The Supernova Legacy Survey in the Planck Era

Reynald Pain

Laboratoire de Physique Nucléaire et de Hautes Energies, Paris, France

Oct 23, 2013

The Supernova Legacy Survey

- Using SN Ia to measure cosmology
- Latest SNLS cosmological constraints
- New SDSS-SNLS joint analysis
- Ongoing and future SN programs

Experimental Principle

2 observables : flux: *f* Redshift: z

 $d_{L}^2 = \mathcal{L}/4\pi f$

Use Supernovae as distance indicators to measure the Luminosity distance d_L

d_L is sensitive to the expansion rate and to the Energy content of the Universe

The Luminosity Distance

Assuming the Universe is composed of 2 « fluids » : Masse and X of density ρ_X

$$d_L(z) = (1+z)\frac{c}{H_0} \int dz' \left(\Omega_M (1+z')^{-3} + (1-\Omega_M)\frac{\rho_X(z')}{\rho_X(0)}\right)^{-1/2}$$

Union 2.1 sample (2012)

Oct 23, 2013

What is dark energy ?

$$\rho(z) = \rho_0 \exp\left(\int 3\frac{w(z)+1}{1+z}dz\right)$$

Equ. of State $w = \frac{p}{\rho}$
 $w = -1.1$
 $w = -0.9$
 $w = -0.9$
 $w = -0.9$

Measurement ingredients:

- (High) redshift Type Ia Supernovae (SN Ia)
- additional constraint on Ω_{M} -> increase precision

A word on H₀

Cosmological constraints on Ω_m , Ω_Λ and w come from a comparison of distant and nearby SN brightness

SN alone do not constrain H₀

One needs to start with an absolute distance scale e.g. distance to NGC 4258 and propagate it to galaxies hosting SNe (using cepheids for example)

=> Additional (non SN) systematic uncertainties may affect this measurement

SNe la are NOT standard candles

Very Luminous events ⇒ visible at cosmological distances

Supernovae la light curves

Show little luminosity dispersion

(inter)-calibrating Supernovae la

SNe Ia show Light Curve shape-luminosity relationships (similar to Cepheids P-L relation)

They also exhibit color luminosity relation (brighterbluer)

 ⇒Allows us to measure
 after empirical corrections distances to ~5% precision

Cosmology with SNe la

An empirical approach

$$\mu_B = m_B - M_B + \alpha(s - 1) - \beta c$$

Absolute magnitude Light curve shape at maximum correction

Resframe apparent magnitude at maximum

Color correction. Accounts for

- extinction by dust
- intrinsic color variations

Oct 23, 2013

Extracting mb, s and c from observations

SN restframe fluxes at different redshifts

- → empirical model to interpolate between photometric measurements
- → Trained on sets of nearby & distant SNe

Several LC fitters : SALT2 (Guy et al, 2007), SIfTO (Conley et al, 2008), MLCS2k2 (Jha et al, 2007), CMAGIC (Wang et al, 2003), ...

Hubble residuals versus host mass

SNe Ia appear brighter (4σ) in massive galaxies after lightcurve shape and color correction

Subtle effect – 0.08mag – smaller than stretch and color corrections

Oct 23, 2013

Other potential systematics

- Peculiar velocities for low-z SNe
- Contamination by Core collapse SNe for high-z SNe
- Evolution of color-luminosity relation with redshift
- Evolution of SNe with z : age of stellar population or metallicity
- Gravitational magnification
- about 200 different systematics (S_k) identified.

- Conversion of those systematics into a covariance matrix of SNe distance moduli $(\mu_i) C_{sys,ij} = \sum_k \frac{\partial \mu_i}{\partial S_k} \frac{\partial \mu_j}{\partial S_k} (\Delta S_k)^2$

SNLS - The SuperNova Legacy Survey

http://www.cfht.hawaii.edu/SNLS

SNLS : a "Rolling Search" survey with MegaCam

(every 3-4 night) of 2 fields in four bands (griz)+u for as long as the fields stay visible (~6 months)

=> ~500 SN la identified
 (+ ~300 « photometric »)
observed between 2003 and 2008

Oct 23, 2013

SNLS 3-yr analysis and combined constraints

- ~250 Supernovae at 0.3 <z < 1.1
- Two independent analyses (SN photometry, photometric calibration, light curve fitters)
- precise photometric calibration
- Improved supernova LC modeling (models trained on the SNLS data → bluer part of the restframe spectrum constrained without using observer frame U)
- Include host mass term
- Systematics included in the cosmology fit

Combined SN Hubble diagram

Oct 23, 2013

SN only constraints on w

SN only constraints on w

w = $-0.91^{+0.15}_{-0.21}$ (stat) $^{+0.07}_{-0.14}$ (syst)

Oct 23, 2013

Which systematics are the most important (SN only)?

Description	Ω_m	w	Rel. Area ^a	
Stat only	$0.19\substack{+0.08 \\ -0.10}$	$-0.90\substack{+0.16\\-0.20}$	1	
All systematics	0.18 ± 0.10	$-0.91\substack{+0.17\\-0.24}$	1.85	
Calibration	$0.191\substack{+0.095\\-0.104}$	$-0.92^{+0.17}_{-0.23}$	1.79	
SN model	$0.195\substack{+0.086\\-0.101}$	$-0.90\substack{+0.16\\-0.20}$	1.02	
Peculiar velocities	$0.197\substack{+0.084\\-0.100}$	$-0.91\substack{+0.16 \\ -0.20}$	1.03	
Malmquist bias	$0.198\substack{+0.084\\-0.100}$	$-0.91\substack{+0.16 \\ -0.20}$	1.07	
non-Ia contamination	$0.19\substack{+0.08\\-0.10}$	$-0.90\substack{+0.16\\-0.20}$	1	
MW extinction correction	$0.196\substack{+0.084\\-0.100}$	$-0.90\substack{+0.16 \\ -0.20}$	1.05	
SN evolution	$0.185\substack{+0.088\\-0.099}$	$-0.88\substack{+0.15\\-0.20}$	1.02	
Host relation	$0.198\substack{+0.085\\-0.102}$	$-0.91\substack{+0.16\\-0.21}$	1.08	

Oct 23, 2013

Comparison with Planck results

Oct 23, 2013

SNLS (stat. only) +WMAP7+BAO/DR7+H₀

Flat:

 $w = -1.061 \pm 0.069$ $\Omega_{M} = 0.269 \pm 0.015$

Non-Flat:

$$\begin{split} & w = -1.069 \pm 0.091 \\ & \Omega_{M} = 0.271 \pm 0.015 \\ & \Omega_{k} = -0.002 \pm 0.006 \end{split}$$

Minus BAO:

 $w = -1.018 \pm 0.111$ $\Omega_M = 0.259 \pm 0.049$ $\Omega_k = 0.001 \pm 0.015$

Minus SNe:

 $w = -1.412 \pm 0.333$ $\Omega_{M} = 0.259 \pm 0.030$ $\Omega_{k} = -0.009 \pm 0.008$

In terms of w, adding BAO/DR7 reduces w error from 11% to 9%

PACT Madrid

Error in w: <5% (stat) w/ flatness, ~7% w/ systematics

Oct 23, 2013

Consistent with cosmological constant

Error is <9% (total) when $\Omega_k=0$ relaxed

23

Preliminary constraints from the SNLS-SDSS joint analysis

SNLS-SDSS joint Analysis

Joint SDSS-SNLS analysis

SNLS data sample 5 yr rolling search ~ 500 SNe Ia + ~300 "photometric" Ia for which we are acquiring host spectra (VLT, .. AAT)

SDSS data sample 3 yr rolling search ~ 500 SNe Ia + ~300 "photo Ia"

Joint SDSS-SNLS analysis goals:

- Cross-calibrate (expected gain : ~2 in calib uncertainty)
- Validate LC fitter and joint LC training
- -> update cosmological constraint combining SNLS3+SDSS

SNLS-SDSS cross-calibration

SNLS-SDSS cross-calibration

Betoule et al. (2013)

Combined precision of ~ 0.5% in the 4 bands

band	combined uncertainties
g	0.002
r	0.003
i2	0.003
z	0.006

Overall uncertainty now dominated by the uncertainty in the flux reference

SNLS SN LC @ Z ~0.5

Oct 23, 2013

PACT Madrid

0<u>⊫</u> 53980

54000

54020

MJD

54040

54060

SNLS-SDSS joint Hubble diagram

Oct 23, 2013

Comparison with Planck results

Oct 23, 2013

SNLS-SDSS Planck combined constraint on w

Oct 23, 2013

Future SN programs

Near Future : currently active SN programs

Low/intermediate-z :

SNF (200 z~0.05 SN with multi-epoch spectrophotometry PTF/LSQ : similar z, rolling trigger search+ follow-up Pan Starrs/PS1 : target several 100 SNe up to z=1 -> arXiv CSP : VIS follow-up + NIR follow-up

z>1:

HST measurement of o(10) SN to study specific issues (cluster selected SN, ...)

Aim : robust combined statistic+systematic uncertainty on constant w and attempt at measuring wa

« DETF STAGE III » SN programs

Pan-starrs PS1+2 : 1.8m + 7 deg2 2012-2016? (primarily weak lensing) goal : o(1000) up to z=1

DES : CTIO+new 3deg2 mosaic camera 2012-2016 (primarily weak lensing) goal: 4000 SN up to z=1

Skymapper : 1.35m MSSO (Australia) 2013-2018 Rolling nearby (z~0.1) - yield ~100 SN Ia /yr

Subaru: 8.4m with HSC (1.5 deg FoV) – target (0.8-1.2)

Will collect more and address some of the possible systematics. But very difficult to significantly (x10) improve on w precision Oct 23, 2013 PACT Madrid

Stage IV ground based SN projects

The Large Synoptic Survey Telescope (LSST)

One 8m telescope with 9 deg2 fov

Passed DOE CD1 and NSP PDR First light expected in ~2020

Will yield 250000 SN/yr !

Low AND high-z SN from the same instrument ... Repeat imaging (calibration <0.5%) + « sky » calibration

Oct 23, 2013

LSST: Wide Deep and Fast

Oct 23, 2013

PACT Madrid

R&D for LSST

(1/2 Megacam)

LSST : example of high statistic DE science with SN Ia SNIa statistic will allow to build Will provide time-dependent imaging of an

The large SNIa statistic will allow to build SNIa hubble diagram for different directions in the sky. Will provide time-dependent imaging of an unprecedented sample of rare strong gravitational lensing events.

→ Strong lensed SN la

Space based cosmology with SN la

Detect/follow distant SN Ia from Space

First proposed in 1999 (SNAP) ϕ ~2m telescope 0.6 deg. carrés - Vis+NIR 0.4->1.7 μ 2000 SNe 0.2<z<1.7 in 3 yrs

+ Several incarnations : DESTINY, JEDI, JDEM, DUNE(+), EUCLID, ... now WFIRST, most aiming at weak lensing and/or BAO

2011 study based on a modified EUCLID concept (+filter wheel) All space SNe, no onboard spectroscopy 13000 SN up to z~1.5 with rest-frame NIR for a subsample $\sigma(w_p) = 0.03$ incl. systematics

A combined ground+EUCLID SN survey?

Euclid observation program : $20 \text{ deg2} \rightarrow 40 \text{ pointings}, 4\text{-day cadence} : 10 \text{ pointings/day}$ 1 visit : 1200(y) + 2100 (J) + 2100 (H)= 1.5 hA lightcurve at z=1.5 lasts 40*2.5 = 100 daysOver 6 months : 45 visits in total (2 mags deeper than one visit)

LSST deep drilling fields :

Current baseline for SNe and LSS : 4-day cadence g:300 s, r:600s, i:600s, z : 780s, y4 : 600s Total area ~ 4 fields over 10 seasons

Simultaneous observations in z and y bands

Oct 23, 2013

Expected precision on w : ~2000 « well measured » SNe Lightcurves in z=(0.7-1.5)=> δw ~0.03 (foM = 80)

Combined with lowz=>foM~200

Summary

- SNe Ia distances combined with CMB and/or BAO remain the best probe to constraint the DE equation of state :
 - a 5% (stat only) measure of a constant DE EoS, w
 - currently little sensitivity to w(z)
- Including systematics and combined with BAO and CMB : w (cte) = -1.061 ± 0.069 (~7%) compatible with a cosmological constant
- Photometric calibration is (by far) the dominant (known) systematics today. Prospects to improve in the near future -> δw(stat+syst)~5%
- Expect further (incremental) improvements in stage III SN programs and significant improvements with LSST and EUCLID

					•		
06D2ez	06D2fb	05D1hn	04D3bf	05D3ne	06D1ab	05D2ah	04D1dc
04D4ht	04D2bt	06D3cn	06D1du	03D3bb	05D3mq	05D1ly	03D3bh
							-
06D3gn	04D3ez	06D3tp	06D3dt	03D3ba	05D1by	05D2ja	06D1in
05D1ej	05D2ab	06D1hj	03D1fc	04D3kr	05D3hq	06D1hf	06D2ff
03D1bp	04D2ac	06D1fd	05D2mp	озрзы	06D3dl	04D3fk	05D2el
 04D1hd	03D3ay	05D4bm	03D1dj	05D4ff	03D1ar	05D2dw	05D3cf