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The XENON Collaboration 

~ 100 scientists 

from 16 institutions 
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Direct Dark Matter Search 

 Elastic scattering WIMPs - target nuclei 

→ low energy nuclear recoils with low rate 

~ solar velocity 

Nuclear recoil energy 

 Interaction 

 Spin Independent (SI) 

Possible with all nuclei 

 Spin Dependent (SD) 

Only possible with odd mass nuclei 

(129Xe, 131Xe) if the WIMP carries spin 

 Detector requirements 

 (Ultra) low background  ← Low rate signal 

 Low energy threshold  ← Low energy signal 

 High target mass ← Small cross section 
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Liquid Xenon as a detection medium 
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 Heavy nucleus (A ~ 131) 
High rate expected for SI interactions (σ ~ A2) 

 50% odd mass isotopes (129Xe,131Xe) 
Exploring SD interactions 

 High Z = 54 and density ρ = 3 g/cm3 

 Excellent self-shielding (low background) 
 High stopping power (compact detector) 

 Scalability to larger detectors at an 
affordable cost (~ 1 k$/kg today) 

 Charge and light 
 Highest yield among the noble liquids 
 178 nm UV photons 
 Efficient scintillator (~ 80% NaI light yield) 
and fast response (2.2 ns) 

 “Easy” cryogenics @ ~ -100 ºC 

 Intrinsically pure: 
 No long-lived Xe isotopes 


 Kr can be reduced to ppt level 

A2 

form factor 

 Xenon is a good target! 
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Principle of two-phase TPC 

 Prompt scintillation signal (S1) 

Charges are extracted to GXe 

 Proportional scintillation signal (S2) 

Electron recombination is stronger for NR 

→       (S2/S1)WIMP << (S2/S1)
g,b

 

→       ER - NR discrimination 

ER = electronic recoil, NR = nuclear recoil E. Aprile et al. (XENON100), 
Astroparticle Physics 35, 573 (2012) 
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+ 4.5 kV 

- 16.0 kV 

E 
3

0
 c

m
 

30 cm 
161 kg LXe in total 

(62 kg inside TPC) 

Detection principle 
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Reconstruction of the 
event vertex (Z position) 

Rec 

 z(Dt) = vdrift Dt 

 vdrift ≈ 1.73 mm/ms 

 Resolution Z < 0.3 mm 
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X 

Y 

Resolution X,Y < 3 mm 

Reconstruction of the 
event vertex 

(X, Y positions) 
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electronic recoil 

Particle 
discrimination 

nuclear recoil 
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nuclear recoils 

electronic recoils 

Particle discrimination 
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The phased XENON program 

 XENON10 

Past: 2005-2007 

σSI < 8.8 x 10-44 cm2 (2007) 

15 kg active mass 

 XENON100 

Present:  2008-201? 

σSI < 2.0 x 10-45 cm2 (2012) 

62 kg active mass 

 XENON1T 

Future:  2013-2017 

σSI ~ 2 x 10-47 cm2 (proj.)  

~ 2.2 ton active mas 
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Location of the XENON Experiments 

Laboratori Nazionali del Gran Sasso, Italy 

1.4 km of rock  → 3700 m.w.e. shielding from 

cosmic rays → factor 106 reduction of muon flux XENON100 
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-16kV 

+4.5kV 

The XENON100 detector 

E. Aprile et al. (XENON100), 
Astroparticle Physics 35, 573 (2012) 

 161 kg LXe total mass 

 Factor 10 more than XENON10 

 62 kg sensitive volume 

 99 kg active veto 

 30 cm drift length and 30 cm radius 

 Electric fields 

 Drift = 0.53 kV/cm 

 Extraction = 12 kV/cm 

 100% electron extraction to GXe 

 PTFE structure (12 kg) 

Good UV reflector and insulator 

 Extremely low background 

 Factor 100 lower than XENON10 

 Material screening and selection 

 Detector design 

 Active/passive shielding 

 Cryostat 

 Double-walled (1.5 mm thick) low 

radioactivity stainless steel (tot. 70 kg) 



    Sonja Orrigo                                       Astroparticle Physics and Cosmology 2013, Madrid         22/10/2013          14  
 

The XENON100 
PMTs TOP: 98 PMTs 

Position reconstruction 

BOTTOM: 80 PMTs 
Max photocathode coverage 

VETO: 64 PMTs 

S1 signal 

S1 

S2 

151 ms 

S2 signal 

 PMTs: 242 low intrinsic 

radioactivity (<10 mBq/PMT) 

Hamamatsu R8520-06-Al 1”x1” 

 QE > 30% @178nm 
 

 3D event localization 

X,Y res. 3 mm 

Z res. 0.3mm, sep. 3 mm 
 

 Active Veto for BG reduction 

E. Aprile et al. (XENON100), 
Astroparticle Physics 35, 573 (2012) 
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Backgrounds 

 Electronic recoil (ER) background 

 Natural radioactivity in the detector and shields materials 

 222Rn contamination in the shield cavity 

 Intrinsic contamination in LXe (222Rn, 85Kr) 

 Cosmogenic activation of the detector components during 

construction and storage at the Earth surface 

 

 

 Nuclear recoil (NR) background 

 Muon-induced fast neutrons 

 (a,n) reactions and spontaneous fission due to natural 

radioactivity in the detector and shields materials 

E. Aprile et al. (XENON100), Phys. Rev. D 83, 082001 (2011) 

E. Aprile et al. (XENON100), J. Phys. G: Nucl. Part. Phys. 40 (2013) 115201 
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Backgrounds: material screening 

E. Aprile et al. (XENON100), Astroparticle Physics 35, 43 (2011) 

 GATOR: 2.2kg high purity Ge 
detector operated by UZH @ LNGS 
L. Baudis et al., JINST 6 (2011) P08010 

 Screening results used for MonteCarlo simulations 

 All XENON100 construction materials screened and selected 

 Gamma backgroung from 
events in ROI 
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Backgrounds: the XENON100 passive shield 

20cm 

20cm 

20cm 5cm 

From outside to inside 
 

 20 cm H2O (not on all sides) 
to moderate neutrons produced 
in the cavern rock 
 

 15 cm Pb + 5 cm low activity Pb 
to stop g-rays 

 
 20 cm polyethylene 

to moderate neutrons produced in Pb 
 
 5 cm Cu 

to stop g-rays from polyethylene 
 
 N2 gas (17 slpm) 

continuously purging the shield cavity 
to keep the 222Rn level < 1 Bq/m3 

E. Aprile et al. (XENON100), Astroparticle Physics 35, 573 (2012) 
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3D sensitivity and background rejection 
 Take advantage of the LXe self-shielding 

 Gammas from external sources and detector components are stopped at the edges 

 Using the 3D position sensitivity for background reduction 

 Fiducialization: selection of an ultralow-background target volume 

 Reject all events having a coincident signal in the 99 kg active veto 

 Identification of single scatters rejecting the double scatters 

 Remaining BG dominated by internal impurities (e.g. 85Kr) 

E. Aprile et al. (XENON100), Phys. Rev. Lett. 109, 181301 (2012) 

BG from published data 
(Run10) 

34 kg 
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Backgrounds: 85Kr removal from LXe 

Boiling point @1atm: 

 120K for Kr 
 165K for Xe E. Aprile et al. (XENON100), 

Astroparticle Physics 35, 573 (2012) 

 Xe has no long lived isotopes 
but it contains natKr at ppb level 
 

 Kr contamination of 7 ± 2 ppb 
measured in the commercial 
Xe filling XENON100 
 

 natKr contains 85Kr with 2x10−11 
isotopic abundance, giving an 
uniformly distributed BG from β− -
decay (Qb = 687 keV, T1/2 = 10.7 y) 
 

 A cryogenic distillation column 
installed next XENON100 is used 
to reduce the Kr conc. to ppt level  
 

 After purification the Kr 
concentration has been reduced 
to 19 ± 4 ppt in Run10 

85Kr

85Rb

514 keV

0.4%

99.6%

T
1/2

 = 10.7 y

Q
β
 = 687 keV
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Electromagnetic background in XENON100 
E. Aprile et al. (XENON100), Phys. Rev. D 83, 082001 (2011) 

Run07 
(without veto cut) 

 ER background: excellent agreement between MC 

simulations and measured data in the full energy range 

 Activity taken from screening measurements only 

 No MC rate tuning! 

 Measured single scatter rate below 100keV 

Before LXe veto cut: ~ 10-2 evts/kg/keV/day 

After LXe veto cut: 5 x 10-3 evts/kg/keV/day Run10 
(without veto cut) 

 Factor 100 lower BG than XENON10 with factor 10 more mass 

 Lowest BG ever achieved in DM experiments 
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Nuclear recoil background and predictions 
 Nuclear recoil (NR) background 

 NR background prediction based on MC simulations (GEANT4) with exact geometry and 

measured radioactive contaminations of all the detector components 

(1) Muon-induced fast neutrons (70% of the total) 

(2) (a,n) reactions and spontaneous fission due to 

natural radioactivity in the detector and shields materials 

 NR BG expectation for Run10: 0.17 +0.12 -0.07 events 

 Not limiting the sensitivity of the experiment 

 

 

 Electronic recoil (ER) background 

 ER background prediction based on data from 60Co/232Th calibration sources and non-

blinded background data 

 ER BG expectation for Run10: 0.79 ± 0.16 events 

 

 Total background prediction for Run10:        1.0 ± 0.2 events 

E. Aprile et al. (XENON100), J. Phys. G: Nucl. Part. Phys. 40 (2013) 115201 
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Calibrations and ER / NR discrimination 

 ER band calibrated with 60Co & 232Th sources 

 NR band calibrated with 241AmBe source 

(S2/S1)NR << (S2/S1)ER 

60Co 

232Th 

241AmBe 

ER lines during neutron calibration 

E. Aprile et al. (XENON100), arXiv: 1207.3458 
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XENON100 Run10: 225 live days 
 Data taking: 28 Feb 2011 – 31 March 2012 

 More than double exposure than Run08 

 Improved statistics of ER & NR calibrations 

 Improved LXe purity (factor 10 lower 85Kr) 

 Lower thresholds: S1 > 3 PE and S2 > 150 PE 

 Excellent stability of the detector parameters 

 Data following maintenances are removed 

 XENON100 is the 1st large size LXe detector 

operated continuously in stable conditions 

for that long (to our knowledge) 
E. Aprile et al. (XENON100), JINST 7 (2012) T12001 

Periods not used for analysis 
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Blind data analysis 
 Blind analysis (data is blinded between 2 - 100 PE) 

 The analysis (data quality and topology selection) is defined 

on calibration data (241AmBe, 232Th , 60Co, BG outside ROI) 

 Detector stability 

 Selection of periods with stable HV, low Rn level, stable 

thermodynamics of the detector (P, T, …) 

 Selection of physical interactions 

 Reject noise, stability of PMTs, S1 seen by at least 2 PMTs 

 Selection of single scatters (WIMPs make a single interaction) 

 Only one S2 peak, only one S1 peak, active veto cut 

 Consistency Cuts 

 S1 and S2 PMT hit patterns and S2 pulse width consistent 

with a single interaction vertex at the reconstructed position 

 Fiducialization 

 34 kg elliptic volume 

 Definition of WIMP search region (ROI) 

 (3<S1<20 or 30) PE, 97% NR acceptance, 99.75% ER rejection 

 Trigger threshold S2 > 150 PE is irrelevant for this analysis 

E. Aprile et al. (XENON100), arXiv: 1207.3458 

(1) 

(2) 

(3) 

All 225 days data in 
48 kg fiducial volume 

97% NR acceptance 

99.75% ER rejection 

Events left in 34 kg after applying 
all the data selection cuts 

 S2>150 PE 
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Unblinding 225 days 

97% NR acceptance 

99.75% ER rejection 

 S2>150 PE 

NR acceptance of all 
data quality cuts  

Acceptance of  S2>150 PE cut 

NR acceptance of the 
99.75 % ER rejection cut 
(only for classical analysis) 

E. Aprile et al. (XENON100), Phys. Rev. Lett. 109, 181301 (2012) 

 Cut-based analysis: (3<S1<20) PE, 97% NR acceptance, 

99.75% ER rejection at 50% NR acceptance 

 Profile Likelihood analysis: (3<S1<30) PE 

 Trigger threshold S2 > 150 PE is irrelevant for Run10 

 After all the analysis is fixed 

 2 events are found in the 

predefined benchmark region 
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Unblinding 225 days of XENON100 data 
 XENON100 Run10 
 224.6 live days of data 
 34 kg fiducial volume 
 Data blinded in WIMP ROI 

 Background expectation  

(1.0 ± 0.2) event in 224.6 days 

Expected ER leakages = 0.79 ± 0.16 (by calibration) 

 NR background prediction = 0.17 +0.12
–0.07 (by MC) 

 Verified on the high energy sideband 

 After unblinding: 2 WIMP-like candidates 
inside the predefined ROI & 34 kg fiducial 
volume @ 3.3 and 3.8 PE 

 

ER (background) 
 
 
 NR (from 
 calibration) 

97% NR acceptance 

99.75% ER rejection 

(1) 26.4% Poisson probability  
that background oscillated to 2 events 
(2) Profile Likelihood analysis does not 
reject the background only hypothesis 
→ No evidence of dark matter in the data 
 → Calculate upper limit 

 S2>150 PE 

E. Aprile et al. (XENON100), Phys. Rev. Lett. 109, 181301 (2012) 
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Spin-Independent Results 
 Leff global fit of available data, including new data 

     (G. Plante et al., Phys. Rev. C 84, 045805 (2011)) 

 Blue band represents uncertainties 

 Logarithmic extrapolation below 3 keVnr 

    to Leff = 0 at 1 keVnr (including large uncertainty) 

 The limit on SI WIMP-nucleon 
elastic scattering cross section 
is extracted by Likelihood analysis 
 

 World’s most sensitive limit 
over a large WIMP mass range 
     < 2.0 x 10-45 cm2 
for a 55 GeV/c2 WIMP at 90% c.l. 
 

 It excludes part of the predicted 
region for SUSY candidates and 
other signal indications above 
(CoGeNT, DAMA, CRESST-II ) 

v0 = 220 km/s      vesc = 544 km/s      0 = 0.3 GeV/cm3  

E. Aprile et al. (XENON100), Phys. Rev. Lett. 109, 181301 (2012) 



    Sonja Orrigo                                       Astroparticle Physics and Cosmology 2013, Madrid         22/10/2013          28  
 

Spin-Dependent Results 

 Isotopes with a non-zero nuclear spin: 26.2% of 129Xe (Jp = 1/2+) and 21.8% of 131Xe (Jp = 3/2+) 

 Set limit on pure WIMP-neutron and pure WIMP-proton cross sections 

 Same data and event selection as the SI search: 224.6 live days x 34 kg of exposure 

 Nuclear model used: Menendez et al., Phys. Rev. D86, 103511 (2012) 

(1) Most sensitive limit on pure neutron coupling above 6 GeV/c2 

 n < 3.5 x 10-40 cm2  for a 45 GeV/c2 WIMP at 90% c.l. 

(2) Competitive limit on pure proton coupling 

weaker sensitivity because 129Xe & 131Xe have an unpaired neutron but even number of protons 
E. Aprile et al. (XENON100), Phys. Rev. Lett. 111, 021301 (2013)  
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Control of systematics: NR response 
 Verification of the Nuclear Recoil energy scale 

 XENON100 NR energy scale includes all the measurements of direct neutron scattering experiments 

 Monte Carlo simulation of AmBe neutron source 

 Simulation of both scintillation (S1) and ionization (S2) signals 

 Basic steps 

 Input AmBe spectrum (ISO 8529-1 standard). Analysis robust against variations of this spectrum 

 Source strength measurement (PTB, Germany): (160 ± 4) n/s 

Complete MC description of the detector including detector shield (water, lead, polyethylene, copper) 

Edep is converted to S1 and S2 using Leff and Qy including thresholds, resolutions and acceptances from data 

E. Aprile et al. (XENON100), Phys. Rev. D 88, 012006 (2013) 

Step 1: using Leff from direct measurements  reproduce S2 spectrum  obtain optimum Qy 

S2 
(Source rate = 

159 n/s) 
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Control of systematics: NR response 

E. Aprile et al. (XENON100), Phys. Rev. D 88, 012006 (2013) 

Step 2: using the obtained Qy  reproduce S1 spectrum  obtain a new Leff 

S1 

 Excellent agreement over the whole spectrum down to 2 PE (~ 5 keVnr)  

 Poor agreement below 2 PE due to unknown efficiencies below threshold 

 Leff from best fit matches perfectly to the previous measurements 

 Consistency strengthens the reliability of analysis 

  Results of XENON100 remain unchanged using this Leff 

 

 Excellent understanding of the detector response to NRs 
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What XENON100 would see if... 
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Assume CoGeNT signal 
( = 3 x 10-41 cm², m = 8 GeV/c2) 

XENON100 would observe > 200 events in signal region 

E. Aprile et al. (XENON100), Phys. Rev. D 88, 012006 (2013) 



    Sonja Orrigo                                       Astroparticle Physics and Cosmology 2013, Madrid         22/10/2013          33  
 

Assume CRESST signal 
( = 1.6 x 10-42 cm², m = 25 GeV/c2) 

XENON100 would observe > 1400 events in signal region 

E. Aprile et al. (XENON100), Phys. Rev. D 88, 012006 (2013) 
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Assume CDMS signal (1.9 x 10-41 cm²) 

 CDMS best fit at 1.9 x 10-41  cm2 at 8.6 GeV/c2  
WIMP mass: CDMS Collaboration, arXiv: 1304.4279 

CoGeNT 

CDMS 

  2013 

 New results of CDMSlite cut away the upper part 
of the CDMS allowed region: 
CDMS Collaboration, arXiv: 1309.3259  

XENON100 would observe > 200 events 
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XENON100: future goals 

 Ongoing physics analyses  

 Search for annual modulation in low-energy ER 

 Search for solar and galactic axions 

 Light dark matter (using an S2-only analysis) 

 

 Improve detector characterization 

 Response to single electrons 

 Combine S1 and S2 energy  scales for NR 

 

 Continuing data acquisition 

 Performed a new AmBe calibration for NR 

 Further reduction of Kr: now at 0.95 ppt   

 Test new ideas to calibrate XENON1T  

Hey, I’m still 
running ! 

XENON1T 

 
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The next future: XENON1T 

 XENON100 started probing the 
region for SUSY candidates… 
... but we want to explore further! 
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XENON1T 

9.6 m 

~ 10 m 

detector 

 1 m drift TPC with 3.5 ton of LXe in total 

 10 m water shield as a passive neutron shield 

and a Cherenkov veto 

 Fully funded and under construction @LNGS 
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The XENON1T location 

LNGS Hall B 



    Sonja Orrigo                                       Astroparticle Physics and Cosmology 2013, Madrid         22/10/2013          39  
 

Status of XENON1T: under construction! 
 Construction of the support building and 

water tank started in summer 2013 
 Installation completed by the end of the year 

 
 Other major systems will be installed since 

January 2014 
 
 Commissioning in late 2014 
 
 Science data in 2015 

Water tank 
(Oct 2013) 
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Detector design 

 Cryostat 

 Double-walled Ti stainless steel 

vacuum insulated 

 1.5 m high by 1.3 m diameter 

 

 TPC 

 Teflon UV reflector 

 248 low radioactivity PMTs 

 

 Cryogenics 

 200 W pulse tube refrigerators 

 Long term stability in XENON100 

 Redundant system 

 

 Purification 

 Xenon continuous recirculation 

 Two heated getters in parallel 

 High recirculation rate (~ 100 slpm) 
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The XENON1T detector 
 TPC with 1m drift length x 1m diameter 

 High voltage 100 kV (field 1kV/cm) 

 

 Total LXe mass 3.5 ton 

 2 ton active inside the TPC 

 Part of the outside LXe used as an active veto 

 1 ton sensitive target (fiducial volume) 
 

 Background goal < 1 ev in 2 ton-year exposure 

 Factor 100 lower background than XENON100 

 Low radioactivity components 

 ~ 10 cm self-shielding 

2.4m 

1.6 m 

248 low radioactivity 
photon detectors 

Cryostat in low 
radioactivity 
stainless steel 

0.97 m 

0.96  m 
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The XENON1T PMTs 
 PMTs 

 Low radioactivity 3” PMTs Hamamatsu R11410 

 2 arrays of 121 (bottom) + 127 (top) PMTs 

QE 30% min., > 35% achieved @178nm 

 Ongoing program for screening and test in LXe 

Used in XENON100 

TOP: cylindrically symmetric 
position reconstruction 

BOTTOM: max light collection 

6.8 x 106 

K. Lung et al., NIM A 696, 32 (2012) 
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Backgrounds for XENON1T 

Gamma background from PMT, Cryostat 

84 high QE 8” PMTs 
Hamamatsu R5912 with 
water-tight base 

 Electronic recoils 

(1) External gammas from natural radioactivity and 

activation in the detector and shields materials 

 Material screening and selection 

 Suppression via LXe self-shielding (fiducialization): 

external gs easily stopped at edges, bs from the internal 

impurities dominate 

(2) Intrinsic 222Rn and 85Kr contamination in LXe 

 Cryogenic distillation column for Kr 

 Online Rn removal by Rn adsorption tower 

 Nuclear recoils: neutrons 

(1) (a,n) reactions and spontaneous fission due to 

natural radioactivity in the detector/shields materials 

 Material selection: low U/Th contamination 

 low a and (a,n) production 

 Reject multiple neutron scatters 

(2) Muon-induced fast neutrons 

 Active Cherenkov muon veto: tag muons in the 

10 m large water tank (also passive shield) 

 Reject > 99.5% of neutrons with μ in veto 

 

 Background goal < 1 event in 2 ton-year exposure 
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Reducing intrinsic backgrounds 
 85Kr 

 Building a cryogenic distillation column for Kr removal 

 Aim: natKr/Xe < 0.5 ppt 

 High throughput: 3 kg/h (3.5 tons in ~ 1.8 month) 

 Custom gas purity diagnostics (online and offline) 

 222Rn 

 Noble gas produced in the 238U decay chain 

 It can originate from any surface and dissolves well in LXe 

 T1/2 = 3.8 days, with short-lived daughters and long-lived 210Pb  

  Removal is necessary 

Reduce Rn emanation inside cryostat 

 Aim: 222Rn < 1 μBq/kg 

 Extensive emanation screening 

 Attenuate Rn by passing xenon 

through charcoal filter 
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XENON1T projected sensitivity 

 Spin independent sensitivity goal: 2.0 x 10-47 cm2 for a 50 GeV/c2 WIMP 

 Probe most of the SUSY-favored phase space  Strong discovery potential 
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Scaling it up again: XENONnT 
 XENONnT is the XENON1T setup with: 

 Larger TPC and inner cryostat 

 Almost double number of PMTs 

 All the other systems (from the outer 

cryostat to outside) remain the same 

 Potential sensitivity 2.0 x 10-48 cm2  

 Aimed exposure 20 ton-year 

 Starting from 2018 
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Summary and Outlook 
 The XENON project continues to lead the field for direct dark matter detection 

 

  XENON100 

 Most sensitive spin independent limit 

 SI <  2.0 x 10-45 cm2 at 55 GeV/c2 

 New spin dependent results: 

 Most sensitive limit above 6 GeV/c2 for pure neutron coupling 

  n < 3.5 x 10-40 cm2 at 45 GeV/c2 

 Also sensitive to pure proton coupling, consistent with other limits 

 Ongoing physics analyses 

 Improve detector characterization 

 Continuing data acquisition 

 

  XENON1T 

 Sensitivity goal: SI = 2 x 10-47 cm2 by 2017 

 Reduce background by factor 100 

 10 m water shield + intrinsic radiopurity 

 Construction started in 2013, commissioning in late 2014 

  Science data taking in 2015 
 

  XENONnT 

 Sensitivity goal: SI = 2 x 10-48 cm2 by 2023 
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Thank you for your attention! 


