

Direct Dark Matter Search with the XENON program

Sonja Orrigo

On Behalf of the XENON Collaboration

Sonja Orrigo

The XENON Collaboration

Direct Dark Matter Search

Elastic scattering WIMPs - target nuclei

 \rightarrow low energy nuclear recoils with low rate

Detector requirements

- \checkmark (Ultra) low background \leftarrow Low rate signal
- \checkmark Low energy threshold \leftarrow Low energy signal
- ✓ High target mass ← Small cross section

Liquid Xenon as a detection medium

Heavy nucleus (A ~ 131)

High rate expected for SI interactions ($\sigma \sim A^2$)

50% odd mass isotopes (¹²⁹Xe,¹³¹Xe) Exploring SD interactions

I High Z = 54 and density ρ = 3 g/cm³

- ✓ Excellent self-shielding (low background)
- High stopping power (compact detector)
- Scalability to larger detectors at an affordable cost (~ 1 k\$/kg today)
- Charge and light
- \checkmark Highest yield among the noble liquids
- ✓ 178 nm UV photons
- ✓ Efficient scintillator (~ 80% Nal light yield) and fast response (2.2 ns)

■ "Easy" cryogenics @ ~ -100 °C

Intrinsically pure:

- ✓ No long-lived Xe isotopes
- ✓ Kr can be reduced to ppt level

$$R \propto N_T \frac{\rho_0}{m_{\chi}} \sigma_{\chi N} \langle v \rangle$$

✓ Xenon is a good target!

Principle of two-phase TPC

✓ Prompt scintillation signal (S1)

Charges are extracted to GXe

✓ Proportional scintillation signal (S2)

E. Aprile et al. (XENON100), Astroparticle Physics 35, 573 (2012) Electron recombination is stronger for NR

- \rightarrow (S2/S1)_{WIMP} << (S2/S1)_{γ,β}
- → ER NR discrimination
- ER = electronic recoil, NR = nuclear recoil

5

Sonja Orrigo

Astroparticle Physics and Cosmology 2013, Madrid

22/10/2013 6

Reconstruction of the event vertex (Z position)

Rec

- $\checkmark z(\Delta t) = v_{drift} \Delta t$
- \checkmark v_{drift} \approx 1.73 mm/µs
- ✓ Resolution σ_z < 0.3 mm

Particle

Matter Proi

electronic recoil

nuclear recoil

and Cosmology 2013, Madrid

Particle discrimination

electronic recoils

Matter Project

nuclear recoils

The phased XENON program

Past: 2005-2007 XENON10 15 kg active mass

σ_{SI} < 8.8 x 10⁻⁴⁴ cm² (2007)

Present: 2008-201? XENON100 62 kg active mass

σ_{si} < 2.0 x 10⁻⁴⁵ cm² (2012)

Future: 2013-2017 XENON1T ~ 2.2 ton active mas $\sigma_{SI} \sim 2 \times 10^{-47} \text{ cm}^2 (proj.)$

Sonja Orrigo

Location of the XENON Experiments

Laboratori Nazionali del Gran Sasso, Italy 1.4 km of rock \rightarrow 3700 m.w.e. shielding from cosmic rays \rightarrow factor 10⁶ reduction of muon flux

The XENON100 detector

- 161 kg LXe total mass
- ✓ Factor 10 more than XENON10
- ✓ 62 kg sensitive volume
- ✓ 99 kg active veto
- ✓ 30 cm drift length and 30 cm radius
- Electric fields
- ✓ Drift = 0.53 kV/cm
- \checkmark Extraction = 12 kV/cm
- \checkmark 100% electron extraction to GXe
- PTFE structure (12 kg)
- Good UV reflector and insulator
- Extremely low background
- ✓ Factor 100 lower than XENON10
- ✓ Material screening and selection
- ✓ Detector design
- ✓ Active/passive shielding
- E. Aprile et al. (XENON100), Astroparticle Physics 35, 573 (2012)

Cryostat

✓ Double-walled (1.5 mm thick) low radioactivity stainless steel (tot. 70 kg)

Sonja Orrigo

The XENON100

PMTs

econstruc OM: 80 PMTs hotocathode covera

VETO: 64 PMTs

Sonja Orrigo

Astroparticle Physics and Cosmology 2013, Madrid

22/10/2013 14

Backgrounds

Electronic recoil (ER) background

- ✓ Natural radioactivity in the detector and shields materials
- \checkmark ²²²Rn contamination in the shield cavity
- ✓ Intrinsic contamination in LXe (²²²Rn, ⁸⁵Kr)
- ✓ Cosmogenic activation of the detector components during

construction and storage at the Earth surface

E. Aprile et al. (XENON100), Phys. Rev. D 83, 082001 (2011)

Nuclear recoil (NR) background

- ✓ Muon-induced fast neutrons
- \checkmark (α ,n) reactions and spontaneous fission due to natural

radioactivity in the detector and shields materials

E. Aprile et al. (XENON100), J. Phys. G: Nucl. Part. Phys. 40 (2013) 115201

Backgrounds: material screening

✓ GATOR: 2.2kg high purity Ge detector operated by UZH @ LNGS L. Baudis et al., JINST 6 (2011) P08010

All XENON100 construction materials screened and selected

E. Aprile et al. (XENON100), Astroparticle Physics 35, 43 (2011)

Fig. 1. Example of a measurement with Gator: 7 Hamamatsu R8520 PMTs were screened (entry 34 in Table 1). The lines from their intrinsic radioactive contaminations (solid black) are clearly visible above the Gator background spectrum

Component	Amount	Total radioactive contamination in materials [mBq/amount]				
-		$^{238}{\rm U}$ / $^{226}{\rm Ra}$	232 Th	60 Co	^{40}K	other nuclides
Cryostat and 'diving bell' (316Ti SS)	73.61 kg	121.46	147.23	404.87	662.52	
Support bars (316Ti SS)	49.68 kg	64.58	144.07	69.55	352.73	
Detector PTFE	11.86 kg	0.71	1.19	0.36	8.89	
Detector copper	3.88 kg	0.85	0.62	5.21	0.78	
PMTs	242 pieces	60.50	111.32	181.50	1972.30	$^{137}Cs: 41.14$
PMT bases	242 pieces	38.72	16.94	2.42	38.72	
TPC resistor chain	$1.5 \times 10^{-3} \text{ kg}$	1.11	0.57	0.12	7.79	
Bottom electrodes (316Ti SS)	0.23 kg	0.43	0.45	2.14	2.36	
Top electrodes (316Ti SS)	0.24 kg	0.85	0.43	1.73	1.16	
PMT cables	1.80 kg	0.85	1.97	0.37	18.65	^{108m} Ag: 2.67
Copper shield	$2.1 \times 10^3 \text{ kg}$	170.80	24.69	6.59	80.26	
Polyethylene shield	$1.6 \times 10^3 \text{ kg}$	368.0	150.4	-	1120.0	
Lead shield (inner layer)	$6.6 \times 10^3 { m kg}$	4.3×10^{3}	3.6×10^{3}	7.2×10^{2}	9.6×10^{3}	210 Pb: 1.7×10^{8}
Lead shield (outer layer)	$27.2 \times 10^3 \text{ kg}$	1.1×10^{5}	1.4×10^{4}	2.9×10^{3}	3.8×10^{5}	210 Pb: 1.4×10^{10}

Screening results used for MonteCarlo simulations

events in ROI

Gamma backgroung from

PMT, 48.5 %	teflon. 2.1 %
	steel, 6.2 %
	poly, 10.7 %
	LXe, 3.9 %
PMT bases, 28.5 %	Tone

Backgrounds: the XENON100 passive shield

From outside to inside

20 cm H₂O (not on all sides) to moderate neutrons produced in the cavern rock

15 cm Pb + 5 cm low activity Pb to stop γ -rays

20 cm polyethylene to moderate neutrons produced in Pb

🔳 5 cm Cu to stop γ -rays from polyethylene

🔳 N₂ gas (17 slpm) continuously purging the shield cavity to keep the 222 Rn level < 1 Bq/m³

E. Aprile et al. (XENON100), Astroparticle Physics 35, 573 (2012)

H₂O / Polyethylene

3D sensitivity and background rejection

- Take advantage of the LXe self-shielding
- ✓ Gammas from external sources and detector components are stopped at the edges
- Using the 3D position sensitivity for background reduction
- ✓ Fiducialization: selection of an ultralow-background target volume
- ✓ Reject all events having a coincident signal in the 99 kg active veto
- ✓ Identification of single scatters rejecting the double scatters
- ✓ Remaining BG dominated by internal impurities (e.g. ⁸⁵Kr)

BG from published data (Run10)

E. Aprile et al. (XENON100), Phys. Rev. Lett. 109, 181301 (2012)

Backgrounds: ⁸⁵Kr removal from LXe

Xe has no long lived isotopes but it contains ^{nat}Kr at ppb level

Kr contamination of 7 ± 2 ppb measured in the commercial Xe filling XENON100

Imate isotopic abundance, giving an uniformly distributed BG from β^- - decay (Q_β = 687 keV, $T_{1/2}$ = 10.7 y)

A cryogenic distillation column installed next XENON100 is used to reduce the Kr conc. to ppt level

After purification the Kr concentration has been reduced to 19 ± 4 ppt in Run10

E. Aprile et al. (XENON100), Astroparticle Physics 35, 573 (2012)

 $T_{1/2} = 10.7 \text{ y}$ $R^{85} \text{Kr}$ $Q_{\beta} = 687 \text{ keV}$ $R^{5} \text{Rb}$

Boiling point @1atm: ✓ 120K for Kr ✓ 165K for Xe

Sonja Orrigo

Electromagnetic background in XENON100

E. Aprile et al. (XENON100), Phys. Rev. D 83, 082001 (2011)

- ✓ No MC rate tuning!
- Measured single scatter rate below 100keV
- ✓ Before LXe veto cut: ~ 10^{-2} evts/kg/keV/day
- ✓ After LXe veto cut: 5 x 10⁻³ evts/kg/keV/day

Factor 100 lower BG than XENON10 with factor 10 more mass
 Lowest BG ever achieved in DM experiments

Nuclear recoil background and predictions

Nuclear recoil (NR) background

- ✓ NR background prediction based on MC simulations (GEANT4) with exact geometry and measured radioactive contaminations of all the detector components
- (1) Muon-induced fast neutrons (70% of the total)
- (2) (α ,n) reactions and spontaneous fission due to
- natural radioactivity in the detector and shields materials
- INR BG expectation for Run10: 0.17 +0.12 -0.07 events
- ✓ Not limiting the sensitivity of the experiment

E. Aprile et al. (XENON100), J. Phys. G: Nucl. Part. Phys. 40 (2013) 115201

Electronic recoil (ER) background

✓ ER background prediction based on data from ⁶⁰Co/²³²Th calibration sources and nonblinded background data

ER BG expectation for Run10: 0.79 ± 0.16 events

Total background prediction for Run10: 1.0 ± 0.2 events

radiogenic BG nuon-induced neutrons 3ate [events kg⁻¹ day⁻¹ keV⁻¹] **10**^{−€} 10⁻⁷ 10⁻⁸ 30 20 10 40 50 70 80 90 100 0 60 Energy [keV]

Sonja Orrigo

Calibrations and ER / NR discrimination

E. Aprile et al. (XENON100), arXiv: 1207.3458

XENON100 Run10: 225 live days

XENON100 is the 1st large size LXe detector operated continuously in stable conditions for that long (to our knowledge)

Data taking: 28 Feb 2011 – 31 March 2012
 More than double exposure than Run08
 Improved statistics of ER & NR calibrations
 Improved LXe purity (factor 10 lower ⁸⁵Kr)
 Lower thresholds: S1 > 3 PE and S2 > 150 PE
 Excellent stability of the detector parameters
 Data following maintenances are removed

E. Aprile et al. (XENON100), JINST 7 (2012) T12001

Sonja Orrigo

Blind data analysis

Blind analysis (data is blinded between 2 - 100 PE) ✓ The analysis (data quality and topology selection) is defined on calibration data (²⁴¹AmBe, ²³²Th, ⁶⁰Co, BG outside ROI)

Detector stability

✓ Selection of periods with stable HV, low Rn level, stable thermodynamics of the detector (P, T, ...)

Selection of physical interactions

✓ Reject noise, stability of PMTs, S1 seen by at least 2 PMTs

Selection of single scatters (WIMPs make a single interaction)

✓ Only one S2 peak, only one S1 peak, active veto cut

Consistency Cuts

✓ S1 and S2 PMT hit patterns and S2 pulse width consistent with a single interaction vertex at the reconstructed position

Fiducialization

✓ 34 kg elliptic volume

og10(S2/S1)-I

og10(S2/S1)-ER

-0.5

(2)

All 225 days data in

48 kg fiducial volume

Events left in 34 kg after applying

all the data selection cuts

 $(\mathbf{1})$

Astroparticle Physics and Cosmology 2013, Madrid

S1 (PE)

S1 (PE)

E. Aprile et al. (XENON100), Phys. Rev. Lett. 109, 181301 (2012)

Unblinding 225 days of XENON100 data

NR (from

XENON100 Run10

- ✓ 224.6 live days of data
- ✓ 34 kg fiducial volume
- ✓ Data blinded in WIMP ROI
- Background expectation
- (1.0 ± 0.2) event in 224.6 days

✓Expected ER leakages = 0.79 ± 0.16 (by calibration)

- \checkmark NR background prediction = 0.17^{+0.12}_{-0.07} (by MC)
- ✓ Verified on the high energy sideband

E. Aprile et al. (XENON100), Phys. Rev. Lett. 109, 181301 (2012)

After unblinding: 2 WIMP-like candidates inside the predefined ROI & 34 kg fiducial volume @ 3.3 and 3.8 PE

(1) 26.4% Poisson probability

that background oscillated to 2 events (2) Profile Likelihood analysis does not reject the background only hypothesis

 \rightarrow No evidence of dark matter in the data

 \rightarrow Calculate upper limit

Spin-Independent Results

Sonja Orrigo

Spin-Dependent Results

Isotopes with a non-zero nuclear spin: 26.2% of ¹²⁹Xe ($J^{\pi} = 1/2^+$) and 21.8% of ¹³¹Xe ($J^{\pi} = 3/2^+$)

I Set limit on pure WIMP-neutron and pure WIMP-proton cross sections

- ✓ Same data and event selection as the SI search: 224.6 live days x 34 kg of exposure
- ✓ Nuclear model used: Menendez et al., Phys. Rev. D86, 103511 (2012)
- (1) Most sensitive limit on pure neutron coupling above 6 GeV/c²

 $\sigma_n < 3.5 \times 10^{-40} \text{ cm}^2$ for a 45 GeV/c² WIMP at 90% c.l.

(2) Competitive limit on pure proton coupling

weaker sensitivity because ¹²⁹Xe & ¹³¹Xe have an unpaired neutron but even number of protons E. Aprile et al. (XENON100), Phys. Rev. Lett. 111, 021301 (2013)

Astroparticle Physics and Cosmology 2013, Madrid

28

Control of systematics: NR response

- Verification of the Nuclear Recoil energy scale
- ✓ XENON100 NR energy scale includes all the measurements of direct neutron scattering experiments
- Monte Carlo simulation of AmBe neutron source
- ✓ Simulation of both scintillation (S1) and ionization (S2) signals
- Basic steps
- ✓ Input AmBe spectrum (ISO 8529-1 standard). Analysis robust against variations of this spectrum
- ✓ Source strength measurement (PTB, Germany): (160 ± 4) n/s
- Complete MC description of the detector including detector shield (water, lead, polyethylene, copper)
- ✓ E_{dep} is converted to S1 and S2 using L_{eff} and Q_y including thresholds, resolutions and acceptances from data

Step 1: using L_{eff} from direct measurements \rightarrow reproduce S2 spectrum \rightarrow obtain optimum Q_v

Control of systematics: NR response

Step 2: using the obtained $Q_v \rightarrow$ reproduce S1 spectrum \rightarrow obtain a new L_{eff}

- **I** Excellent agreement over the whole spectrum down to 2 PE (\sim 5 keV_{nr})
- ✓ Poor agreement below 2 PE due to unknown efficiencies below threshold
- L_{eff} from best fit matches perfectly to the previous measurements
- Consistency strengthens the reliability of analysis
 - \rightarrow Results of XENON100 remain unchanged using this L_{eff}
 - → Excellent understanding of the detector response to NRs

E. Aprile et al. (XENON100), Phys. Rev. D 88, 012006 (2013)

What XENON100 would see if...

XENON100 would observe > 200 events in signal region

E. Aprile et al. (XENON100), Phys. Rev. D 88, 012006 (2013)

Sonja Orrigo

XENON100 would observe > 1400 events in signal region

E. Aprile et al. (XENON100), Phys. Rev. D 88, 012006 (2013)

 $Assume CDMS signal (1.9 x 10^{-41} cm^2)$

WIMP-nucleon cross section [cm²] section 10-40 10^{-10} WIMP-nucleon cross 10^{-41} 10-5 CDMS 2013 10^{-42} 10 10^{-43} 10-7 7 8 9 1 0 15 20 30 40 50 6 5 WIMP Mass $[GeV/c^2]$

✓ CDMS best fit at 1.9×10^{-41} cm² at 8.6 GeV/c^2 WIMP mass: CDMS Collaboration, arXiv: 1304.4279

> ✓ New results of CDMSlite cut away the upper part of the CDMS allowed region:
> CDMS Collaboration, arXiv: 1309.3259

22/10/2013

34

XENON100: future goals

Ongoing physics analyses

- \checkmark Search for annual modulation in low-energy ER
- ✓ Search for solar and galactic axions
- ✓ Light dark matter (using an S2-only analysis)

Improve detector characterization

- ✓ Response to single electrons
- ✓ Combine S1 and S2 energy scales for NR

Continuing data acquisition

- ✓ Performed a new AmBe calibration for NR
- ✓ Further reduction of Kr: now at 0.95 ppt

✓ Test new ideas to calibrate

XENON1T

The next future: XENON1T

The XENON1T location

Status of XENON1T: under construction!

 Construction of the support building and water tank started in summer 2013
 Installation completed by the end of the year

Other major systems will be installed since January 2014

Commissioning in late 2014

Science data in 2015

Sonja Orrigo

Astroparticle Physics and C

Detector design

Cryostat

- ✓ Double-walled Ti stainless steel
 vacuum insulated
- ✓ 1.5 m high by 1.3 m diameter

💷 TPC

- ✓ Teflon UV reflector
- ✓ 248 low radioactivity PMTs

Cryogenics

- ✓ 200 W pulse tube refrigerators
- ✓ Long term stability in XENON100
- ✓ Redundant system

Purification

- ✓ Xenon continuous recirculation
- ✓ Two heated getters in parallel
- ✓ High recirculation rate (~ 100 slpm)

The XENON1T detector

- TPC with 1m drift length x 1m diameter
- ✓ High voltage 100 kV (field 1kV/cm)
- Total LXe mass 3.5 ton
- ✓ 2 ton active inside the TPC
- ✓ Part of the outside LXe used as an active veto
- 1 ton sensitive target (fiducial volume)
- Background goal < 1 ev in 2 ton-year exposure
 Factor 100 lower background than XENON100
 Low radioactivity components
 10 cm self-shielding

248 low radioactivity photon detectors

Cryostat in low radioactivity stainless steel

The XENON1T PMTs

🔳 PMTs

- ✓ Low radioactivity 3" PMTs Hamamatsu R11410
- ✓ 2 arrays of **121 (bottom) + 127 (top)** PMTs
- ✓ QE 30% min., > 35% achieved @178nm
- \checkmark Ongoing program for screening and test in LXe

K. Lung et al., NIM A 696, 32 (2012)

BOTTOM: max light collection

Used in XENON100

TOP: cylindrically symmetric position reconstruction

Backgrounds for XENON1T

Background goal < 1 event in 2 ton-year exposure</p>

Nuclear recoils: neutrons

(1) (α, n) reactions and spontaneous fission due to natural radioactivity in the detector/shields materials

- ✓ Material selection: low U/Th contamination
- \rightarrow low α and (α,n) production
- ✓ Reject multiple neutron scatters
- (2) Muon-induced fast neutrons
- ✓ Active Cherenkov muon veto: tag muons in the
- 10 m large water tank (also passive shield)
- ✓ **Reject > 99.5%** of neutrons with μ in veto

Electronic recoils

(1) External gammas from natural radioactivity and activation in the detector and shields materials

✓ Material screening and selection

✓ Suppression via LXe self-shielding (fiducialization): external γ s easily stopped at edges, β s from the internal impurities dominate

(2) Intrinsic ²²²Rn and ⁸⁵Kr contamination in LXe

- ✓ Cryogenic distillation column for Kr
- ✓ Online Rn removal by Rn adsorption tower

84 high QE 8" PMTs Hamamatsu R5912 with water-tight base

Sonja Orrigo

Reducing intrinsic backgrounds

🔳 ⁸⁵Kr

- Building a cryogenic distillation column for Kr removal
- ✓ Aim: ^{nat}Kr/Xe < 0.5 ppt
- ✓ High throughput: 3 kg/h (3.5 tons in ~ 1.8 month)
- ✓ Custom gas purity diagnostics (online and offline)

🔳 ²²²Rn

- \checkmark Noble gas produced in the ^{238}U decay chain
- \checkmark It can originate from any surface and dissolves well in LXe
- ✓ $T_{1/2}$ = 3.8 days, with short-lived daughters and long-lived ²¹⁰Pb ⇒ Removal is necessary
- ✓ Reduce Rn emanation inside cryostat
- ✓ Aim: ²²²Rn < 1 µBq/kg
- ✓ Extensive emanation screening
 ✓ Attenuate Rn by passing xenon through charcoal filter

XENON1T projected sensitivity

Spin independent sensitivity goal: 2.0 x 10⁻⁴⁷ cm² for a 50 GeV/c² WIMP

✓ Probe most of the SUSY-favored phase space → Strong discovery potential

Scaling it up again: XENONnT

XENONNT is the XENON1T setup with:
 Larger TPC and inner cryostat
 Almost double number of PMTs
 All the other systems (from the outer cryostat to outside) remain the same
 Potential sensitivity 2.0 x 10⁻⁴⁸ cm²
 Aimed exposure 20 ton-year
 Starting from 2018

Summary and Outlook

I The XENON project continues to lead the field for direct dark matter detection

XENON100

✓ Most sensitive spin independent limit

$\sigma_{sl} < 2.0 \ x \ 10^{-45} \ cm^2$ at 55 GeV/c²

✓ New spin dependent results:

Most sensitive limit above 6 GeV/c² for pure neutron coupling

$\sigma_{\rm n}$ < 3.5 x 10⁻⁴⁰ cm² at 45 GeV/c²

Also sensitive to pure proton coupling, consistent with other limits

- ✓ Ongoing physics analyses
- ✓ Improve detector characterization
- ✓ Continuing data acquisition

XENON1T

- ✓ Sensitivity goal: σ_{sI} = 2 x 10⁻⁴⁷ cm² by 2017
- ✓ Reduce background by factor 100

10 m water shield + intrinsic radiopurity

- \checkmark Construction started in 2013, commissioning in late 2014
- ✓ Science data taking in 2015

🗏 XENONnT

✓ Sensitivity goal: σ_{si} = 2 x 10⁻⁴⁸ cm² by 2023

Thank you for your attention!

Astroparticle Physics and Cosmology 2013, Madrid

48