University of Santiago de Compostela PACT IFT Madrid October 25th 2013

GER

Outline:

- UHECR, the picture before s XXI
- The Pierre Auger observatory
 - •The complex
 - •Spectrum
- Digression on showers
- Auger observatory results
 - Anísotropíes
 - •Bounds Neutrínos and Photons
 - Composition
 - Partícle Physics
 - •Cross section measurements
 - Muon deficit in simulations
- Summary and outlook

Scientific motivation

Particle Physics

- Test interactions at (always) highest energies
- Test forward region
- Astrophysics
 - Unknown origin (particle nature, where, how)
 - Relation to cosmology (Extragalactic sources) i.e.=> CMB interactions
 - Large E => Sufficiently small angular deviations?
 - Astronomy
 - Learn about B fields

After "n" steps (depth x) Energy split in N=2ⁿ particles (e⁺,e⁻, γ) x/x/x/y of energy E/N

$$N = 2^{n} = 2^{x/d} = 2^{x/(x_0 \ln 2)} = e^{x/x_0}$$

Number of particles at maximum (E drops to critical energy):

$$n_c = \ln \left[E_0 / \varepsilon_c \right] / \ln 2$$

$$N_{\rm max} = 2^{n_{\rm o}}$$

Energy related to N_{max} & N_{max} :

Complex simulations:

$$X_{\max} = n_c X_0 \ln 2 = X_0 \ln \left[E / \varepsilon_c \right]$$

•*E*₀ ~ *N*_{max}

$$E_0 = \varepsilon_c N_{\max}$$

"Elongation rate":

$$\Lambda = \frac{dX_{\max}}{d\log E_0} = 2.3X_0$$

•**Λ**= 85 (gcm⁻²)/decade

The UHECR prejudice/paradigm in the 1990s:

- UHECR believed to be:
 - Protons (ankle feature)
 - Extragalactic (few feasible galactic sources)
- But observations suggested:
 - No interactions with CMB
- Large discovery potential:
 - >10 events per year per 1000 km² above 10²⁰ eV
 - Nearby sources? (Fermi acceleration or TD sources?)
 - Other incoming particles? New Physics?
 - Proton astronomy?

The Greisen-Zatsepin-Kuz'min (GZK) cut-off

 $p + \gamma_{CMB}$

~

The UHECR data in the 1990s:

Precision CR Physics is not easy:

- There is no control of the beam:
 - No energy, direction or particle type
- Interaction models at these energies are extrapolated
 - Results inevitably have some model dependence
- Measurements are indirect through air showers
 - Must deduce properties after stochastic processes
- Showers fluctuate in size and development
 - Depending on composition and interaction properties

How can this be overcome?:

- Redundancy in detection methods
- New ideas to exploit data in complementary ways

The Pierre Auger Observatory

Pierre Auger Collaboration

19 Countries 500+ Scientists 100+ Institutions

Argentina	Neth
Australia	Pola
Brasil	Port
Croatia	Slov
Czech Republic	Spai
France	UK
Germany	USA
Italy	
Mexico	

herlands nd tugal **enia** in

Bolivia* **Romania***

Vietnam*

*Associated

Redundancy=> Hybrid FD and SD techniques

A complex project: Brief Historical Background:

- 1991: Project is conceived and discussed
- 1994-95 : Design Studies Work in Spain for Auger North
- 2001-02 : Engineering Array Spain formally joins
- 2004: Data taking phase starts
- 2006: Anisotropy prescription
- 2007: Innauguration
- 2008 : Completion
- 2010 : HEAT operational
- 2011 : AMIGA infill completed, first AERA self trigger and molecular bremsstrahlung tested (GHz): MIDAS, AMBER
- 2012 : 61 EASIER Microwave antennas deployed
- 2013 : 124 AERA (+100) Stations running MHz radio array

Multiple techniques => Broad range of physics results (incomplete):

- 2007: Anisotropy of events above 56 EeV
 - Galactic center anisotropy search
 - Photon limits (hybrid data)
- 2008: Spectrum: suppression compatible with GZK effect
 - Upper limit with earth skimming tau neutrinos
 - Photon limit (SD data)
- **2009**: EeV depth of maximum (elongation rate)
 - Hybrid spectrum: feature:ankle
 - Inclined shower spectrum
 - Down going neutrino bound
- **2010**: Depth of maximum (First composition measurements)
- 2011: Scaler mode: connection with solar physics
 - Muon content measurements
 - Muon production depth
 - Infill low energy spectrum
 - AERA: Self trigger radio measurements
 - Large Scale Anisotropy prescription
- 2012: Proton-air cross section at equivalent pp sqrt(s)=57 TeV
 - Search for point like neutrino sources
 - Search for neutron sources
 - Blind searches for directional CR sources
- 2013: Combined neutrino bound
 - Combined spectrum
 - Directional photon searches

SPECTRUM

- Two ideas (avoid composition and interaction models):
 - Constant Intensty Cut (isotropy to get θ dependence)
 - Hybrid calibration (FD to measure energy)
- Important findings:
 - Suppression consistent with GZK cutoff
 - UUHECR flux/30!! Only 1 per 3000 km² above 10²⁰ eV

A three fold hybrid event

SD reconstruction: S(1000)

Reconstruction procedure:

- χ^2 -method to fit angles (θ, ϕ) S(1000)
- Likelihood method to fit a NKGtype function, parameters:
 - Core position
 - S(1000)

• Aproaches:

- Correlations with catalogs
- Autocorrelations
- Harmonic analysis
- Findings:
 - Weak anisotropy signal at E>56 EeV
 - Bounds on large scale anisotropy
 - Hints of large scale anisotropy (small effect)

Exploratory scan: data until 27 May 2006

Largest significance for $E_{th} \sim 6 \times 10^{19} \text{ eV}$ $\psi \sim 3^{\circ}$ $D_{max} \sim 75 \text{ Mpc}$

12/15 events close to AGNs in Veron-Cetty Catalogue

Test Using Independent Data Set

Data from 27 May 2006 until 31 August 2007 8/13 events lined up as before: chance 1/600

Centaurus A region

Data until 31 December 2009

Dígression: More on showers

- Depth of Maximum, X_{max}
 - Photons
 - Nuclear masses
 - Neutrinos (not directly used)
- Muons
 - Composition sensitivity
 - Inclined showers: more redundancy (&neutrino search)
 - New ideas

Measurements of X_{max}

Extend Heitler analysis for a proton shower:

$$X_{\max} \approx \lambda_p + X_0 \ln \left[\frac{k_{in} E}{2N\varepsilon_c} \right]$$

N=multiplicity; k_{in} =inelasticity; 2 photons per π^0

For a shower induced by a nucleus of mass A (superposition):

$$X_{\max} \approx \lambda_p + X_0 \ln \left[\frac{k_{in} E}{2AN\varepsilon_c} \right]$$

RMS(X_{max})also decreases with A Detailed simulations confirm this

A given model gives ln(A) from $X_{max} \& \sigma^2[ln(A)]$ from RMS(X_{max})

X_{max}: compare to models

P. Homola for the Auger Collab., ICRC 2009

γ-induced showers reach maximum deeper in the atmosphere than nucleonic ones

Particle distribution (vertical)

Development of proton showers

Muon distribution (inclined)

Combined Spectrum

- Several independent measurements
 - SD < 60⁰
 - Inclined SD > 60°
 - Hybrid
 - Infill

Neutríno Bounds

• Two main channels:

- Earth skimming tau neutrinos
- Down going neutrinos (All flavors):

Important findings:

- Enhanced Earth skiming sensitivity in the EeV region
- Competitive bounds obtained
- Total sensitivity below Waxman-Bahcall flux

- Complex three stage process
 - Attenuation through Earth and regeneration: NC

CC & τ CC CC & τ decay

- CC interaction, τ energy loss and no decay
- Exit and τ decay in the atmosphere

Search for v-induced showers in data: deep showers

p/nuclei-induced showers

Fast & narrow signal produced by μ All detectors equivalent

v-induced showers

Broad signal produced by $e_{\pm,\gamma}$ in early tanks Narrow signal in late tanks

Combined exposure

Each simulated v-event that passes either ES or DGH or DGL criteria contributes corresponding to θ . (i.e. simulated DGH shower passing ES criterio contributes to ϵ_{DGH})

Photon Bounds

- Approaches based on deeper X_{max} lower N_{μ}
 - Diffuse bounds: SD observables
 - Diffuse bounds: SD and FD
 - Point sources: Multiviariate (SD and FD)
- Important findings:
 - Competitive bounds obtained: TD models disfavoured
 - GZK photons within reach in a few years

Upper limits to the diffuse photon flux

GZK region within reach in the next few years

Auger ICRC 2011(0393) TA ICRC 2013 (0149)

⁶⁰

- Aproaches (hybrid data):
 - Average of X_{max} distribution
 - Variance of X_{max} distribution
- Findings:
 - Change of behavior at ~2 EeV
 - <X_{max}> becomes smaller (hevaier composition)
 - $\sigma_{\rm Xmax}$ also reduces (not much dispersion in A)

E [eV]

Particle Physics

- Cross sections
 - Proton air cross section at sqrt(s)=56 TeV (pp eq.)
- Test interaction models
 - Simulations give deficit of muons

Remember

$$X_{\max} \approx \lambda_p + X_0 \ln \left[\frac{k_{ela} E}{2AN\varepsilon_c} \right]$$

Redundancy: Inclined events measure muons relative to a reference (p-QGSJETII)

Confirmed with standard events! (more sophisticated ideas)

Model	R_E	R_{μ}
QII-04 p	$1.09 \pm 0.08 \pm 0.09$	$1.59 \pm 0.17 \pm 0.09$
QII-04 Mixed	$1.00 \pm 0.08 \pm 0.11$	$1.59 \pm 0.18 \pm 0.11$
EPOS p	$1.04 \pm 0.08 \pm 0.08$	$1.45 \pm 0.16 \pm 0.08$
EPOS Mixed	$1.01 \pm 0.07 \pm 0.08$	$1.30 \pm 0.13 \pm 0.09$

Tension

- Telescope Array in NH: claims consistency with protons
 - Joint effort in progress
- More muons than predicted by models
- Composition and results from X_{max} & X^{μ}_{max}

Generally consistent results between experiments

X_{max} measurements conversion to In(A)

- Auger contributed to solving long standing issues, flux, GZK cutoff, ankle
- Auger is producing a broad range of relevant results, bounds, muon content, cross section, anisotropies
- Auger points out to tension with models and needs more data taking and more redundancy to further constrain composition

The Future: A new proposal

- To extend Int. Agreement till 1023
- To enhance the performance
 - Improved electronics
- To enlarge the area with redundancy
 - Radio technique? Seems out without small spacings
 - Enhanced FD coverage? Not now
 - Provide muon detectors
- New detectors from space

Acceleration (2nd order Fermi 1949):

1st order acceleration at shocks (more efficient)

Acceleration size (L) MUST EXCEED radius (R)

Diffusive propagation in accelerating region

The difficulty to accelerate particl

Signal has weakened since

33+-5% 28/84 P=0.006

TA 40% 8/20 ISO 24%

Exposures at 10 EeV: $[km^2 sr yr]$

- SD vertical: 31645 ± 950
- SD inclined: 8027 \pm 240
- Hybrid: 1496 ± 25
- SD 750 m: 79 ± 4

Elongated footprint W ΔT_{ij} $V_{ij} = \frac{d_{ij}}{\Delta T_{ij}}$

Inclined shower selection:

- shape (elongated footprint) : large L/W
- apparent speed of ground signal ~c & low RMS
- zenith angle θ_{rec} (only for downgoing)

ES	DGH (75°,90°)	DGL (60°,75°)
L/W > 5	L/W > 3	-
<v> ∈ (0.29, 0.31) m ns⁻¹</v>	<v> < 0.313 m ns⁻¹</v>	-
RMS(V) < 0.08 m ns ⁻¹	RMS(V)/V < 0.08	-
-	$\theta_{\rm rec} > 75^{\circ}$	$\theta_{ m rec} \in (58.5^\circ, 76.5^\circ)$

v identification

ES	DGH (75°,90°)	DGL (60°,75°)
<i>Data 1 Jan 2004 - 31 May 2010:</i> ≥ 60% stations with ToT & AoP _{min} > 1.4	Fisher discriminant based on AoP of early stations	≥75% of stations close to shower core with ToT &
<i>Data 1 Jun 2010 - 31 Dec 2012</i> : <aop> > 1.83 or AoP_{min} > 1.4 if 3 stations</aop>		Fisher discriminant based on AoP of early stations close to shower core

Upper limits to directional photon fluxes

No significan photon point source excess observed

