

Mediterranean v-Telescopes

J.J. Hernandez-Rey IFIC (CSIC-UV)

Astroparticle Physics and Cosmology, IFT, UAM, 21-25 October 2013

Why neutrino as cosmic messenger?

Protons are deflected by magnetic fields ($E_p < 10^{19} \text{ eV}$) UHE protons interact with the CMB ($E_p > 10^{19} \text{ eV} \rightarrow 50 \text{ Mpc}$)

Neutrons decay (~10 kpc at E ~ EeV).

Photons interact with the EBL (~100 Mpc) and CMB (~10 kpc).

Neutrinos are neutral, weakly-interacting particles.

Where can HE neutrinos come from?

p/N accelerators do exist Possible sources : Galactic: SNRs Extragalactic: AGNs, GRBs but origin still <u>not</u> settled

Accelerated p and nuclei can produce neutrinos:

$$p + A/\gamma \rightarrow \pi^{\pm} + \dots$$
$$\rightarrow \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu}) + \dots$$
$$\rightarrow e^{\pm} + \nu_{e}(\overline{\nu}_{e}) + \nu_{\mu}(\overline{\nu}_{\mu}) + \dots$$

High energy v Astronomy

Detection techniques exist for $E_v \approx 10 \text{ GeV} - 10^2 \text{ EeV}$ (10 orders of magnitud same span as radio to X-ray in EM radiation, but at $\lambda < 10^{-14} \text{ cm}$)

Detection principle

Muon neutrinos are well suited for HE detection (crosssection and muon range increase with energy)

Muons emit Cherenkov light collected by a lattice of PMTs.

Other signatures can also be detected. Long track \rightarrow angular resolution

Cherenkov Neutríno detectíon

Nota Bene: Other possible techniques exist, e.g. via <u>air showers</u>, acoustic and <u>radio emission</u>.

→ anita

Event types

 v_{μ} charged current v_{e} charged current + v_{χ} neutral current v_{τ} charged current

Upgoing muons µ track length: 1-10 km (TeV to PeV) good angular resolution

Downgoing muons For UHE: E_{atm} ~E^{-3.7} E_{astro}~E⁻² Cascades (EM and hadronic) Contained events

Light from a small region (< sensor spacing)

Bad angular resolution (tens of deg), but better energy determination v_{τ} not absorbed by Earth, "regenerated" with lower energies.

At PeV energies v_{τ} can be identified by the production and decay (τ) cascades "double bang"

- High energy astrophysics
- Indirect dark matter search
- Oscillations
- Exotics (monopoles, nuclearites)
- Other v sources

–Earth opacity–Decreasing neutrino flux

ANTARES RESULTS

Diffuse v_{μ} flux – Upper limits (E⁻²)

885 days

Discards downgoing muons by usual techniques (zenith angle, track quality, etc)

Background vs. Signal discrimination by energy based on a novel technique: Repetition rate on same OM

E²Φ(E)_{90%}= 4.7×10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ 20 TeV<E<2.5 PeV

Phys. Lett. **B696** (2011) 16

Point sources

Updated search 2007-2012 (1340 days)

PRELIMINARY 5516 neutrino candidates (90 % of which being better reconstructed than 1⁰) Same most significant cluster with 6 additional events: p-value = 2.1% (2.3 σ) Compatible with background hypothesis

Point Sources

New limits 40 % better than previous result (ApJ. 760 (2012) 53)

A way to better understand the sources and the related physics mechanisms. A way to increase the detector sensitivities (uncorrelated backgrounds).

Fermi Bubbles

- Excess of γ- (and X-)rays in extended "bubbles" above and below the Galactic Centre. Correlated to the haze seen by WMAP
- Homogenous intensity, hard spectrum (E⁻²) probably with cutoff.

M. Su et al., Ap. J. 724 (2010)

•

Origin still unclear promising Galactic wind model involves hadronic processes (Crocker & Aharonian, PRL 2011): accelerated cosmic rays interacting with ISM $\rightarrow \pi \rightarrow \gamma$, $\nu \Phi_{\nu} \approx 0.4 \times \Phi_{\gamma}$

In the field of view of ANTARES background estimated from average of 3 non-overlapping "off-zone" data regions (same size, shape and average detector efficiency)

Fermi Bubbles

- 12-line data sample: May 2008 Dec 2011 (806 days livetime). Only muon neutrinos.
- E_u estimation based on Artificial Neural Networks procedure.
 - Optimization tuned on off-zone background events (MRF).

on-zone off-zone average expected signal (\neq cutoff, 50TeV cutoff)

Upper limits with respect to different models 65% improvement expected with 2012-2016 data

GRB triggered searches

Search for neutrino events in coincidence with observed GRB

 Analysis of GRBs from late 2007 – 2011: 296 long GRBs, Total prompt emission: 6.6 hours Information from FERMI/SWIFT/GCN

 GRB simulations of expected neutrino fluence:

NeuCosmA [Hümmer et al. (2010)] Guetta [Guetta et al. (2004)]

Quality cut optimized for NeuCosmA
 & highest signal discovery probability

No events found within 10° window from GRB
 Expected: 0.48 (Guetta), 0.061(NeuCosmA)

Dedicated analysis for GRB130427

Grey: first ANTARES limit (40 GRBs, 2007) JCAP 03(2013) 006

Black: IceCube IC40+59 (215 GRBs)

arXiv1307.0304 (to appear in A&A)

Neutrino search from γ-ray flaring blazars

- **Motivation**: γ-ray sky extremely variable
- **Goal:** using the information from γ-ray detectors (Swift, Fermi , HESS) increase discovery potential.
- Data: 2008 data (61 days)
- LBAS Catalog (Fermi LAT Bright AGN Sample).
- Astrop. Phys. 36 (2012) 204
- Improved search:
 - 2008-2011 data (750 days)
 - 86 flaring periods 2FGL+Fermi Flare Advocates
 - Allow a lag of ± 5 days for the flares
 - 4 energy spectra considered
 - (E⁻¹, E⁻², E⁻¹ and cutoff 1TeV, E⁻¹ and cutoff 10 TeV).

Events from 3C279

Lowest p-value 10% : 3C279

3C 279 (279 flaring days)2 events compatiblein time and direction

3C279 events

54789 MJD at 0.5° with high energy (89 hits, Λ =-4.5)

54845 MJD at 1.1° lower energy (52 hits, Λ=-5.45)

Modified Julian Dat

Phys. Lett. B 714 (2012) 224

Magnetic Monopoles

 Required in many models of spontaneous symmetry breaking ('t Hooft, Polyakov)

upgoing \Rightarrow masses less than ~10¹⁴ GeV

• High photon yield $(8.5 \times 10^3 \text{ times } \mu)$ Cherenkov threshold $\beta > 0.74$ secondary δ -rays $\beta \ge 0.5$

• Modified track reconstruction with β free

Magnetic Monopoles

Astroparticle Physics **35** (2012) 634

Search for Exotics

Nuclearites:

~1 ms to cross the detector Involve multiple *snapshots Selection based on:*

- downgoing events
- Cuts on duration:

 $dt = t_{last trigg.} - t_{first}$

Optimized depending on: detector layout, type of trigger thesholds.

For single snapshot additional cut on dt.

Detection of Dark Matter

- WIMPs (neutralinos, KK particles) are among the most popular explanations for dark matter
- They would be accumulated in massive objects like the Sun, the Galactic Centre, dwarf galaxies...
- The products of their annihilations would yield "high energy" neutrinos, which can be detected by neutrino telescopes
- In the Sun a signal would be very clean (compared with gammas from the GC, for instance)
- Sun travel in the Galaxy makes it less sensitive to non-uniformities

Dark matter search

• From the Sun using 2007-2012 data

1321 days
(4.5 times more statistics than previous analysis
arXiv:1302.6516, soon in JCAP

- Events reconstructed on a single line are also used: azimuth angle missing, but "almucantar restriction" good enough to reject background. Sizeable increase of events at low energy.
- Theoretical models: adaptive full simulation within the CMSSM and MSSM-7 (including Higgs information plus XENON-100 limits).

(KID-1	THE REPORT OF A REAL PROPERTY.	100-110-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	C 2012 MOLECHINE (1993) (1
	Year	Lines	Days
差点	2007	5	192
	2008	9-12	180
	2009	8-12	210
	2010	9-12	240
	2011	12	275
ため	2012	12	224

Unblinded - BBFIT Multiline (differential)

Ψ**(°)**

Spin-dependent cross-section limits

Spin-independent cross-section limits

Sea Sciences

Geoscience

Japan earthquake 2011 March 11 at Antares site

KM3NeT

• Central physics goals:

- Neutrino Astronomy under the Mediterranean Sea.
- Investigate neutrino "point sources" in the 100 GeV-100 TeV energy range.
- Focus on Galactic sources.
 Complement IceCube field of view.
- Exceed IceCube sensitivity
- Implementation requirements:
- Construction time ≤5 years
- Operation over at least 10 years without "major maintenance"

KM3NeT

- 40 Institutes in 10 European countries.
- Design Study funded by the EU VIth Framework Program
- Conceptual Design Report and Technical Design Report released.
- Preparatory Phase funded by EU VIIth Framework Program.. Ended in 2012.
- 40 M€ available for the first phase.

KM3NeT Sites

2500 m

Toulon

KM3NeT-France: Toulon

•

•

KM3NeT-Italy: Capo Passero

KM3NeT-Greece: Pylos

Long-term site characterisation measurements performed

3500 m

Capo Passero

33

4500 m - 5200 m

Pylos

Distributed Research Infrastructure

- **ESS-Consortium** ESS node shore station neutrino KM3NeT-Gr site detector shore station data centre data repository neutrino detector ESS KM3NeT-Fr site node shore station KM3NeT-It site **ESS-Consortium FSS-Consortium** neutrino detector ESS node
- Centrally managed
- Common hardware
- Common software, data handling, operation and control.
- Sites in France, Greece, Italy
- Consistent with funding structure (regional sources)

The building block concept

Building block:

•

- 115 detection units
- Segmentation enforced by technical reasons
- Sensitivity for muons independent of block size above ~75 strings
- One block ~ half IceCube
- Geometry parameters optimised for galactic sources (E cut-off)
- Technical feasibility verified
- KM3NeT includes 6 building blocks

OM with many small PMTs

- **31 3-inch** PMTs in 17-inch glass sphere (cathode area~ 3x10" PMTs)
 - 19 in lower, 12 in upper hemisphere
 - Suspended by plastic structure
- 31 PMT bases (total ~140 mW) (D)
- Front-end electronics (B,C)
- Al cooling shield and stem (A)
- Single penetrator

•

- Increased photocathode area
 - 1 KM3NeT DOM = 3 ANTARES OMs
 - Reduces numbers of penetrations/connectors (expensive & risky)
 - Reduces number of optical modules (expensive)
- 1-vs.-2 photo-electron separation
 - Better sensitivity to coincidences / background suppression
 - Information at online data filter level
- Directionality
 - Additional input to reconstruction and veto algorithms
 - Identification of downgoing events (PMTs are also looking upwards)
 - Reduction of random background (K40, bioluminescence)

Strings as detector units

Mooring line:

- Buoy (probably syntactic foam)
- -2 Dyneema[©] ropes (4 mm diameter)
- 18 storeys (one OM each),
 30-36m distance, 100m anchor-first storey

Electro-optical backbone (VEOC):

- Flexible hose ~ 6mm diameter
- -Oil-filled
- -fibres and copper wires
- At each storey: connection to 1 fibre+2 wires
- Break out box with fuses at each storey: One single pressure transition

Deployment strategy

- Compact package self-unfurling
 - Eases logistics (in particular in case of several assembly lines)
 - Speeds up and eases deployment; several units can be deployed in one operation
 - Self-unfurling concepts is being thoroughly tested and verified
- Connection to seabed network by ROV

"String compactification"

- First successful test in December 2009
- Further tests in April 2013

PP-DOM: K40 Coincidences

Concentration of ⁴⁰K is stable (coincidence rate ~5 Hz on adjacent PMTs)

PPM–DOM deployed in ANTARES instrumentation line

PPM-DOM: Atmospheric muons

40

A detour? ORCA

Mass hierarchy with atmospheric neutrinos?

- MSW effect in Earth induces $\nu/\overline{\nu}$ difference in oscillations.
- Resonance around $E_v \approx 3 10 \text{ GeV}$ (L=D_{earth}, $\rho \approx 4 - 13 \text{ g/cm}^3$)
- Could be measurable since at these energies:

 $\sigma(\nu) \approx 2\sigma(\overline{\nu})$

 Differences in the (E_ν, cosθ_ν) plane between normal and inverted hierarchies

ORCA

- If feasible, it is worth doing it → study group.
- Caveat: agreed KM3NeT technology, must be used, only minor changes (e.g. length of strings, distance, connection techniques)
- Given the funding profile, decision should be taken soon.
- An (scalable) example of detector has been studied:
 - 50 strings, 20 OMs each
 - 31 3-inch PMTs / OM
 - 20 m horizontal distance
 - 6 m vertical distance
 - Instrumented volume: 1.75 Mton water

- Not only "can we see low energy events?",
- Long list of questions:
 - What are the trigger/event selection efficiencies?
 - How and how efficiently can we separate different event classes?
 - How can we reconstruct these events and what resolutions can we reach on $E_{\rm v}$ and θ ?
 - How can we control the backgrounds?
 - What are the dominant systematic effects and how can we control them?
 - What precision of calibration is needed and how can it be achieved?

ORCA

All the questions above are still under investigation.

Results of a toy analysis:

Experimental determination of mass hierarchy at 4-5 σ level requires ~20 Mton-years

Improved determination of Δm^2_{23} and θ_{23} seems possible

KM3NeT Performances

Sensitivity and discovery fluxes for point like sources (E⁻² spectrum) for 1 year of observation time

IceCube discovery 50 50% 2.5÷3.5 above sensitivity flux. IceCube sensitivity 90%CL

KM3NeT discovery 50 50% KM3NeT sensitivity 90%CL

Detector resolution

Diffuse fluxes

Summary

The physics case of neutrino telescopes and their technical feasibility are beyond doubt. The struggle is now to reach the required sensitivity.

•

•

•

- IceCube is operating smoothly and providing unprecedented sensitivities. Hints of a signal have been observed, the tip of the iceberg!
- ANTARES is taking data in its final configuration since 2008 and providing physics results.
- The initiatives for a Med-Sea neutrino telescope (Antares, NEMO and NESTOR) have joined forces to build KM3NeT. Funding is available to start the first phase.
 - The opportunity of low energy cherenkov detectors (PINGU, ORCA) is under study. They could become an interesting option soon.