



# Recent neutrino long base line results and path to

# future

Federico Sánchez



Introductory words

| Now  | <ul> <li>Recent T2K result that I will use to describe the Long<br/>Base Line experimental techniques and needs.</li> </ul> |
|------|-----------------------------------------------------------------------------------------------------------------------------|
| Next | <ul> <li>What to expect from Nova ? Or better, what to<br/>expect from T2K, Nova and reactor neutrinos.</li> </ul>          |
| Nevt | • What is the community planning for the next stage ?                                                                       |
| to   | pro's and con's                                                                                                             |
| Next | • Is this enough? T2HK, LBNE and/or LBNO                                                                                    |







3









Beam

01

ND280

G.

Super-Kamiokande





F.Sánchez (IFAE) PACT-2013

4



## v beam





5

Î



### Flux prediction





# NA61: Shine



NA61/Shine measures for T2K the production of pions and kaons as function of the momentum and angle for protons interacting with carbon.





NA61/Shine measures a thin target for absolute production and thick target that is a copy of T2K target and provides also the reinteractions.

# σνΝ

When  $E_v > 100 MeV$  the v-Nucleus cross-section dominates.



SEVERO OCHOA

Ж



### Off-axis concept

T2K runs 2.5° off-axis

30 GeV protons

 $\overline{}$ 

off-axis optimises the flux at the maximum of the oscillation.



2.5°



 off-axis reduces the high energy contamination (NCπ<sup>0</sup> and non-CCQE backgrounds.)



10









Beam

01

ND280

#### Super-Kamiokande



# ND280

- ND280 is the near detector facility with two main detectors located 280m from the proton interaction point:
  - On-axis INGRID.
  - Off-axis ND280m.
  - Three main purposes:
    - v beam stability.
    - V cross-sections.
    - v beam flux constraint.



# On-axis (INGRID)



INGRID counts v CC events in a cross of 13 identical detectors:

total rate monitors beam intensity stability with respect to proton on target counting.

The relative event counts between modules monitor the beam direction stability.





## Off-axis: ND280

- Off-axis ND280 is a detector complex with tracking calorimeters, time projection chambers and Electromagnetic calorimeters in the UA1/Nomad 0.2T magnet.
  - V interaction target polystyrene (CH) and water.
  - Particle ID by dE/dx and calorimetry.
  - Charge sign by curvature.
- Specific  $\pi^0$  detector (P0D) made of water, CH and brass optimised for NC  $\pi^0$ measurement.



#### Magnet was granted by CERN







Off-axis:  $V_{\mu}$  analysis







# Off-axis ND280 analysis real events



F.Sánchez (IFAE) PACT-2013

n





F.Sánchez (IFAE) PACT-2013



#### Off-axis ND280 analysis

- Select highest momentum negative track starting in FGD to be compatible with electron according to TPC and ECAL PID.
- Subdivide the sample according to the presence of pions in the event.
- Use the  $v_e$  flux prediction after the  $v_\mu$  flux and cross-section fit.
- Use  $\gamma \rightarrow e^+e^-$  to constrain main background from  $\pi^0 \rightarrow \gamma \gamma$

 $\frac{N_e^{meas}}{N_e^{pred}} = 1.06 \pm 0.06(stat) \pm 0.08(syst)$ 

 $\frac{N_{\gamma}^{meas}}{N_{\gamma}^{pred}} = 0.77 \pm 0.02 (stat)$ 



.







18



### **Cross-sections**

- The T2K signal is the CCQE events. The 2 body kinematics allow to estimate the neutrino energy.  $\nu_{\mu}n \rightarrow \mu^{-}p$
- Other channels can be seen as backgrounds to the CCQE signal.
  - We need to identify the channel by using the hadronic component of the interactions.
- At T2K energies there are many channel thresholds (CCIπ<sup>+</sup>, CCIπ<sup>0</sup>, CC Deep Inelatic Scattering, ...)
- Cross-section models are not precise.
- Final state interactions inside the nucleus alter the hadronic component.



$$E_{reco} = \frac{m_p^2 - (m_n - E_b)^2 - m_\mu^2 + 2(m_n - E_b)E_\mu}{2(m_n - E_b - E_\mu + p_\mu \cos \theta_\mu)}$$

#### $E_{\text{b}}$ is the binding energy



### Cross-sections: unknowns (=) =>



SEVERO





# Flux prediction



Beam

ND280

Super-Kamiokande



### Flux constraint

#### **Neutrino Flux Model:**

- Data-driven: NA61/SHINE, beam monitor measurements
- Uncertainties: modeled by variation of normalisation parameters (*b*) in bins of neutrino energy and flavour

#### **Neutrino Cross Section Model (NEUT):**

- Data-driven: External neutrino, electron, pion scattering data
- Uncertainties: modeled by variations of model parameters ( $M_A$ ,  $p_F$ ,  $E_b$ ) and ad-hoc parameters

#### **Constraint from ND280 Data**

- Data Samples enhanced in CC interactions with 0, 1 or others (mainly multiple pions)
- Fit to data constrains flux, *b*, and cross section,  $x=(M_A, p_F, E_b, ad-hoc, ...)$ , parameters
- Constrained SK flux parameters and subset of cross section parameters are used to predict SK event rates



## **Constrained flux**



#### **Cross-section** parameters

| Parameter                           | Prior to ND280<br>Constraint | After ND280<br>Constraint |  |
|-------------------------------------|------------------------------|---------------------------|--|
| M <sub>A</sub> <sup>QE</sup> (GeV)  | 1.21 ± 0.45                  | 1.223 ± 0.072             |  |
| M <sub>A</sub> <sup>RES</sup> (GeV) | $1.41 \pm 0.22$              | $0.963 \pm 0.063$         |  |
| CCQE Norm.                          | $1.00 \pm 0.11$              | 0.961 ± 0.076             |  |
| CC1π Norm.                          | $1.15 \pm 0.32$              | $1.22 \pm 0.16$           |  |
| NC1π <sup>0</sup> Norm.             | $0.96 \pm 0.33$              | 1.10 ± 0.25               |  |

GeV)

- T2K  $v_{\mu}$  and  $v_{e}$  flux predictions are constrained by the fit.
- The cross-section parameters are also constrained.
- Plots show central values and error bands for normalisation parameters.





### Covariance matrix

T2K SK flux parameters are constrained through their prior correlations with the ND280  $\nu_{\mu}$  flux parameters



Subset of cross section parameters are correlated at near and far detectors:  $M_A^{QE}$ ,  $M_A^{RES}$ , low energy CCQE normalisation, low energy CCI $\pi$  normalisation.







## Super-Kamiokande



- 50 kTon water Cherenkov detector. (22.5 KTon fiducial).
- ~II 000 20" PMT inner detector.
- ~2000 8" PMT outer detector to veto external background.



SK: particle ID



- The expected angular distribution of Cherenkov photons along the primary particle direction is different in electrons and muons:
- The electron is not sharp due to Multiple Scattering & showering.



# Super-Kamiokande & TT<sup>0</sup>

- The misidentification of π<sup>0</sup> and electrons happens when one photon is not identified:
  - The two electron-like rings overlap.
  - One of the two e-like rings is faint and it is lost in the Cherenkov light of the other photon.
- Or with 2  $\gamma$ , the invariant mass of the photons has poor resolution.





## $v_{\mu}$ selection



F.Sánchez (IFAE) PACT-2013

29



# V<sub>e</sub> selection





MR



# v oscillation analysis



Beam

0 1

ND280

d'

Super-Kamiokande









### V<sub>µ</sub> disappearance

- Expected number of events in absence of oscillations: 205 ± 17 (syst). Flux+ $\sigma_{vN}$
- Observed number of events: 58





# The $\theta_{23}$ octant

• In the limit:  $\Delta m_{12}^2 << \Delta m_{23}^2$  the disappearance probability is given by:

 $P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4\cos^2\theta_{13}\sin^2\theta_{23}[1 - \cos^2\theta_{13}\sin^2\theta_{23}]\sin^2(1.27\Delta m_{32}^2 L/E_{\nu})$ 

- If  $\theta_{13} = 0$ 
  - $P(\nu_{\mu} \to \nu_{\mu}) \simeq \qquad 1 4\sin^2 \theta_{23} [1 \sin^2 \theta_{23}] \sin^2 (1.27\Delta m_{32}^2 L/E_{\nu})$  $1 2\sin^2 2\theta_{23} \sin^2 (1.27\Delta m_{32}^2 L/E_{\nu})$

• If  $\theta_{13} = 0$  and  $\theta_{23} \sim 45^\circ$ , the  $V_{\mu}$  disappearance is sensitive to the octant

(i.e.  $P_{\nu\mu \rightarrow \nu\mu}(\theta_{23} > 45^\circ) \neq P_{\nu\mu \rightarrow \nu\mu}(\theta_{23} < 45^\circ)$ )

- The right parameter is  $\sin^2\theta_{23}$  and not the traditionally used  $\sin^2(2\theta_{23})$
- Uncertainty in  $\theta_{13}$  needs to be propagated.



### v<sub>µ</sub> disappearance

 $P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4\cos^2\theta_{13}\sin^2\theta_{23}[1 - \cos^2\theta_{13}\sin^2\theta_{23}]\sin^2(1.27\Delta m_{32}^2 L/E_{\nu})$ 



Physical Review Letters in Press. Arxiv:1308.0465

 T2K already dominates the measurement of mixing angle for Long Baseline experiments (x2 more statistics soon!!)






♠



#### V<sub>e</sub> appearance



 Fixed oscillation parameters

  $\Delta m_{12}^2$   $7.6 \times 10^{-5} \text{ eV}^2$ 
 $\Delta m_{32}^2$   $2.4 \times 10^{-3} \text{ eV}^2$ 
 $\sin^2 2\theta_{23}$  1.0 

  $\sin^2 2\theta_{12}$  0.8495 

  $\delta_{CP}$  0 degree 

#### Analysis method

- We scan over  $\sin^2 2\theta_{13}$  space to find the best fit value of  $\sin^2 2\theta_{13}$ , where the likelihood ( $\mathscr{L}$ ) becomes maximum.
- Likelihood is calculated by comparing the number of observed events ( $N_{obs}$ ) and the electron momentum & angle (p- $\theta$ ) distribution with MC.
- We fix the oscillation parameters other than  $sin^2 2\theta_{13}$ .





38



### V<sub>e</sub> appearance



#### 6.4×10<sup>20</sup> PoT

|             |                        |                          |                             |        |              | w/o ND280 constrain                                                                                                          | nt  |
|-------------|------------------------|--------------------------|-----------------------------|--------|--------------|------------------------------------------------------------------------------------------------------------------------------|-----|
| Ξ           | Event cath.            | $sin^2 2\theta_{13} = 0$ | $\sin^2 2\theta_{13} = 0.1$ |        | 3000         | 00 - w/ ND280 constraint                                                                                                     | :   |
|             | V <sub>e</sub> signal  | 0.38                     | 16.42                       | )      | 2000         | $\sin^2 2\theta_{13} = 0$                                                                                                    |     |
| ב<br>ע<br>ע | Ve back.               | 3.17                     | 2.93                        |        | ILUILLAI     | $\sin^2 2\theta_{23} = 1.0$<br>$\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$<br>(Normal hierarchy)                     |     |
| ב           | $v_{\mu}$ back.        | 0.89                     | 0.89                        | 1      | 1000         | $\delta_{\rm CP} = 0$<br>6.4 × 10 <sup>20</sup> p.o.t.                                                                       |     |
|             | Vµ+ Ve back.           | 0.20                     | 0.19                        |        | 0            |                                                                                                                              |     |
|             | Total                  | 4.64                     | 20.44                       |        |              | Expected number of signal+background events                                                                                  |     |
| -           | Error source           | $sin^2 2\theta_{13} = 0$ | $sin^2 2\theta_{13} = 0.1$  | 0 5    | 2000         | $\sin^2 2\theta_{12} = 0.1$<br>w/o ND280 constrain                                                                           | int |
|             | Beam flux and<br>V int | 4.9%                     | 3.0%                        | winit  | 1500         | $\sin^{2}2\theta_{23} = 1.0$ $\sin^{2}2\theta_{23} = 2.4 \times 10^{-3} \text{ eV}^{2}$ (Normal hierarchy) $\delta_{cm} = 0$ |     |
| מחו         | Far detector           | 6.7%                     | 7.5%                        | rhitra | 1000         | $^{00} = 6.4 \times 10^{20} \text{ p.o.t.}$                                                                                  |     |
|             | +FSI+SI+PN             | 7.3%                     | 3.5%                        |        | <b>,</b> 500 |                                                                                                                              |     |
| yor         | Total                  | 11.1%                    | 8.8%                        |        |              |                                                                                                                              |     |
| 2           | Total(2012)            | 13.0%                    | 9.9%                        | 1      | 9            | 0 10 20 30 40<br>Expected number of signal+background events                                                                 |     |
|             |                        |                          |                             |        |              | Expected number of signal (buckground events                                                                                 |     |

39



F.Sánchez (IFAE) PACT-2013



#### Ve appearance



F.Sánchez (IFAE) PACT-2013

41





F.Sánchez (IFAE) PACT-2013

EXCELENCIA SEVERO OCHOA

42



#### V<sub>e</sub> appearance



43



### Ve appearance

 $\delta_{
m CP}$ 

The uncertainty in the atmospheric mixing angle.

 $\delta_{CP}$  vs. sin<sup>2</sup>2 $\theta_{13}$  contour depends significantly on the value of  $\sin^2\theta_{23}$ .

The  $\theta_{23}$  octant is relevant for the future  $\delta_{CP}$ vs.  $sin^2 2\theta_{13}$  sensitivity.

NOTE: These are ID contours for values of  $\delta_{CP}$ , not 2D contours in  $\delta_{CP}$ - $\theta_{13}$  space













# Nova

Wisc

onsi

- · Goals:
- Observe  $v_{\mu} \rightarrow v_{e}$  and measure the mixing angle  $\theta_{13}$ .
- Resolution of the neutrino mass hierarchy
- Search for CP violation in the neutrino sector
- Improved measurements of sin<sup>2</sup>(2θ<sub>23</sub>) to within a few percent.
- Determine the octant of θ<sub>23</sub>

Existing NuMI MINOS FAIL Beam from FNAL OMATION Upgrade from 330 kW to 700 kW in progress

Nearly identical ~300 ton detector located at FNAL, 14 mrad off-axis & 1 km from source will measure v spectrum before oscillations occur.

Fermilab

Chicago

46





|              | [1,3]GeV | [0,120]Gev |
|--------------|----------|------------|
| Total        | 63.5     | 103.8      |
| Numu         | 62.1     | 97.6       |
| Anti-Numu    | 1.0      | 3.9        |
| Nue+Anti-Nue | 0.4      | 2.3        |

[1,3]GeV:  $\overline{\nu}_{\mu}/\,\nu_{\mu}$  = 1.6%

[1,3]GeV:  $(\nu_e + \overline{\nu}_e)/\nu_\mu$  = 0.6%

ß

EXCELENCIA SEVERO OCHOA

47



### Beam status



- Commissioning of the NuMI beam has begun and will continue through end of the year
  - beam to target hall achieved Aug. 5
  - horn and target scans with beam should happen any day now
- 330 kW (pre-shutdown capability) → 500 kW achieved by use of recycler and reduction of cycle time in MI.
- Limited in short-term to ~500 kW until Booster RF system upgrades are complete.

#### T2K might get up to 400 kW in 2014



## Nova detector

The NOvA Detectors



49



## Nova detector

#### The NOvA Detectors



F.Sánchez (IFAE) PACT-2013

49

## Nova oscillations



F.Sánchez (IFAE) PACT-2013

SEVERO OCHOA



### Nova oscillations

#### 1 and 2 $\sigma$ Contours for Starred Point



• The strategy in NOvA is to compare the oscillation probability of  $v_{\mu} \rightarrow v_{e}$  and  $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$  to extract mass hierarchy and first information on  $\delta_{CP}$ 

- Precision measurement of  $\sin^2(2\theta_{23})$  from  $\nu_{\mu} \rightarrow \nu_{\mu}$  and  $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$
- If θ<sub>23</sub> is non-maximal, then we also have the capability of determining the octant; this tells us whether or not ν<sub>μ</sub> couples more strongly to ν<sub>2</sub> Or ν<sub>3</sub>.





# Potential of Nova & T2K



52

# Future Scp sensitivity







F.Sánchez (IFAE) PACT-2013

53



 $\Gamma rue sin^2(\theta_{23})$ 

# Future $\delta_{CP}$ sensitivity

T2K + Nova + reactor



Region where δ<sub>CP</sub> can be discovered with 90% C.L. True Normal MH True Inverted MH





T2K alone

 $50\%\nu + 50\%\bar{\nu}$ 

T2K+ Nova

Nova alone

ssumptions 
$$\begin{bmatrix} \sin^2 2\theta_{13} = 0.1 \\ \Delta m_{32}^2 = 2.4 \times 10^{-3} eV^2 \\ \delta(\sin^2 \theta_{13}) = 0.005 \end{bmatrix}$$

 $\oplus$  simple normalisation errors.



55



### A word on steriles

All you (might) want to know about steriles:

arXiv:1204.5379v1 [hep-ph]

6

### Steriles

EXCELENCIA SEVERO OCHOA









# Next to Next Long Base Line experiments

LBNE





F.Sánchez (IFAE) PACT-2013

58

n



## What's next

It is not obvious T2K+Nova will resolve the mass hierarchy + CP violation.

- Mass hierarchy might be addressed with LBL + v Large uncertainties atmospheric experiments (INO, Pingu, SK, etc...) in their capabilities
- CP violation seems to be reachable "only" by long base line experiments (initial conditions are relevant).
- Two approaches:
  - Short base line, no matter effects, large statistics for CP T2HK but no hierarchy.
  - Long base line, matter effects + 2 oscillation peaks for CP and matter effects.
     LBNE-LBNO



# T2HK

#### Moderate acc power of IMW. Rely on huger mass







leutrino Facility

EA, Tokai)

⇒LoI: The Hyper-Kamiokande Experiment <u>http://arxiv.org/abs/1109.3262</u>

- Natural extension of the technique being proven by the success of T2K
  - Off-axis narrow band beam,  $E_v \sim 0.6 \text{GeV}$ , 750kW $\sim 1 \text{MW}$
  - Hyper-Kamiokande: HUGE water Cherenkov detector
- Mainly focus on measurement of CP asymmetry
  - 295km baseline (=less matter effect)
- Complementary to >1,000km baseline experiments (LBNE/LAGUNA-LBNO)
  - Sensitivity (CP/MH), technology (WaterC./Liq.Ar)
- Rich programs with both near and far detectors
  - Proton decay / atm. v / solar SN v / v interaction…

#### This is basically a gigantic T2K

+ statistics

#### my view

- + known technology
- no matter effects, no hierachy

F.Sánchez (IFAE) PACT-2013

60

## T2HK



High sensitivity to CPV w/ <~5% sys. Error

- To go to CPV discovery, <u>intensity upgrade of J-PARC is the key</u> together with the efforts to reduce systematic errors
- Required run-time in LOI: <u>7.5MW x years</u>
  - 750kW (J-PARC MR design power): 10 years =  $3yr \times v + 7yr \times v$  bar

5% syst is what T2K expects!!!

SEVERO

# LBNO

#### **LAGUNA-LBNO: sites overview**

#### Three far sites considered in details

arXiv:1003.1921 [hep-ph]

- Option 1: Pyhäsalmi mine (privately owned), 4000 m.w.e overburden, excellent infrastructure for deep underground access
- Option 2: Fréjus, nearby road tunnel, 4800 m.w.e. overburden, horizontal access
- Option 3: Umbria (LNGS extension), green site with horizontal access, 2000 m.w.e., CNGS off-axis beam
- Protons and beams:

EXCELENCIA SEVERO OCHOA

- Design of new CERN conventional neutrino beam to Finland (CN2PY) Baseline = 2300 km
- Upgrades of CERN SPS to 700kW
- New CERN HP-PS (2MW@50 GeV)
- Recently: assessment of a new conventional beam coupled to accelerator upgrade at Protvino, Russia (OMEGA project) – Baseline = 1160 km



 Detector options: 20, 50, 100 kton LAr; 50 kton LSc and 540 kton WCD



+ high energy  $\rightarrow \sigma_{vN}$  well known

2300 km base line



F.Sánchez (IFAE) PACT-2013

64







Provide a >5 $\sigma$  direct determination of MH independent of the values of  $\theta_{23}$  &  $\delta_{CP}$  in  $\approx$ 2 years of running

Other methods proposed (atmospheric neutrinos, reactors) do not provide such a level of sensitivity and could be prone to irreducible systematic errors

#### 2300 km is unique for hierarchy



## LBNO

#### Sensitivity to CPV: importance of 2<sup>nd</sup> max



Very reach phenomenology, reduced systematics?

SEVERO OCHOA

### LBNE



#### 1300 km base line

SEVERO

I<sup>st</sup> phase with 10 kt LiqAr

2<sup>nd</sup> phase with 34 kt LiqAr ?

Accelerator power from 750 kW to 2.3 MW

#### LBNE

my view

- very low mass  $\rightarrow$  very low statistics
- risky technology (maybe a + )
- Matter effects might be not too large.
- + matter effects, hierarchy
- + 2 oscillation peaks.
- + lower energy  $\rightarrow \sigma_{vN}$  poorly known

### LBNE



#### 1300 km base line

SEVERO

I<sup>st</sup> phase with 10 kt LiqAr

2<sup>nd</sup> phase with 34 kt LiqAr ?

Accelerator power from 750 kW to 2.3 MW

#### LBNE

my view

- very low mass  $\rightarrow$  very low statistics
- risky technology (maybe a + )
- Matter effects might be not too large.
- + matter effects, hierarchy
- + 2 oscillation peaks.
- + lower energy  $\rightarrow \sigma_{vN}$  poorly known



### LBNE





68



LBNE10 does much better than full program for existing experiments




#### Mass hierarchy

- Old of the previous sensitivity plots for mass hierarchy were done assuming a gaussian distribution of probability.
- Since the value of |Δm<sup>2</sup>| is very well known. The distribution is more a Bernouille probability with only one try.
- This fact was ignored, all the collaborations are reconsidering their sensitivities.





#### Some observations

- T2HK has the highest sensitivity to CP violation but this implies: 74% coverage  $\delta_{CP}$  @ 3 $\sigma$ .
- LBNE/LBNO can make hierarchy at 5σ after 5 years of running.
- LBNE/LBNO CP violation will depend on the total mass achieved by the far detector.
- We can be lucky and get hints of CP in the next 5 years or be unlucky and get no hint in the next 15 years.

Very confusing panorama, many unknowns from physics, finance and politics.



#### Conclusions

- this opens the possibility to measure the CP phase in the future:
  - comparing neutrinos and anti-neutrinos.
  - with the very precise constrain from the reactor experiments.
- Current generation of experiments has limited sensitivity to CP phase and mass hierachy:
  - But not null!!!!.
- Next generation increases the sensitivity but to values that are not definitive:
  - T2HK cover 75% of the possible values with 90% CL but does not measure hierarchy.
  - LBNE/LBNO can do hierarchy and possibly CP depending on the final achieved mass of detector.
     Mass hierarchy sensitivity needs to be revisited!



# All in all, there is an exciting time in fron of us.

### The era of V precision physics has started.





### Support slides

F.Sánchez (IFAE) PACT-2013

74



#### Super-Kamiokande & TT<sup>0</sup>

- New algorithm can also use the best-fit likelihood ratio to distinguish  $e^{-}$  from  $\pi^{0}$
- Even if  $2^{nd}$  photon is identified, it may be on the tail of the  $\pi^0$  mass resolution.
- In this case, the 2-ring likelihood will still be preferred and the event is identified as  $\pi^0$
- 2D cut removes 70% more π<sup>0</sup> background than previous method for the same signal efficiency.









Data from T2K Runs 1-4: 5.9x10<sup>20</sup> protons on target

| Selection    | Number of Events |
|--------------|------------------|
| СС0п         | 16912            |
| CC1π         | 3936             |
| CC Other     | 4062             |
| CC Inclusive | 24910            |

Data are binned in two dimensions: muon momentum (p) and angle ( $\cos\theta$ ) preserving information on neutrino energy and interaction q<sup>2</sup>

#### Off-axis: Ve analysis

## V<sub>e</sub> events at the ND280 P0D detector calculated with 8.6x10<sup>19</sup> PoT.



 $\frac{Data - Back_{MC}}{Sign_{MC}} = 0.91 \pm 0.13(stat) \pm 0.18(det) \pm 0.13(flux)$ 

In good agreement with the tracker  $V_{\rm e}$  measurement

SEVERO



#### Off-axis: V<sub>µ</sub> analysis

- The ND280 constrains flux and cross-section.
- Sample of CC events is selected. Muon as highest momentum negative track in the event in the target fiducial volume compatible with muon Pid in TPC.
- The sample is divided in 3 categories:  $0\pi^+$ ,  $1\pi^+$  and others (mainly Deep Inelastic Scattering) based on the detection of pions in the event.
  - Pions are detected as tracks in TPC, FGD or Michel electron signature near vertex.



#### -PARC



**Joint Project between KEK and JAEA** 

EXCELENCIA SEVERO OCHOA



#### On-axis: beam stability 🗘 🖒



Beam alignment and flux measured with neutrinos

- Neutrino rate stable within 0.7%.
- Beam direction variation << I mrad.



#### Flux prediction



- Simulation is carried out by Fluka2008 3d.
- The pion and kaon production is weighted to the results from NA61-Shine.
  - "A priori" flux error: ~15% below @ 1 GeV.
  - Strong correlation between near and far detector.





#### **Beam stability**

Muon monitor downstream the beam dump monitors beam direction. Stability requirements < I mrad

I mrad change of v beam direction results in 2-3% change of the neutrino energy scale (~16MeV)



83

#### Data sets



- Total delivered beam: 6.63x10<sup>20</sup> protons on target.
  - 8.3% of the expected T2K PoT (7.8x10<sup>21</sup>PoT)
- $v_{\mu} \rightarrow v_{e}$  analysis uses 96.3% of acquired Run I-4 PoT.
- $v_{\mu} \rightarrow v_{\mu}$  analysis uses Run I-3 (3.01×10<sup>20</sup>)

SEVERO OCHOA

x~2 PoT in Run4!



#### History

- 1999 Ko Nishikawa and Yoji Totsuka formulate  $v_{\mu} \rightarrow v_{e}$  experiment at J-PARC.
- I999-2004 K2K finds the first evidence of neutrino oscillation in a Long Base Line experiment.
- 2000-2004 Letter of Intent; Detailed design; Formation of international collaboration.
- 2004 Five year construction plan for T2K approved by Japanese government.
- February 2008, finished ND280 pit construction.
- May 2008, installation ND280 magnet.
- April 2009 Commissioning of beamline.
- January 2010 First neutrino events for neutrino oscillation studies.
- March 2011 Great East Japan earthquake.
- June 2011 T2K announces  $2.5\sigma$  "indication" of  $\nu_{\mu} \rightarrow \nu_{e}$
- March 2012 T2K resumes data taking after earthquake recovery.









#### T2K collaboration

#### ~500 member, 59 institutions, 11 countries.







0 1

87



#### Upgrade plan

- Planned J-PARC Main Ring (MR) power improvements 220 kW operation in CY2013. Integrated 6.7x10<sup>20</sup> PoT to date.
  - Linac upgrade to be completed within a year. Expect range of steady MR operation for neutrino between 200-400 kW
  - Planned MR upgrade (depends on funding). Up to 750 kW
  - Possible staged upgrade scenario:
    - I. Double current protons on target.
    - 2. Next-to-next doubling.
    - 3. If MR upgrade, reach full planned statistics (78×10<sup>20</sup> PoT).





9

## Neutrino oscillations



89



Similar to quarks, flavour and Lorentz eigenstates of massive neutrinos are not identical.

The two eigenbases are related through the Pontecorvo-Maki-Nakagawa-Sakata matrix (UPNMS).









#### <u>atmospheric</u>

 $U_{PNMS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta_{CP}} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{21} & \sin\theta_{21} & 0 \\ -\sin\theta_{21} & \cos\theta_{21} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 

$$\begin{pmatrix} \nu_e & \nu_\mu & \nu_\tau \end{pmatrix} = U_{PNMS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- With  $3\nu$ , there are 3 angles and 1 imaginary phase:
- The phase allows for CP violation similar to the quark sector.
  - There are also 2 values of  $\Delta m^2$ : traditionally  $\Delta m^2_{12}$  &  $\Delta m^2_{23}$ .







What is missing

- δ<sub>CP</sub> accessible through:
  - comparison of appearance with reactor disappearance.
  - comparison of  $v_{\mu} \rightarrow v_{e}$  and  $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$
- The θ<sub>23</sub> octant:
  - The  $\theta_{23}$  is close to 45°
- The absolute neutrino mass.
- The mass hierarchy: is  $m_3 > m_1$ ?



 $egin{aligned} & 
u_\mu 
ightarrow & 
u_\mu 
ightarrow & 
u_e \ & ar{
u}_\mu 
ightarrow & ar{
u}_\mu \end{aligned}$ 

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$