$$

State-of-the-art parametrization of the DM in galaxy clusters:

$$\langle \rho_{\rm tot} \rangle(r) = \rho_{\rm sm}(r) + \langle \rho_{\rm subs} \rangle(r)$$

"Cuspy"-like profile

$$\rho(r) = \frac{\rho_0}{\left(\frac{r}{r_{\rm s}}\right) \left(1 + \frac{r}{r_{\rm s}}\right)^2}$$

- Navarro Frenk White (NFW) Navarro+96, Navarro+97
- To build the DM profile, we assume a concentration-mass relation $(c_{200} M_{200})$:

EXPECTED PERSEUS DM SIGNAL

• Applying modelling formalism we obtain:

Skymap	of the	differential .	I/D-factors
--------	--------	----------------	-------------

CTA DM ANALYSIS ROADMAP

2.2 CTA prospects from Perseus

CTA ANALYSIS CONFIGURATION: TEMPLATE FITTING

• Includes all expected γ -ray sources: DM + CRs + AGNs + Background (BKG) IRFs

Historically used in *Fermi*-LAT analysis and in a recent CTA analysis (*Acharyya+20* [*CTA Cons*.])

pipeline

CTA ANALYSIS: DM PROSPECTS FOR CONSTRAINTS

Annihilation 95% C.L Upper Limits

CTA ANALYSIS: DM PROSPECTS FOR CONSTRAINTS

Decay 95% C.L. Lower Limits

BEYOND THE ORIGINAL KSP: MORE CLUSTERS

- Natural extension of the KSP: why just focus on Perseus for DM searches?
- Similar procedure than KSP applied to few other galaxy clusters
- Based on previous Fermi-LAT analysis: Constraining the dark matter contribution of gamma-rays in cluster of galaxies using Fermi-LAT data M. di Mauro, JPR, M. A. Sánchez-Conde, N. Fornengo

Phys. Rev. D 107, 083030, [arXiv:2303.16930]

- Selection criteria:
 - Well-known *M*₂₀₀ from X-rays measurements [*Schellenberger* & *Reiprich* 17]
 - Local clusters z < 0.1
 - Mask of |b| < 20 deg to avoid galactic diffuse emission
 - Separation of at least 2 deg to account for cluster extension

Sample of 49 local galaxy clusters

Reiprich & Böhringer 02, Ackermann+10 [Fermi-LAT Coll.], Sánchez-Conde+11, Ackermann+14 [Fermi-LAT Coll.]

BEYOND THE ORIGINAL KSP: MORE CLUSTERS

Annihilation

- Not compatible with GC excess
- Ruled out by dSphs

Decay

- Ruled out by Isotropic γ–ray Background (IGRB) and GC Blanco&Hooper18, Ando&Ishiwata15, Ackermann+12 [Fermi Collab.]
- Build TS distribution using 3100 random blank sky directions

GAMMA-RAYS FROM GALAXY CLUSTERS

- Galaxy clusters are excellent target for indirect DM searches (massive, closeby)
- Still no clear gamma-ray signal from clusters detected
- CTA is the future for VHE gamma-ray astronomy, with superb capabilities for WIMP searches
 - Perseus cluster will have 300h of observation time
 - State-of-the-art DM modelling for Perseus including halo substructure
 - Complete and comprehensive study of the different expected emissions: DM+CR+AGNs
 - Fit to $b\overline{b} \& \tau^+\tau^-$, annihilation & decay. In the absence of a DM signal:
 - Annihilation:
 - best 95% C.L. upper limits for $\tau^+\tau^-$, 2-4 orders of magnitude above $\langle \sigma v \rangle_{thermal}$;
 - different prescriptions for subhalos (MIN-MED-MAX) change our results a factor ~O(10)
 - Decay:
 - best 95% C.L. lower limits for $\tau^+\tau^-$, with $\tau_{\chi}^{\sim}10^{27}$ s, most competitive for m_{χ}^{\sim} TeV
- Recent analysis with *Fermi*-LAT provided very promising results for the observation of clusters with CTA, it hints to being closer to a signal than ever!

THANKS FOR YOUR ATTENTION

BACK UP MATERIAL

DARK MATTER (DM) EVIDENCE

Galactic scales

Galaxy cluster scales

Cosmological scales

- Rotational curves
- Velocity dispersion

- Peculiar velocity flows
- Mass tracers (X-rays, Sunyaev–Zeldovich, strong&weak lensing)
- Dynamical systems

- Cosmic Microwave Background (CMB) anisotropies
- Large Scale Structure (LSS)

HALO AND SUBHALO PROPERTIES

Main halos

- Fundamental non-linear units of cosmic structures
- Inner density profile

Subhalos

- The later halos that do not get to merge with the rest
- Fall in the potential wells of main halos

PREVIOUS γ -RAY DM SEARCHES IN GALAXY CLUSTERS

Fermi-LAT - Annihilation

PREVIOUS γ -RAY DM SEARCHES IN GALAXY CLUSTERS

OBTENTION OF DM MODEL PARAMETERS

• State-of-the-art parametrization of the DM in galaxy clusters: $\langle \rho_{tot} \rangle(r) = \rho_{sm}(r) + \langle \rho_{subs} \rangle(r)$

1 Assume a DM profile
$$ho(r)=rac{
ho_0}{(rac{r}{r_s})[1+rac{r}{r_s}]^2}$$
 NFW

 $F(c_{200}) = \frac{2}{c_{200}^2} \left(\ln \left(1 + c_{200} \right) - \frac{c_{200}}{1 + c_{200}} \right)$

2 Assume a concentration-mass relation $(c_{200} - M_{200})$: Sánchez-Conde&Prada14 $c_{200}(M_{200}, z = 0) = \sum_{i=0}^{5} c_i \times \left[\ln \left(\frac{M_{200}}{h^{-1}M_{\odot}} \right) \right]^i$

3 Assume spherical collapse from an overdensity Δ = 200 over the critical density $\Delta_{200} = \frac{3M_{200}}{4\pi R_{200} \rho_{crit}}$

4 Compute remaining parameters

Scale densityScale radiusAngular extension
$$\rho_0 := \frac{2\Delta_{200}\rho_{crit}c_{200}}{3F(c_{200})}$$
 $c_{200} = \frac{R_{200}}{r_s}$ $\theta_{200} = \tan\left(\frac{R_{200}}{d_L}\right)$ with

PERSEUS DIFFERENTIAL ANNIHILATION FLUX PROFILE

General parameters

Hitomi Coll.18	z	0.017284	l, b	$150.58 \deg, -13.26 \deg$
Urban+14	M_{200}	$7.52 \times 10^{14} \mathrm{M}_{\odot}$	R_{200}	$1865.0 \ \mathrm{kpc}$
Sánchez-Conde &	c_{200}	5.03	θ_{200}	$1.42 \deg$
Prada 14	r_s	$370.82 \mathrm{~kpc}$	$ heta_s$	$0.28 \deg$
Flat ACDM	d_L	$75.01 { m Mpc}$	$ ho_s$	$299581~{ m M}_{\odot}/{ m kpc}^3$

Annihilation	$\log_{10} J \; [\text{GeV}^2 \text{cm}^{-5}]$
MIN	17.42
MED	18.43
MAX	19.20
Decay	$\log_{10} D \ [\text{GeV cm}^{-2}]$
	19.20

ullet

35

CHARACTERISTICS OF THE SIMULATIONS DM Annihilation (thermal cross-section) CR baseline model DM Decay (τ_{χ} = 10²⁷s) EBL ÷ Input models: NGC1275 m_{χ} = 10 TeV Domínguez+11 & bБ IC310 0.05 - 0.12 TeV 0.12 - 0.30 TeV -14.5 -14.5 100 -14.0 -14.0-GLAT [deg] -13.5 --13.0 -— DM-Decay DM-MED -13.5 10^{-11} **CR-Baseline** - 80 - NGC1275 -13.0 ---- IC310 -12.5 -12.5 $E^2 \times \frac{d\phi_r}{dE} [\text{TeV cm}^{-2} \text{s}^{-1}]$ 10^{-12} -12.0 -12.0 --60 Counts 152.0 151.5 151.0 150.5 150.0 149.5 152.0 151.5 151.0 150.5 150.0 149.5 0.30 - 0.71 TeV 0.71 - 1.73 TeV -14.5 -14.5 -40 -14.0 -14.0 GLAT [deg] -13.5 -13.5 - 10^{-17} -20 -13.0--12.5 -12.5 --12.0 -12.0 10^{-19} 0.1 10 100 152.0 151.5 151.0 150.5 150.0 149.5 152.0 151.5 151.0 150.5 150.0 149.5 GLON [deg] GLON [deg] Energy [TeV]

CTA ANALYSIS CONFIGURATION: TEMPLATE FITTING

• Use likelihood ratio test to fit the models to the simulated data:

$$\ln \mathcal{L}(\vec{\theta}|D) = \sum_{i} \tilde{M}_{i}(\vec{\theta}) - d_{i} \ln(\tilde{M}_{i}(\vec{\theta}))$$

Poissonian likelihood for each parameter

$$TS = 2 \log \left[\frac{\mathcal{L}\left(A_{\chi}, \hat{\hat{\nu}}\right)}{\mathcal{L}_{\text{null}}\left(A_{\chi} = 0, \hat{\nu}\right)} \right]$$

TS < 25 → No signal

N _{obs}	100
T_{obs} [h]	300
IRFs	North_z20_50h, prod5
Energy range [TeV]	0.03 - 100

DMtools

CTA ANALYSIS ELEMENTS

- <u>https://docs.gammapy.org/0.19/stats/fit_statistics.html</u>
- Likelihood ratio test:

$$TS = 2 \log \left[\frac{\mathcal{L}\left(A_{\chi}, \hat{\nu}\right)}{\mathcal{L}_{\text{null}}\left(A_{\chi} = 0, \hat{\nu}\right)} \right]$$

• $TS < 25$ — No signal

Template fitting: Poisson likelihood for each component, *Cash* statistics (*Cash 79*) $\ln \mathcal{L}(\vec{\theta}|D) = \sum_{i} \tilde{M}_{i}(\vec{\theta}) - d_{i}\ln(\tilde{M}_{i}(\vec{\theta})) \qquad \vec{\theta} \equiv \left(A_{\chi}, A_{\mathrm{CR}}, A_{\mathrm{PS}}^{(1,2)}, \alpha_{\mathrm{PS}}^{(1,2)}, A_{\mathrm{bkg}}, \alpha_{\mathrm{bkg}}\right)$

• ON-OFF analysis: Poisson likelihood for signal and background, Wstat statistics (XSpec manual) $(N^S + r_{ij}N^{ON}_{ij}) = (N^B)^{N^{OFF}_{ij}}$

$$\mathcal{L}(A_{\chi}|D) = \prod_{ij} \frac{(N_{ij}^{S} + \kappa_{ij}N_{ij}^{B})^{N_{ij}^{CN}}}{N_{ij}^{ON}!} e^{-(N_{ij}^{S} + \kappa_{ij}N_{ij}^{B})} \times \frac{(N_{ij}^{B})^{N_{ij}^{CP}}}{N_{ij}^{OFF}!} e^{-N_{ij}^{B}}$$

Caveat

- Since WStat takes into account background estimation uncertainties and makes no assumption such as a background model, it usually gives larger statistical uncertainties on the fitted parameters. If a background model exists, to properly compare with parameters estimated using the Cash statistics, one should include some systematic uncertainty on the background model.
- Note also that at very low counts, WStat is known to result in biased estimates. This can be an
 issue when studying the high energy behaviour of faint sources. When performing spectral fits
 with WStat, it is recommended to randomize observations and check whether the resulting
 fitted parameters distributions are consistent with the input values.

CTA ANALYSIS ELEMENTS

- Role of the Galactic diffuse emission:
 - Perseus is located "close" to the galactic plane (150.57, -13.26) deg
 - Baseline model for the galactic diffuse emission provided by D. Gaggero & P. de la Torre Luque
 - Integrated up to different radius and compared to CR baseline model
 - Worst case scenario, still factor ~few 10 below the expected CR emission

CTA ANALYSIS APPROACHES: DMTOOLS

 Most DM projects within CTA with same needs in terms of analysis tools and statistical treatment

- Creation & coordination of *DMTools Task Force* within CTA
- Gammapy beta-testing and software development
 - Since v-0.8 to v-1.0 (15 versions)

- Gammapy embedded functions: • DarkMatterAnnihilationSpectralModel
- GitHub repository:
 - Gammapy-DMTools https://github.com/peroju/dmtools_gammapy
- Gammapy coding sprints

Common set of tools

- Unified definitions, methodology
- Avoids repetition of same coding
- Allows easy comparison of results.
- Everyone can potentially contribute

.

- 1. For each realization, consider a list of channels and for each, a list of DM masses
- 2. Perform a likelihood fit to this specific model
- 3. Check $TS(H_{null}) \ge 25$
- 4. Compute $\langle \sigma v \rangle$ upper limits with $TS(H_{best-fit}) = 2.71$

INSIGHT RESULTS: CR ANALYSIS SUMMARY

Profile (arc

Annihilation (MED)

Decay

 $\tau^+ \tau^ \tau^+ \tau^ 10^{27}$ 10^{27} $5 \frac{s}{r} 10^{26}$ $\sum_{\substack{\boldsymbol{\Sigma}\\\boldsymbol{\Sigma}}} 10^{26}$ 10²⁵ 10^{25} Template fitting **ON-OFF - PS** ----This work ---- *Fermi*-LAT (*Ackermann* + 12), GC ON-OFF - Extended+mask -----0.1 0.1 10 100 10 100 m_{χ} [TeV] m_{χ} [TeV]

DM CONSTRAINTS: SCATTER BANDS

One-sided $1\sigma \& 2\sigma$ scatter bands evolution with the number of realizations (annihilation MED model, template fitting)

CTA ANALYSIS: INTERPLAY BETWEEN COMPONENTS

Correlation Matrix

1.00 $\tau^+\tau^-$ annihilation channel and m_{χ} = 1TeV 0.75 Index(BackgroundModel) -Prefactor(BackgroundModel) -0.50 Index(IC310) -- 0.25 Prefactor(IC310) -0.00 Index(NGC1275) --0.25Prefactor(NGC1275) --0.50CR Normalization DM Normalization --0.75Prmatization CR Normalization Prefactor(NGC1275) Prefactor(BackgroundModel) Index(BackgroundModel) Index(NGC1275) Prefactor(IC310) DM Normalization -1.00

- Recovered mean values for CRs, NGC 1275, IC 310 and IRF-BKG within 1σ , independently of the channel or m_{χ}
- May be dependent on the considered DM scenario (annihilation/decay), channel or m_{χ}
- DM flux should not be neglected, as it seems to affect the correlations of CR normalization and NGC 1275

CTA ANALYSIS CONFIGURATION (II): ON-OFF ANALYSIS

- First analysis approach
 - Only includes γ -ray emission from DM and background from IRFs
 - Assumes the DM emission template
 - Circular mask of 0.1 deg in the centre
 - Historically used in Imaging Air Cherenkov Telescopes (IACTs) as MAGIC
- Different set-ups tested, best results for:

Regions	1 On/3 Off
Regions radius [deg]	0.5
Pointing (l, b) [deg]	(150.57, -13.26)
Offset [deg]	1

N _{obs}	100
T_{obs} [h]	300
IRFs	North_z20_50h, prod5
Energy range [TeV]	0.03 - 100

R.A. (deg)

Lowest level of complexity, more constraining results

Direct comparisons

DM CONSTRAINTS: ON-OFF SET-UPS

Limits for Perseus for MED annihilation model (DM template + mask)

ON-OFF RESULTS: DM CONSTRAINTS

Annihilation (MED)

ON-OFF RESULTS: DM CONSTRAINTS

ON-OFF RESULTS : SCATTER BAND

One-sided 1σ band evolution with the number of realizations (annihilation MED model, ON-OFF - Extended+mask)

FERMI LARGE AREA TELESCOPE (LAT)

- Satellite-based telescope launched in June 2008 14 years of γ -ray data
- All sky survey mode, image of whole sky every 3 hours
- The γ -ray produces a pair of electron-positron, tracked and used to determine the energy of the primary γ -ray

FERMI-LAT PERFORMANCE

10y Performance Capabilities

https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm

Diff. flux sensitivity (P8R3_SOURCE_V3, 10 years, TS=25, > 10 photons per bin)

BEYOND THE ORIGINAL KSP: MORE CLUSTERS

- Natural extension of the KSP: why just focus on Perseus for DM searches?
- Will follow similar procedure than KSP, just applied to few other galaxy clusters and DM focused.

Based on previous Fermi-LAT analysis: Constraining the dark matter contribution of gamma-rays in cluster of galaxies using Fermi-LAT data M. di Mauro, JPR, M. A. Sánchez-Conde, N. Fornengo Phys. Rev. D 107, 083030, [arXiv:2303.16930]

- Selection criteria:
 - Well-known M_{200} from X-rays measurements

Masses from Schellenberger&Reiprich17 (X-rays data from Chandra)

Local clusters

- Mask of |b| < 20 deg to avoid galactic diffuse emission
- Separation of at least 2 deg to account for cluster extension

Sample of 49 local galaxy clusters

HIFLUGCS catalogue (*Reiprich&Böhringer02*)

- 50 local clusters
- $f_x \ge 1.7 \cdot 10^{-11} \text{ erg s}^{-1} \text{ cm}^{-2}$
- biased towards cool-cored clusters (*Käfer+19*)
- Clusters used in previous searches:

Ackermann+10 [Fermi-LAT Coll.]

Sánchez-Conde+11

Ackermann+14 [Fermi-LAT Coll.]

CLUSTERS SAMPLE

Cluster	d_L	M_{200}	c_{200}	ρ_s	r_s	R_{200}	θ_{200}	$\log_{10}J_{MIN}$	$\log_{10}J_{MED}$	B_{MED}	$\log_{10}J_{MAX}$	B_{MAX}	$\log_{10} D$	TS
	[Mpc]	$[10^{14}~M_\odot]$		$[M_\odot/kpc^3]$	[kpc]	[kpc]	[deg]	$[GeV^2cm^{-5}]$	$[{\rm GeV^2 cm^{-5}}]$		$[{\rm GeV^2 cm^{-5}}]$		$[\text{GeV cm}^{-2}]$	
A478	387.29	6.08	5.06	303795	345.37	1747.71	0.30	16.05	17.00	9.03	17.77	52.90	17.74	0.00
A399	320.39	4.03	5.14	314222	296.58	1523.16	0.31	16.02	17.00	9.54	17.76	54.90	17.72	5.69
A2065	325.13	4.73	5.10	309802	314.87	1607.11	0.33	16.08	17.05	9.46	17.82	55.00	17.78	4.94
A1736	203.92	1.45	5.40	352863	200.77	1084.70	0.33	15.96	16.98	10.50	17.71	56.70	17.65	4.89
A1644	208.50	1.55	5.38	349910	205.81	1107.83	0.33	15.96	16.98	10.50	17.72	56.70	17.66	1.90
A401	339.38	5.92	5.06	304380	342.03	1732.25	0.34	16.14	17.11	9.34	17.88	54.90	17.84	8.07
A2029	348.92	6.59	5.05	302105	355.64	1795.26	0.34	16.16	17.13	9.21	17.90	54.40	17.86	0.26
Hydra-A	240.76	2.60	5.24	328469	251.56	1317.25	0.35	16.06	17.07	10.20	17.82	57.70	17.76	3.74
ZwCl1215	339.38	6.54	5.05	302272	354.58	1790.34	0.35	16.18	17.15	9.32	17.92	55.00	17.88	0.00
MKW3S	199.34	1.66	5.36	346794	211.39	1133.45	0.36	16.02	17.05	10.60	17.78	57.60	17.72	0.00
A133	254.68	3.35	5.18	319842	276.74	1432.35	0.36	16.12	17.12	10.10	17.88	57.70	17.83	2.46
A3158	263.99	3.97	5.14	314620	295.06	1516.19	0.37	16.16	17.16	9.99	17.92	57.70	17.87	5.39
A4059	203.92	2.19	5.28	334997	235.56	1244.13	0.38	16.12	17.14	10.50	17.89	58.90	17.83	0.06
A1795	278.01	5.17	5.09	307558	325.36	1655.37	0.38	16.23	17.22	9.81	17.99	57.50	17.94	0.42
A2657	176.55	1.69	5.36	345942	212.97	1140.70	0.40	16.13	17.16	10.80	17.90	58.90	17.84	4.53
A2147	153.91	1.17	5.47	363492	184.45	1009.48	0.40	16.09	17.13	11.00	17.86	58.70	17.79	5.72
A3376	199.34	2.58	5.24	328779	250.74	1313.53	0.41	16.20	17.23	10.60	17.98	59.90	17.92	0.84
A3562	222.29	3.53	5.16	318132	282.44	1458.40	0.41	16.24	17.26	10.40	18.02	59.70	17.96	0.03
A85	250.04	5.09	5.09	307918	323.62	1647.33	0.42	16.30	17.31	10.10	18.07	59.00	18.03	0.31
A3391	236.13	4.51	5.11	311034	309.49	1582.37	0.43	16.29	17.30	10.30	18.07	59.90	18.02	0.11
A3667	250.04	5.30	5.08	306940	328.42	1669.45	0.43	16.31	17.32	10.10	18.09	59.50	18.04	13.31
A2052	153.91	1.63	5.37	347614	209.89	1126.58	0.45	16.22	17.26	11.00	18.00	60.10	17.93	0.03
2A0335	153.91	1.66	5.36	346659	211.64	1134.59	0.45	16.23	17.27	11.00	18.01	60.20	17.95	5.44
A2589	185.64	2.99	5.20	323540	265.28	1379.98	0.46	16.31	17.34	10.70	18.10	61.20	18.04	0.13
EXO0422	172.01	2.49	5.25	330093	247.36	1298.09	0.47	16.30	17.33	10.80	18.09	61.30	18.02	0.18

CLUSTERS SAMPLE

Cluster	d_L	M ₂₀₀	c ₂₀₀	ρ_s	r_s	R_{200}	θ_{200}	$\log_{10} J_{MIN}$	$\log_{10} J_{MED}$	B_{MED}	$\log_{10} J_{MAX}$	B _{MAX}	$\log_{10} D$	TS
	[Mpc]	$[10^{14}~M_\odot]$		$[{\rm M}_\odot/{\rm kpc^3}]$	[kpc]	[kpc]	[deg]	$[GeV^2cm^{-5}]$	$[\text{GeV}^2\text{cm}^{-5}]$		$[\text{GeV}^2\text{cm}^{-5}]$		$[\text{GeV cm}^{-2}]$	
A576	167.47	2.37	5.26	331959	242.73	1276.91	0.47	16.31	17.34	10.90	18.09	61.30	18.03	0.99
A2063	153.91	1.97	5.31	339288	226.15	1201.08	0.48	16.29	17.34	11.00	18.08	61.00	18.01	9.44
A3558	213.09	4.89	5.10	308961	318.70	1624.70	0.48	16.41	17.42	10.30	18.19	60.90	18.14	0.35
A2142	411.48	28.03	4.97	291172	585.57	2908.46	0.48	16.66	17.57	8.15	18.38	51.70	18.36	0.00
A119	194.77	3.96	5.14	314731	294.64	1514.28	0.49	16.33	17.39	11.20	18.15	65.60	18.09	8.49
A2634	135.92	1.55	5.38	349762	206.07	1109.02	0.50	16.30	17.35	11.20	18.09	60.90	18.02	4.31
A2256	268.66	10.17	4.99	294929	415.33	2074.55	0.50	16.53	17.52	9.65	18.31	59.10	18.26	9.91
A496	144.90	2.56	5.24	329080	249.96	1309.96	0.55	16.45	17.49	11.10	18.25	63.50	18.18	0.00
A3266	263.99	13.44	4.97	292052	457.72	2276.43	0.55	16.67	17.65	9.57	18.44	59.60	18.40	8.19
A1367	95.81	0.88	5.57	379136	164.49	916.83	0.57	16.36	17.42	11.50	18.14	60.80	18.06	0.99
A4038	122.49	2.23	5.28	334336	237.08	1251.09	0.62	16.53	17.58	11.30	18.33	64.00	18.26	0.71
A754	236.13	25.00	4.96	290649	564.09	2799.56	0.75	17.14	18.05	8.23	18.86	52.70	18.82	0.28
A2199	131.44	5.07	5.09	308030	323.08	1644.84	0.76	16.80	17.85	11.10	18.62	66.00	18.56	1.86
A3571	162.95	10.90	4.99	294084	425.60	2123.16	0.80	16.95	17.97	10.50	18.77	65.20	18.71	0.00
NGC 5044	38.81	0.41	5.88	428317	121.16	711.87	1.07	16.82	17.90	11.90	18.60	60.50	18.51	0.00
NGC 5813	27.55	0.27	6.06	460583	102.21	619.60	1.31	16.96	18.03	11.80	18.72	58.30	18.62	4.10
A1656-Coma	100.24	13.16	4.97	292223	454.37	2260.40	1.35	17.42	18.46	11.00	19.26	69.60	19.20	9.93
NGC 5846	26.25	0.38	5.91	434293	117.22	692.90	1.53	17.13	18.20	11.90	18.91	60.40	18.81	10.81
A1060-Hydra	47.51	2.97	5.20	323860	264.34	1375.66	1.70	17.43	18.51	12.00	19.27	70.00	19.19	5.41
A3526-Centaurus	43.16	2.27	5.27	333726	238.51	1257.60	1.70	17.41	18.49	12.10	19.25	69.20	19.16	15.62
NGC 1399-Fornax	21.50	0.51	5.79	413641	131.82	762.97	2.05	17.41	18.50	12.20	19.21	62.60	19.11	4.01
M49	18.91	0.46	5.82	419644	127.27	741.24	2.26	17.49	18.57	12.10	19.28	62.00	19.18	0.00
NGC 4636	17.18	0.53	5.77	409991	134.72	776.79	2.61	17.63	18.71	12.20	19.43	63.00	19.33	13.09
VIRGO	15.46	5.60	5.07	305646	335.10	1700.27	6.32	18.65	19.74	12.30	20.52	74.80	20.44	1.05

CLUSTERS DM MODELLING

- Follow similar strategy:
 - I. Model de main halo;
 - II. Model de substructure population defining benchmark models

$$\begin{split} J(l.o.s,\Delta\Omega,z) &= \int_{\Delta\Omega} \int_{l.o.s} \rho_{DM}^2(r) dr \\ D(l.o.s,\Delta\Omega,z) &= \int_{\Delta\Omega} \int_{l.o.s} \rho_{DM}(r) dr \end{split}$$

Model	SRD	α	c(M)	M_{min}	f_{sub}
MIN	-	-		-	-
MED	VL-II (Diemand+08)	1.9	Moliné+17	$10^{-6}~M_{\odot}$	0.18
MAX	Aquarius $(Springer+08)$	2.0	Moliné+17	$10^{-9}~M_{\odot}$	0.34

DM ANNIHILATION FLUXES OF THE SAMPLE

Cluster	z	$M_{200} \ [10^{14} \ { m M}_{\odot}]$	$R_{200} \; [\mathrm{kpc}]$	$\theta_{200} \; [\text{deg}]$	$\log_{10} J_{MIN} \; [{ m GeV^2 cm^{-5}}]$	$\log_{10} J_{MED} \; [{ m GeV^2 cm^{-5}}]$	$\log_{10} J_{MAX} [\text{GeV}^2 \text{cm}^{-5}]$	$\log_{10} D \; [\text{GeV cm}^{-2}]$
Virgo	0.0036	5.60	1700	6.32	18.65	19.74	20.52	20.44
NGC 4636	0.004	0.53	777	2.61	17.63	18.71	19.43	19.33
M49	0.0044	0.46	741	2.26	17.49	18.57	19.28	19.18
A1060-Hydra	0.011	2.97	1376	1.70	17.43	18.51	19.27	19.19
A1656-Coma	0.023	13.16	2260	1.35	17.42	18.46	19.26	19.20
NGC 1399-Fornax	0.005	0.51	763	2.05	17.41	18.50	19.21	19.11
A3526-Centaurus	0.01	2.27	1258	1.70	17.41	18.49	19.25	19.16
A754	0.053	25.00	2800	0.75	17.14	18.05	18.86	18.82
NGC 5813	0.0064	0.27	620	1.31	16.96	18.03	18.72	18.62
A3571	0.037	10.90	2123	0.80	16.95	17.97	18.77	18.71

DM DECAY FLUXES OF THE SAMPLE

DARK MATTER FLUXES OF THE SAMPLE

FERMI-LAT ANALYSIS SET-UP

Baseline set-up

Years of <i>Fermi</i> data	12
IRFs	P8R3_SOURCEVETO_V2
Energy range [GeV]	0.5 – 1000
Bins per decade	8
Region of Interest (ROI) [deg ²]	20 x 20
Pixel size [deg]	0.08
Catalogue	4FGL-DR2

- Standard template Fermi analysis
- Combined likelihood:

$$\log(\mathcal{L}_j(\mu_{\chi},\nu_j|\mathcal{D}_j)) = \sum_i \log(\mathcal{L}_{i,j}(\mu_{\chi},\nu_{i,j}|\mathcal{D}_{i,j}))$$

- Tested different set-ups for energy range, ROI, IRFs and BKG models
- Background components:
 - Individual PS LAT sources (4FGL-DR2)
 - Fermi bubbles
 - Loop I + Sun + Moon
 - Isotropic emission
 - Galactic Interstellar Emission (IEM)

Divided in: Bremsstrahlung + π^0 + Inverse Compton (CMB + starlight + Infrared) Ackerman+17 [Fermi Collab.]

TS OF THE BENCHMARK MODELS

Individual TS

Highest A3526-Centaurus – TS = 15
A1656-Coma – TS ~10 (Ackermann+17 [Fermi Collab.])

Combined TS

MIN	No sig.
MED	<i>TS</i> = 27
MAX	<i>TS</i> = 23
DECAY	<i>TS</i> = 28

DM CONSTRAINTS FROM COMBINED CLUSTERS ANALYSIS

• The signal is not significant and if interpreted as DM, is not compatible with existing limits

INSIGHT RESULTS: OTHER CHANNELS & MODELS

INSIGHT RESULTS: OTHER CHANNELS & MODELS

INSIGHT RESULTS: OTHER CHANNELS & MODELS

INSIGHT RESULTS: OTHER ANALYSIS SET-UPS

74

CAN WE CLASSIFY THE STUDIED TARGETS?

• Several astrophysical objects studied, with pros and cons

Clusters of galaxies

- Most massive 10^{14} - 10^{15} M_{\odot}
- Further -z < 0.1
- Higher substructure boost *B*~9
- Best targets for decay
- Astrophysical γ -ray emission
- Up to log₁₀ J_{MED} ~18.40

• Less massive - $10^8 - 10^{10} M_{\odot}$

dlrrs

- Closer d_L < 1 Mpc
- Lower substructure boost $-B^{\sim}4$
- Not studied for decay
- Negligible astrophysical γ -ray emission
- Several at $\log_{10} J_{\text{MED}} \simeq 18.50$

dSphs
Classical
Ultra-faint

RESULTS ON CLASSIFICATION OF TARGETS

Classification of gamma-ray targets for velocity-dependent and subhalo-boosted dark-matter annihilation T. Lacroix, G. Facchinetti, JPR, M. Stref, J. Lavalle, D. Maurin and M. A. Sánchez-Conde JCAP10(2022)021, [arXiv:2203.16440]

RESULTS ON CLASSIFICATION OF TARGETS

77