

recent results from IceCube

Carlos de los Heros Uppsala University

PACT workshop IFT, Madrid 21-25 October, 2013

the IceCube neutrino telescope

the Digital Optical Module

Each DOM is an autonomous data collection unit

- Dark Noise rate ~ 400 Hz
- Local Coincidence rate ~ 15 Hz
- Deadtime < 1%
- Timing resolution \leq 2-3 ns
- Power consumption: 3W

- PMT: Hamamatsu, 10''

-Digitizers:

<u>ATWD</u>: 3 channels. Sampling 300MHz, capture 400 ns <u>FADC</u>: sampling 40 MHz, capture 6.4 µs

Dynamic range 500pe/15 nsec, 25000 pe/6.4 μs

- Flasher board:

12 controllable LEDs at 0° or 45°

Clock stability: 10-10 \approx 0.1 nsec / sec Synchronized to GPS time every ≈ 5 sec with 2 ns precision

Data taking since 2005 - completed in 2010!

detector performance

Operation-time > 99.8 % Physics data > 96.7%

Muon rate: ~ 3 kHz Neutrino rate: ~ 200/day

We record ~ 1 neutrino every 7 minutes

Well working detector delivering excellent data

IceCube highlights

- Detector completed on December 2010
- Full operation with 86 strings starts in May 2011
- Full detector \rightarrow Veto techniques possible.

IceCube becomes a 4π detector with access to the Galactic Center and whole southern sky

- Recent results:
 - dark matter: competitive spin-dependent limits above WIMP mass 35 GeV (PRL 110, 131202 (2013))
 - atmospheric electron neutrinos (PRL 110, 151105 (2013))
 - highest energy neutrinos ever observed (PRL 111, 021103 (2013))
 - follow up on high energy neutrinos (accepted in Science)
 - neutrino oscillations at high energies (PRL 111, 081801 (2013))

Many of these results only possible with the low-energy extension, DeepCore.... which paves the ice for PINGU, an even lower-energy extension under study (E_v threshold of ~ O(1 GeV))

a short history

Season	Campaign	Sensors cum.	Strings	Depth (m)	Neutrinos per day	Resol. @100TeV	AMANDA-B10 ⁹⁰ ⁹⁰ ⁹⁰ ¹⁷ ¹⁹⁹⁹
1991-1992	Exploratory	few		Shallow	-		
1992-1993							• • • • • •
1993-1994	AMANDA-A	80	4	800-1000	-		
1994-1995							0 2 4 6 8 10 12 14 16 18 20 22 24 Right Ascension [h]
1995-1996	AMANDA-B4	86	4	1500-1950	~ 0.01		
1996-1997	AMANDA-B10	206	6/10	1500-1950	~ 1	4 °	° 09
1997-1998							
1998-1999	AMANDA-II	306	3/13	1500-1950			
1999-2000	AMANDA-II	677	6/19	1500-1950	~ 5	2 °	24 h ((((((((((((((((((
2001-2002							
2002-2003							AMANDA-B10 178 events 2001
2003-2004	IceCube prep.						-90°
2004-2005	IceCube 1	60	1/1	1450-2450			+85."
2005-2006	IceCube 9	540	8/9	1450-2450			ICECUBE PRELIMINARY +45
2006-2007	IceCube 22	1320	13/22	1450-2450	18	1.5°	
2007-2008	IceCube 40	2400	18/40	1450-2450	40	0.8°	24h
2008-2009	IceCube 59	3540	19/59	1450-2450	120	0.6 °	
2009-2010	IceCube 79	4740	20/79	1450-2450	180	0.4 °	45 Los Outro
2010-2011	IceCube 86	5160	7/86	1450-2450	>200	0.4 °	

a multipurpose detector

neutrino event signatures in IceCube:

Tau neutrino, CC $v_{\tau} + N \rightarrow \tau + X$

T production

T decay

Trigger rates: Atm. muons: ~3 kHz,

~200 atm. ν /day (with E >100 GeV in IceCube)

Atmospheric neutrino and muon production in cosmic ray air showers (→ background for neutrino analyses)

- atmospheric neutrinos. Our "beam". Irreducible
- cosmic flux. Even if individual sources not strong enough, contribution from all sources within Hubble radius can be detectable
- \rightarrow diffuse cosmic flux

Assume hard spectrum 2.0 - 2.4 (production in shock acceleration)

Advantage over point-source search: can detect weaker fluxes

but: higher background

Signature:

excess of high energy neutrinos over irreducible background of atmospheric neutrinos

2010/06/25

the diffuse neutrino flux

exploring higher energies

any signal over the atmospheric neutrino background? cascade analysis using the partially deployed <u>40-string detector</u>

4 events above 100 TeV 0.35 background events expected 2.7 σ excess over the backg-only hypothesis

exploring higher energies

Phys. Rev. Lett. 111, 021103 (2013)

Analysis strategy:

Use outer layer of strings as veto Select starting events with a high number of PE in the detector (>60000 PE, depending on zenith angle) Makes analysis sensitive to E_v > PeV

What we found:

- 2 events in 616 days of livetime between May 2010- May 2012 (IC-79 and IC86)
- 0.08 events expected from atm μ + atm ν (including charm)
- significance (background-only hypothesis) including systematics: 2.8 σ

estimated energy (15% uncert.): 1.04 PeV & 1.14 PeV

proxy for energy

But: there should be more events if we relax the strong energy requirement...

search O(100TeV) neutrinos: veto strategy

search O(100TeV) neutrinos: veto strategy

we want to select:

we want to reject:

Determining the Event Start Time:

Event start time determined from the rate of light deposition in the detector.

Not trigger on noise -> set a 250 PE threshold

Evaluating containment:

Require \leq 3 PE in the veto region.

Otherwise discard as entering from outside

search O(100TeV) neutrinos: energy cut

search O(100TeV) neutrinos: results

what we found

Re-discovery of Bert & Ernie (Epi y Blas)... + 26 more events! 5.6 0.00.8 1.6 2.43.24.0 4.8

Time [microseconds]

analysis sensitivity

Effective target mass

- Largest sensitivity to ν_{e} CC: All energy deposited inside the detector.
- Smaller sensitivity for $\nu_{_{T}}$ and $\nu_{_{\mu}}$ CC:

muon and tau decay products carry out part of the initial neutrino energy

• Smallest sensitivity to NC interactions:

Significant fraction of the total energy disappears with the neutrino

deposited energy> 60 TeV

for the high-energy range, more astrophysical events expected from above (Southern hemisphre)

shower

track

+ X

Event clustering analysis:

Problem:

tracks have a much better angular resolution than showers \rightarrow dominate the significance

Solution:

analyze twice: Just showers & all events

Not significant

Other searches:

- Galactic plane correlation
- Time clustering

Not significant

 \rightarrow No identification of any sources

GRB correlation analysis:

Use temporal (±22 hrs window) and spatial (1°/10° for tracks/cascades) information to search for a correlation with 568 GRBs recorded during the analysis livetime

 \rightarrow No evidence for any correlation with GRBs

interpretation of IceCube UHE results by the community

Title 🖂	Author(s) 🕅	Journal reference 🖂	ArXiv 🖂	Category M
IceCube PeV cascade events initiated by electron-antineutrinos at Glashow resonance	Barger, Learned, Pakvasa	PRD 87, 037302 (2013) 🗗	1207.4571 🗗	Glashow resonance
Neutrino decays over cosmological distances and the implications for neutrino telescopes	Baerwald, Bustamante, Winter	JCAP10(2012)020 🗗	1208.4600 🗗	Neutrino decay
On the interpretation of IceCube cascade events in terms of the Glashow resonance	Bhattacharya, Gandhi, Rodejohann, Watanabe		1209.2422 🗗	Glashow resonance
PeV neutrinos from the propagation of ultra-high energy cosmic rays	Roulet, Sigl, van Vliet, Mollerach	JCAP01(2013)028 🗗	1209.4033 🗗	GZK
Explanation for the Low Flux of High-Energy Astrophysical Muon Neutrinos	Pakvasa, Joshipura, Mohanty	PRL 110, 171802 (2013) 🗗	1209.5630 🗗	Neutrino decay
On the origin of IceCube's PeV neutrinos	Cholis, Hooper	JCAP06(2013)030 🗗	1211.1974 🗗	Extragalactic (GRB)
Diffuse PeV Neutrinos from Gamma-ray Bursts	Liu, Wang	ApJ 766, 73 (2013) 🗗	1212.1260 🗗	Extragalactic (GRB)
Cosmic PeV Neutrinos and the Sources of Ultrahigh Energy Protons	Kistler, Stanev, Yuksel		1301.1703 🗗	Extragalactic
PeV Neutrinos from Intergalactic Interactions of Cosmic Rays Emitted by Active Galactic Nuclei	Kalashev, Kusenko, Essey	PRL 111, 041103 (2013) 🗗	1303.0300 🗗	Extragalactic (AGN)
Diffuse PeV neutrino emission from ultraluminous infrared galaxies	He, Wang, Fan, Liu, Wei	PRD 87, 063011 (2013) 🗗	1303.1253 🗗	Extragalactic (Infrared galaxies)
Stringent constraint on neutrino Lorentz invariance violation from the two lceCube PeV neutrinos	Borriello, Chakraborty, Mirizzi, Serpico	PRD 87, 116009 (2013) 🗗	1303.5843 🗗	Lorentz invariance
Neutrinos at IceCube from heavy decaying dark matter	Feldstein, Kusenko, Matsumoto, Yanagida	PRD 88, 015004 (2013) 🗗	1303.7320 🗗	Exotic (dark matter decay)
Galactic PeV Neutrinos	Gupta		1305.4123 🗗	Galactic
Sub-PeV Neutrinos from TeV Unidentified Sources in the Galaxy	Fox, Kashiyama, Meszaros	ApJ 774, 74 (2013) 🗗	1305.6606 🗗	Galactic
Superheavy Particle Origin of IceCube PeV Neutrino Events	Barger, Keung		1305.6907 🗗	Exotic (Leptoquark)
PeV neutrinos observed by IceCube from cores of active galactic nuclei	Stecker	PRD 88, 047301 (2013) 🗗	1305.7404 🗗	Extragalactic (AGN)
TeV-PeV Neutrinos from Low-Power Gamma-Ray Burst Jets inside Stars	Murase, loka	PRL 111, 121102 (2013) 🗗	1306.2274 🗗	Extragalactic (GRB)
Demystifying the PeV cascades in IceCube: Less (energy) is more (events)	Laha, Beacom, Dasgupta, Horiuchi, Murase	PRD 88, 043009 (2013) 🗗	1306.2309 🗗	
Testing the Hadronuclear Origin of PeV Neutrinos Observed with IceCube	Murase, Ahlers, Lacki		1306.3417 🗗	Extragalactic
Pinning down the cosmic ray source mechanism with new IceCube data	Anchordoqui, Goldberg, Lynch, Olinto, Paul, Weiler		1306.5021 🗗	Galactic
Constraining Superluminal Electron and Neutrino Velocities using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events	Stecker		1306.6095 🗗	Lorentz invariance
TeV-PeV neutrinos over the atmospheric background: originating from two groups of sources?	He, Yang, Fan, Wei		1307.1450 🗗	Two source populations
The Galactic Pevatron	Neronov, Semikoz, Tchernin		1307.2158 🗗	Galactic
Photohadronic Origin of the TeV-PeV Neutrinos Observed in IceCube	Winter		1307.2793 🗗	Extragalactic
Pseudo-Dirac neutrinos via mirror-world and depletion of UHE neutrinos	Joshipura, Mohanty, Pakvasa		1307.5712 🗗	
Are IceCube neutrinos unveiling PeV-scale decaying dark matter?	Esmaili, Sercipo		1308.1105 🗗	Exotic (dark matter decay)
Establishing the astrophysical origin of a signal in a neutrino telescope	Lipari		1308.2086 🗗	
Testing Relativity with High-Energy Astrophysical Neutrinos	Diaz, Kostelecky, Mewes		1308.6344 🗗	Lorentz invariance
A Simple Explanation of the Ultra-high Energy Neutrino Events at IceCube	Chen, Bhupal Dev. Soni		1309.1764	
The Galactic Center Origin of a Subset of IceCube Neutrino Events	Bazzague	J	1309 2756 🕫	Galactic
Probing the Galactic Origin of the IceCube Excess with Gamma-Rays	Ahlers Murase		1309 4077	Galactic

an incomplete list by now

search for point sources: results

4-year (IC40+IC59+IC79+IC86-I) neutrino sky.

total livetime 1371.7 d total number of events: 178000 upgoing 216000 downgoing (atm muons)

Two Complementary searches:

"Model-Dependent" search:

- Time-window defined by start and end of observed gamma emission (T₉₀ typically ~ 30 s)
- Use model predictions of neutrino flux and energy spectrum to weight the search

 \Rightarrow Most sensitive if models are right

"Model-Independent" search:

- Time window expands from ± 10 s to ± 1 day (NB: neutrinos closer to GRB T₀ given more significance)
- No specific weighting to model predictions, search at all neutrino energies

⇒"Catch-all" analysis

full sky sensitivity using IceCube
surrounding strings as a veto:

375m thick detector veto: three complete IceCube string layers surround DeepCore

--> access to southern hemisphere, galactic center and all-year Sun visibility

can use IceCube outer string layers to define starting and 10 8 througoing tracks 10^{7} 10⁶ 10⁵ 10^{4} 10³ 10^{2} 500 600 X [m]

full sky sensitivity using IceCube
surrounding strings as a veto:

375m thick detector veto: three complete IceCube string layers surround DeepCore

--> access to southern hemisphere, galactic center and all-year Sun visibility

full sky sensitivity using IceCube
surrounding strings as a veto:

375m thick detector veto: three complete IceCube string layers surround DeepCore

--> access to southern hemisphere, galactic center and all-year Sun visibility

full sky sensitivity using IceCube
surrounding strings as a veto:

375m thick detector veto: three complete IceCube string layers surround DeepCore

--> access to southern hemisphere, galactic center and all-year Sun visibility

searching for Dark Matter

<u>WIMPS</u>

- ARISE IN EXTENSIONS OF THE STANDARD MODEL
- Assumed to be stable: relics from the Big Bang
- WEAK-TYPE XSECTION GIVES NEEDED RELIC DENSITY

 $\Omega_{\delta} h^2 \approx \frac{10^{-27}}{\langle \sigma_{ann} \, v \rangle_{fr}} \, \mathrm{cm}^3 \, \mathrm{s}^{-1}$

- mass from few GeV to few ${\rm TeV}$
- MSSM CANDIDATE: LIGHTEST NEUTRALINO,

 $\tilde{\chi}_{1}^{0} = N_{1}\mathbf{B} + N_{2}\mathbf{W}^{3} + N_{3}H_{1}^{0} + N_{4}H_{2}^{0}$

- UED: LIGHTEST 'RUNG' IN THE KALUZA-KLEIN LADDER

<u>SIMPZILLAS</u>

- NON-THERMAL, NON-WEAKLY INTERACTING STABLE RELICS

$$\chi \chi \longrightarrow \begin{bmatrix} q \overline{q} \\ \ell^+ \ell^- \\ W, Z, H \end{bmatrix} \longrightarrow \nu, \gamma, e^+ e^-, \overline{p}$$

Kaluza-Klein modes an additional useful channel: $\kappa\kappa \rightarrow \, \nu\nu$

signature:

 ν excess over background from Sun/Earth/Galactic Halo/nearby galaxies

Look at objects where dark matter might have accumulated gravitationally over the evolution of the Universe

Sun, Earth, Galactic Halo/Center, dwarf spheroids

note astrophysical / hadronic uncertainties

IceCube results from 317 days of livetime between 2010-2011:

All-year round search:

- Extend the search to the southern hemisphere by selecting starting events
 - \rightarrow Veto background through location of interaction vertex
 - muon background: downgoing, no starting track
 - WIMP signal: require interaction vertex within detector volume

-38

-39

-40

-41

42

-43

-44

-45

-46

eCube 2012 (bb

 $(\tau^{+}\tau)$ for $m_{v} < m_{w} = 80.4 \text{GeV/c}^{2}$

IceCube 2012 (W*W)*

log10 ($\sigma_{\rm Sl,p}$ / cm²)

90% CL neutralino-p SI Xsection limit

log10 (m, / GeV c⁻²)

MSSM incl. XENON (2012) ATLAS + CMS (2012)

MSSM allowed

3

parameter space

DAMA no channeling (2008)

CDMS 2keV reanalyzed (2011)

CDMS (2010)

CoGENT (2010)

----- XENON100 (2012)

90% CL neutralino-p SD Xsection limit

DM search from the Galactic Halo

DM search from the Galactic Center

- 79-string configuration
- Use DeepCore to lower the energy threshold to ~10 GeV
- Analysis rely on veto methods to reject incoming tracks
- Use scrambled data for background estimation

Dwarf galaxies: high mass/light ratio → high concentration of DM in the halos

known location. Distributed both in the north and southern sky.

- Point-like search techniques: stacking
- known distance -> determination of absolute annihilation rate if a signal is detected

Galaxy clusters: enhance signal due to accumulation of sources

But: extended sources with possible substructure

Same expected neutrino spectra as for the galactic center/halo

IceCube results from various sources

---- Fermi Dwarf galaxy

Fermi data[†]

 10^{4}

[†] interpreted for DM [Meade et al. (2010)]

IceCube Preliminary

 $\chi\chi\!\rightarrow\!\mu^+\,\mu^-$

PAMELA data

 10^{3}

the low energy end: observation of neutrino oscillations

Oscillation Probabilitie

DeepCore Energy threshold at trigger level ~20 GeV

Covers first oscillation maximum @25 GeV

High statistics available

- \rightarrow measure atmospheric muon rate as
 - a function of angle and energy

<u>Challenges</u>:

angular reconstruction

systematics

Results with IC79: Phys. Rev. Lett. 111, 081801 (2013)

IceCube sees neutrino oscillations 05.6σ

consistent with world-average best fit.

In a two-flavour scenario:

 $|\Delta m_{32}^2| = (2.3^{+0.6}_{-0.5}) \times 10^{-3} \text{ eV}^2$ and $\sin^2(2\theta_{23}) > 0.93$

(no energy measurement used in the fit)

DeepCore Energy threshold at trigger level ~20 GeV

Covers first oscillation maximum @25 GeV

High statistics available

- \rightarrow measure atmospheric muon rate as
 - a function of angle and energy

<u>Challenges</u>:

angular reconstruction

systematics

Results with IC79: Phys. Rev. Lett. 111, 081801 (2013) IceCube sees neutrino oscillations $@5.6\sigma$ consistent with world-average best fit. In a two-flavour scenario:

 $|\Delta m_{32}^2| = (2.3^{+0.6}_{-0.5}) \times 10^{-3} \text{ eV}^2$ and $\sin^2(2\theta_{23}) > 0.93$

(no energy measurement used in the fit)

Phys. Rev. Lett. 111, 081801 (2013)

DeepCore showed the potential of going down in energy.

How low could we go?

Add 40 strings within the current DeepCore volume

to bring down energy threshold to O(1 GeV)

 \rightarrow **PINGU**:

Precision Icecube Next Generation Upgrade

Aims:

Physics @few GeV:

- neutrino hierarchy, low-mass WIMPs
- R&D for Megaton ring Cherenkov

reconstruction detector for p-decay

and high statistics SuperNova

detection

9.3 GeV neutrino producing a 4.9 GeV muon and a 4.4 GeV cascade

DeepCore only

9.3 GeV neutrino producing a 4.9 GeV muon and a 4.4 GeV cascade

DeepCore + PINGU

DeepCore only

50 DOMs hit

20 DOMs hit

•we have 1 km³ of ice instrumented with optical modules

- ·we can detect flavours (muon tracks, e/ au cascades)
- we can define through-going, starting and contained tracks
- we cover a wide neutrino energy range, from O(10) GeV to PeV
- we can look at all the sky (at once and continuously)

..... if you have a model of astrophysical sources or particle physics that involves neutrinos, we can probably probe it We got them.

28 events with energies above 50 TeV in one year of IceCube operation with the nearly complete detector and one year with the complete detector Inconsistent at more than 4 sigma with background-only

hypothesis

Compatible with astrophysical origin, but no evidence of clustering

One more year of data already taken and being analyzed

slides from D. Grant, TAUP13

- Gain sensitivity to atmospheric neutrinos in the region below 10 GeV with very high statistics
 - provide a definitive measurement of the neutrino mass hierarchy (NMH)
 - will help pin down $(\Delta m_{23})^2$ and test maximal mixing
- Probe lower mass WIMPs
- Gain increased sensitivity to supernova neutrino bursts
- Initiate an extensive calibration program to improve systematics knowledge
- Pathfinder technological R&D for the Megaton Ice Cherenkov Array (MICA)

Precise geometry currently under study

- A preliminary event selection based on DeepCore analysis
 - 23,000 muon neutrinos per year after oscillations
 - Oscillation signature is the disappearance of 12,000 events per year
- Sufficient to measure neutrino mass hierarchy via matter effects in the 5-20 GeV range without direct v_µ –v_µ discrimination
 - Exploit asymmetries in cross sections and kinematics

Using atmospheric neutrinos to measure the NMH

Up to 20% differences in v_{μ} survival probabilities for various energies and baselines, depending on the neutrino mass hierarchy

Neutrino oscillations in vacuum

Neutrino oscillations in vacuum

Neutrino oscillations in vacuum

Preliminary NMH sensitivity studies - Signature

- As an illustration, a scaled subtraction between hierarchies can be done
- Not the way significance is calculated, but illustrative
- As an example of systematics, look at resolutions

Distinguishability Metric [(IH-NH)/NH^{1/2}]

 $S_{tot} = \sqrt{\Sigma_{ij} rac{(N_{ij}^{IH} - N_{ij}^{NH})^2}{N_{ij}^{NH}}} \hspace{0.5cm} \stackrel{i = \cos(\text{zenith})}{j = energy}$

Preliminary NMH sensitivity studies - Signature

- As an illustration, a scaled subtraction between hierarchies can be done
- Not the way significance is calculated, but illustrative
- As an example of systematics, look at resolutions

Distinguishability Metric [(IH-NH)/NH^{1/2}]

Zenith resolution: 10° Energy resolution 1 GeV

$$S_{tot} = \sqrt{\Sigma_{ij} rac{(N_{ij}^{IH} - N_{ij}^{NH})^2}{N_{ij}^{NH}}} \hspace{0.5cm} \stackrel{i = \cos(zenith)}{j = energy}$$

Preliminary NMH sensitivity studies - Signature

 $\cos(zenith)$ energy

- As an illustration, a scaled subtraction between hierarchies can be done
- Not the way significance is calculated, but illustrative
- As an example of systematics, look at resolutions

Distinguishability Metric [(IH-NH)/NH^{1/2}]

Zenith resolution: 12.5° Energy resolution 3 GeV

$$S_{tot} = \sqrt{\sum_{ij} \frac{(N_{ij}^{IH} - N_{ij}^{NH})^2}{N_{ij}^{NH}}} \quad \stackrel{i}{j}$$

Energy Reconstruction of EM Showers

- CR anisotrpy observed with IceCube and IceTop between 20TeV and 10PeV
- Scale: 10⁻³ 10⁻⁴
- Anisotropy at 20TeV matches the observed anisotropy in the North
- Strength increases with energy
- Effect is not yet explained

Cosmic Ray Moon Shadow

Spoiler alert: there are no neutrino sources bright enough to calibrate pointing with!

But, cosmic ray moon shadow "negative" source is used to verify:

- absolute pointing is correct
- ~1° typical point spread function (size of deficit and shape agree with sim.)

Cosmic rays are blocked by the moon (radius 0.25°)

Causes small point-like deficit of cosmic ray showers detected by IceCube

Moon (to scale)

Chad Finley - Oskar Klein Centre - Stockholm University

Magnetic Confinement / Neutron Escape Models

Magnetic confinement models (Rachen et al. 1998, Ahlers et al. 2011): protons always confined in jets; escape only as neutrons after charged pion production (escaped neutrons later decay to protons again)

These models strongly excluded, e.g. default parameters of Ahlers et al. excluded at 12 σ

13th Marcel Grossmann Meeting Chad Finley - Oskar Klein Centre - Stockholm University

Maximum Ilh-analysis

The observed angle to the Sun is fitted with *signal* and *background* pdf:s

Evaluate shape fit with loglikelihood rank (FC) to construct CI for the number of

signal events μs

$$R(\mu) = rac{\mathcal{L}(\mu)}{\mathcal{L}(\hat{\mu})}$$
 —

L(µ) is the pdf product over the final sample

(scale to multiple datasets)

analysis strategies in neutrino telescopes

DM SEARCHES FROM THE SUN: KALUZA-KLEIN DN

Universal Extra Dimensions:

•

90% CL LKP-p Xsection limit vs LKP mass

 $n=1 \rightarrow Lightest Kaluza-Klein mode, B¹$

good DM candidate

DM SEARCHES FROM THE SUN: RESULTS

90% CL neutralino-p SD Xsection limit

IceCube results from 317 days of livetime between 2010-2011:

All-year round search:

1 CeCube

Muon flux from the Sun (km⁻² y⁻¹)

Extend the search to the southern hemisphere by selecting starting events

- \rightarrow Veto background through location of interaction vertex
- muon background: downgoing, no starting track
- WIMP signal: require interaction vertex within detector volume

90% CL muon flux limit from the Sun

(particle physics and solar model)

Assume (ie. model dependent) effective quark-DM interaction,

 $\lambda^2/\Lambda^2 (\overline{q}\gamma_5\gamma_\mu q)(\overline{\chi}\gamma_5\gamma^\mu \chi)$

and look for monojets in $p\overline{p}$ collisions,

 $p\overline{p} \rightarrow \chi \overline{\chi} + jet$

(as opposed to the SM process $pp \rightarrow Z+jet$ and $pp \rightarrow W+jet$)

Constrains from monojet searches at the TeVatron:

90% CL neutralino-p Xsection limit

- Depth dependence of λ_{eff} and λ_{abs} from in situ LEDs
- Ice below 2100 m in DeepCore fiducial region very clear
 - $<\lambda_{eff}> \sim 47$ m, $<\lambda_{abs}> \sim 155$ m

