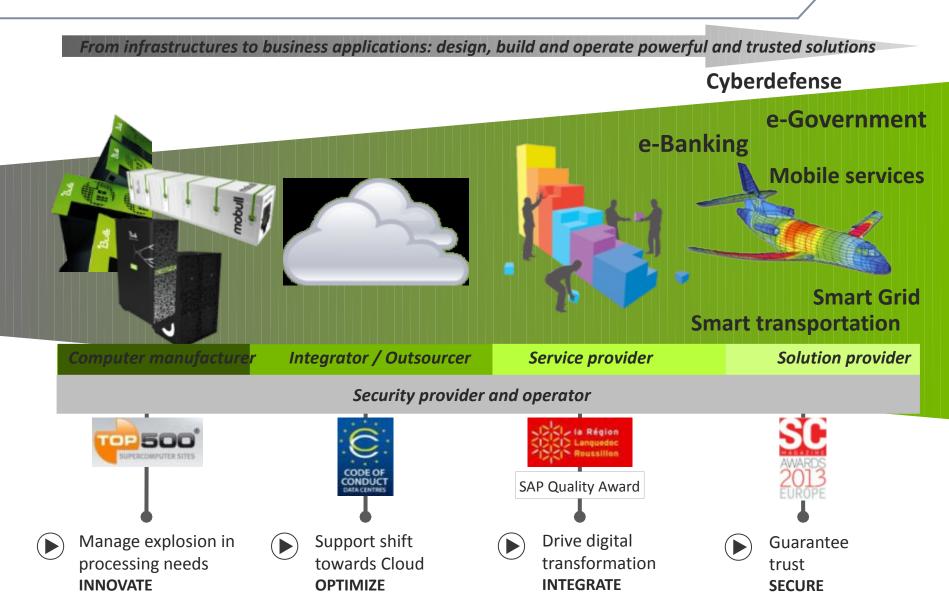


Architect of an Open World™

Defying the Laws of Physics in/with HPC

2013 – 11Rafa Grimán– 12HPC Architect

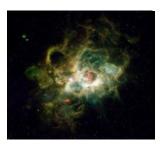
Agenda



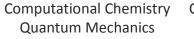
Bull

Architect of an Open World[™]

Mastering Value Chain for Critical Processes

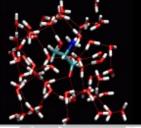


Bull: from Supercomputers to Cloud Computing

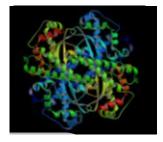

Expertise & services	 HPC Systems Architecture Applications & Performance Energy Efficiency Data Management HPC Cloud 	extreme foctory stay lean: compute smart
Software	 Open, scalable, reliable SW Development Environment Linux, OpenMPI, Lustre, Slurm Administration & monitoring 	bullx supercomputer suite
Servers	 Full range development from ASICs to boards, blades, racks Support for accelerators 	
Infrastructure	 Data Center design Mobile Data Center Water-Cooling 	

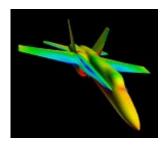
Extreme Computing applications

Electro-Magnetics

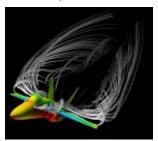


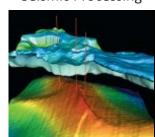
Life science

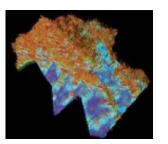



Computational Chemistry Molecular Dynamics

Computational Biology


Structural Mechanics Implicit


Seismic Processing


Computational Fluid Dynamics

A dedicated team of experts in application performance

Data Analytics

Reservoir Simulation

Rendering / Ray Tracing

Climate / Weather **Ocean Simulation**

Energy-efficient HPC solution projects
Mont Blanc, SHARP

Cloud Computing projects for HPC XLcloud, EASI CLOUDS, PerfCloud

HPC technologies for Big Data

Software stack and tools H4H, Newcastle, EnergeTIC

Co-design for application sectors H4H, Pulsation

Cooperation with customers

Leading HPC technology with Bull

TERA100 - 2010

1st European PetaFlop-scale System

CURIE – 2011

1st PRACE PetaFlop-scale System

BEAUFIX – 2013

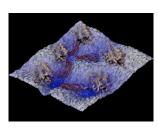
1st Intel Xeon E5-2600 v2 System

1.25 PFLOPs

2 PFLOPs

Direct Liquid Cooling Technology

More FLOPs ;)


iter


the way to new energy

HELIOS – 2012

3rd PETAFLOP system

1.5 PFLOPs

Aimed at successfully controlling nuclear fusion and harnessing it as a future source of energy SARA – 2013

4th PETAFLOP system

1.3 PFLOPs

U. Dresden – 2013

750 TFLOPs

BSC Minotauro

BSC. Minotauro

BSC is the biggest supercomputing center in Spain and a Tier-O in PRACE. BSC supports Spanish scientists in alll reasearch areas

MinoTauro is the most powerful system in Spain

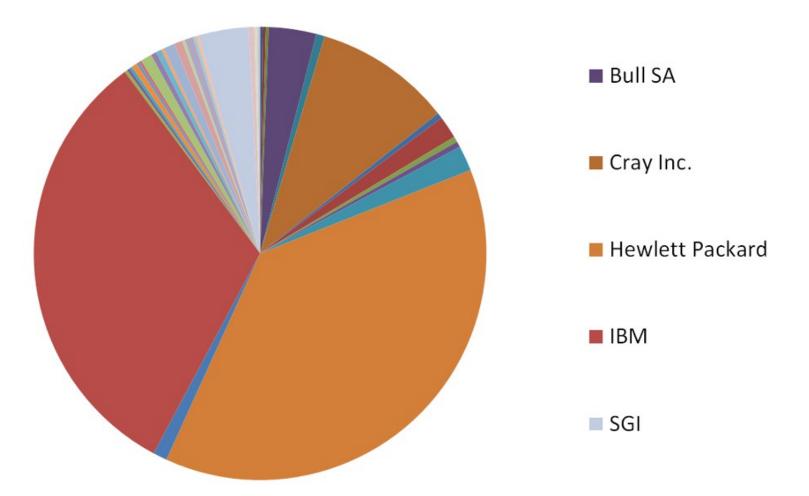
- #114 in Top500.org
- 186 TFLOPs peak performance
- Efficiency of 1,26 TFLOPs/KW:
 - #1 in Europe
 - #7 in the World
- Among the best in GFLOPs/m2 with 25,83 TFLOPs/m2
- Liquid cooling
- BSC
- 128 blades: 256 M2090 & 128 SSDs
- Agreement BSC-BULL-NVIDIA
- Doubles the computation of

They have put their trust in Bull

bulk Bull User group for eXtreme computing

An independent worldwide group of users to:

Share experience between members and with Bull


Give Bull direct feedback and input

Network with Bull HPC experts

Join us at www.bux-org.com

#5 in the World

80.24 % Efficiency

Expect the Unexpected

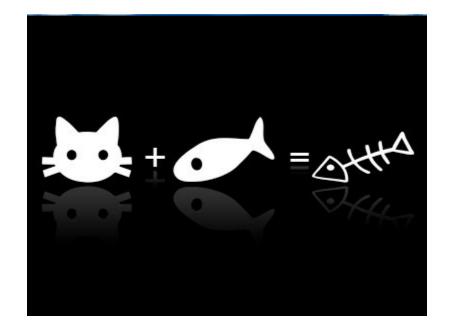
Architect of an Open World[™]

We often see scalability referred to as core count Scalability should take into account other parameters:

- RAM
- Storage
- **I**/0
- Software

Having a balanced system is very important

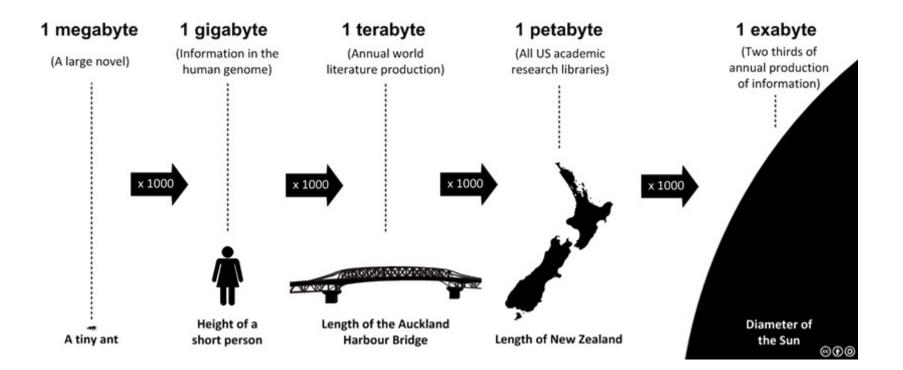
ExaFLOP / Exa-Scale

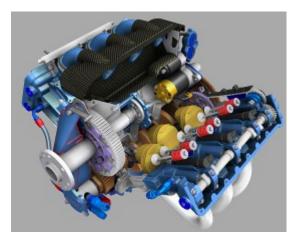

Architect of an Open World[™]

What is HPC?

The use of super cosolving complex corA branch of comput

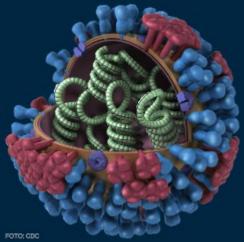
The use of super computers and parallel processing techniques for solving complex computational problems.

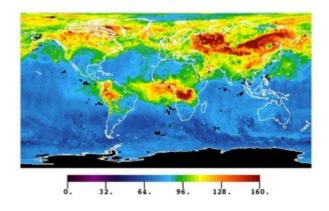

A branch of computer science that concentrates on developing supercomputers and software to run on supercomputers.


Supercompute

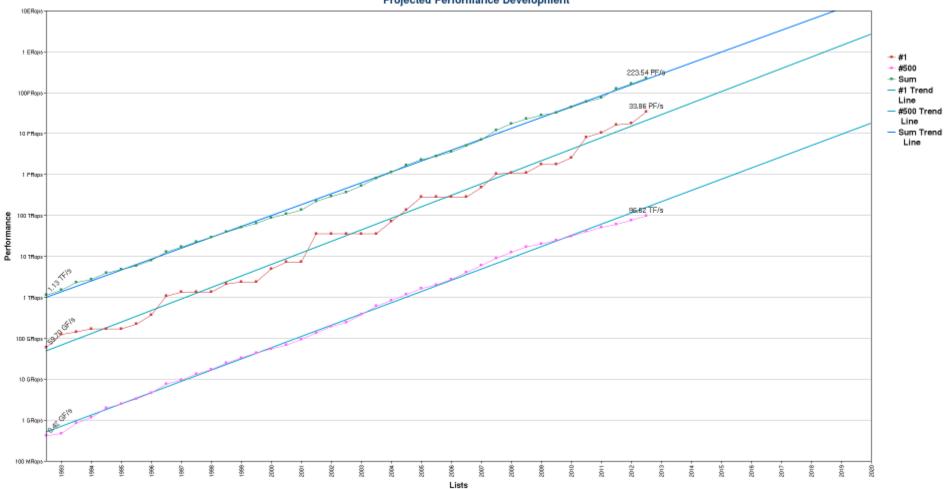
Supercomputers are very expensive and are employed for specialized applications that require immense amounts of mathematical calculations.

10^18 FLOPs


Why?



Blue Brain Project



AIRS CO AT 505mb (ppbv) 20100809-20100811

e capyight Leader one

Projected Performance Development

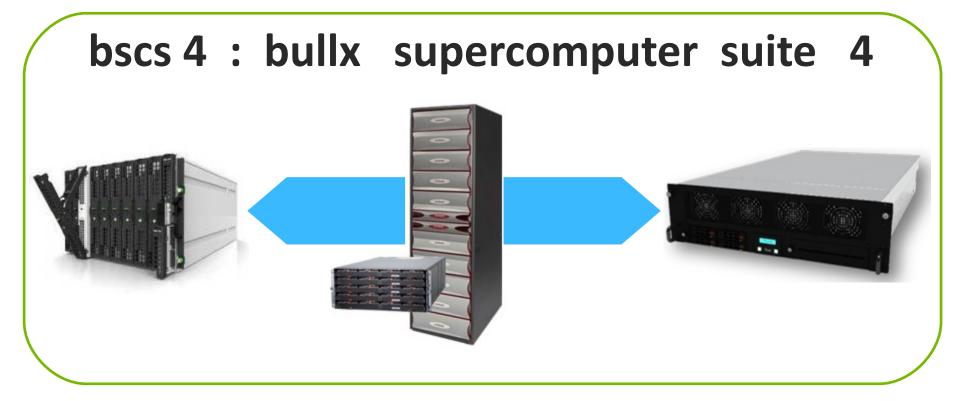
x 1000 in visualization: Extreme Visualization

x 1000 in system management: Extreme Management

... but...

x <1 in cost. Extreme Cost Savings (even more so during a crisis)

Bull's PoV


Architect of an Open World[™]

Tens/hundreds of thousands of nodes

- Millions of cores & DIMMS
- Tens of thousands of disks
- Kilometers of cables.
- All working without disruption
- Checkpoint/restart SW for millions of threads
- Power consumption management
- Incident reporting
- Alarm management

Complete HPC software suite

Addresses supercomputer lifecycle needs

Modular, flexible and extensible

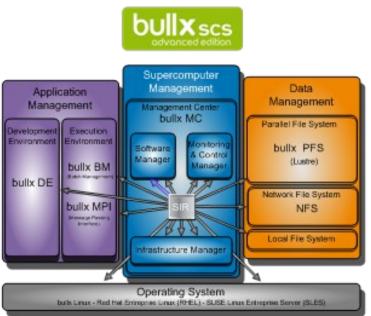
Installation / Configuration

Monitoring: health & power management

Distributed management: 1000s nodes

Error management

Based on SEC: Simple Event Correlator


Error detection and correlation

ARGOS:

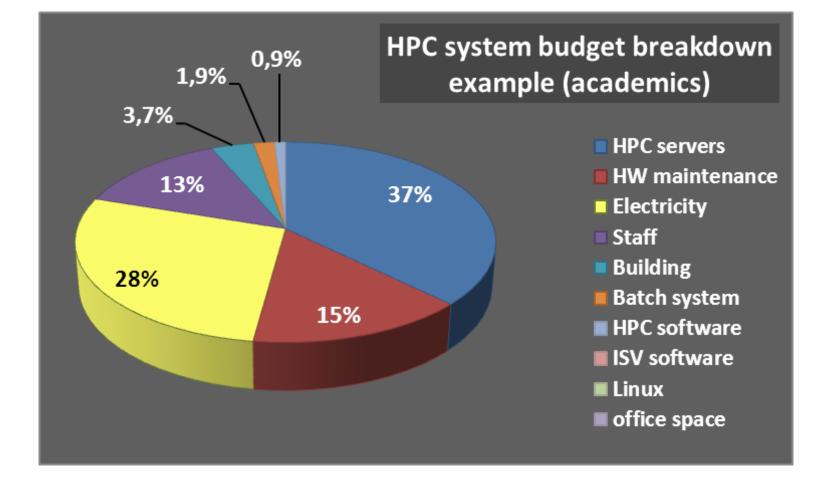
Incident processing, management & follow-ups

Availability measurements

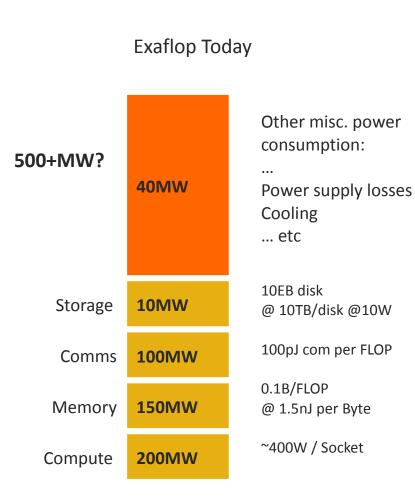
© Bull, 2012 GUI & CLI & multiuser environment

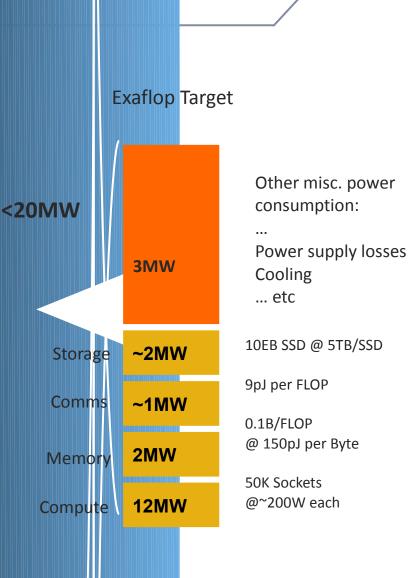
Design correct routing algorithms:

- Use all primary routes equallyAlways use shortest route
- Avoid additional switches in HA


Diagnostic tools that display:

- Network topology
 - Faulty/sub-optimal links in red
- Bandwidths
- Interconnect availability
 - Between switches
 - Inside switch
- Route(s) used by the subnet managerBasic IB information: LID, Location





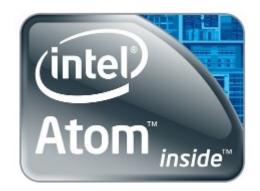
Extreme Computing Power Consumption

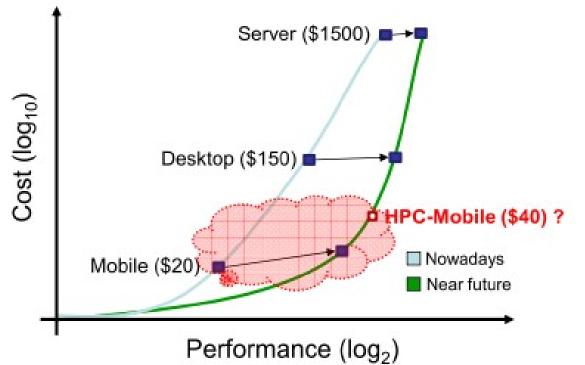
Source: Intel – Intel User Forum, April 2009

Extreme Computing: Processors's Future

Systems with std processors: thin nodes & SMP nodes

- 2014 single node with 2 sockets achieving 1 TFLOP
- 2020:
 - hundreds of cores per socket
 - node with many sockets and thousands of cores
- Low power processors (ARM, Intel, etc)


Hybrid systems based on accelerators (GPU, Intel MIC)


- NVIDIA K20x: 1.31 TFLOPs
- Intel MIC SE10P: 1.073 TFLOPs
- FPGA?
- Vector capabilities again?


Swap out Xeons for embedded processors?

- Reduced price
- Low wattage and low heat production
- Support for double precision
- Support for Linux

Develop future European Exascale systems Based on power-efficient technology 4 Tier-0 hosting partners in PRACE

Financed under the Objetivo FP7 ICT-2011.9.13 Exa-scale computing, software and simulation:

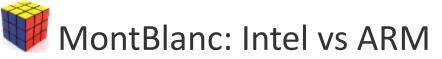
3 year project (Octobre 2011 – September 2014)

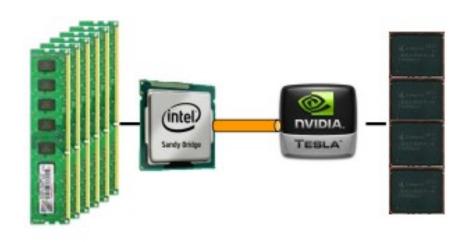
■Total budget: 14.5 M€ (8.1 M€ EC)

ONT-BL/

Target 1: Develop a prototype based on energy-efficient embedded processors

- Scalable to 50 PFLOPS at 7 MWatt
- Competitive with leaders on the Green500 list in 2014
- Develop a complete HPC SW system

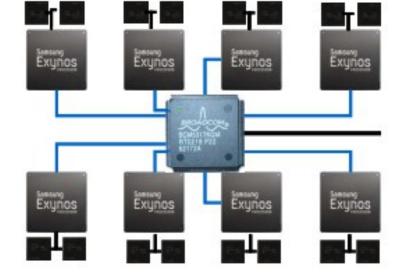

Target 2: Design the next generation HPC systems and embedded technology solving major limitations found in the prototype


- Scalable to 200 PFLOPS at 10 MWatt
- Competitive with the Top500 leaders in 2017
- Scalable to 1 EFLOPS at 20 MWatt
- Compete with Top500 leaders in 2020

Target 3: Port and optimize representative HPC

© Bull, 2012 11 applications

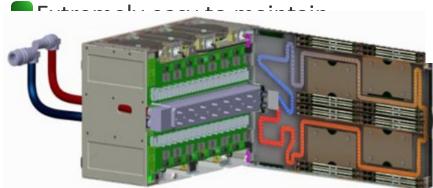
MONT-BL/IN

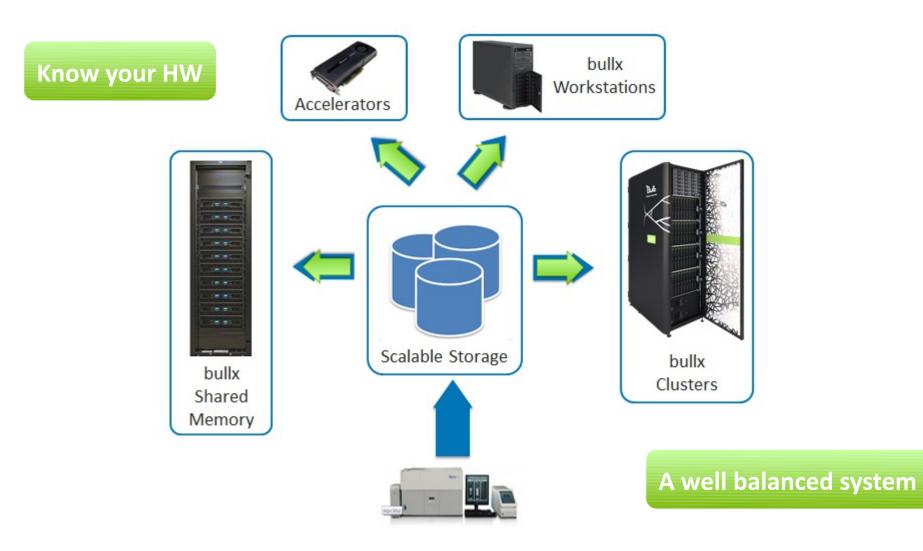


Sandy Bridge + NVIDIA K20

- 1600 GFLOPS
- 2 address spaces
- 32 GB/s CPU-GPU
- **68** + 192 GB/s
- > \$3000
- **>** 400 Watt

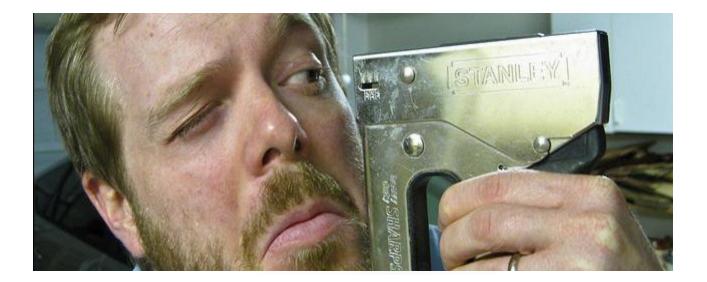
- 8-socket Exynos 5450
 - 1600 GFLOPS
 - 16 address spaces
 - 12.8 GB/s CPU-GPU
 - **1**02 GB/s
 - ■< \$200
 - < 100 Watt</p>




Direct Liquid Cooling DLC rack:

- Dual-pump unit (80 kW cooling capacity)
- Warm water: avoid chillers
- Rack includes 5 chassis, each with:
 - 18 dual-processor nodes
 - Embedded 1st level InfiniBand switch
 - Extra Embedded Gigabit Ethernet switch
 - Optional: Ultracapacitor

Max config	2013	2014
Processors	6 PF	12 PF
Accelerators	20 PF	28 PF



Why all the fuss?

Know your SW tools

bullx BM: based on SLURM

Increased scalability and performance up to 65000+ nodes

Increased robustness

Energy efficient management techniques

Preemption: suspending/resuming lower priority jobs

fine-grain task placement upon specific cores to obtain better application performance

bullx MPI: MPI library based on Open MPI

Increased scalability (65k nodes in production & 130k nodes in lab)

Failover improvements

Nightly regression tests with real applications

Intel Phi integration

Diagnostic tools: profiling library and checking library

MPI-IO: Lustre integration

bullx MPI: main features

Fine-grained process affinity: A group of processes communicating intensively will have the best possible bandwidth and latency.

Long lasting communication detection: bullx MPI detects long lasting communication transfers and stops active waiting on the incoming communication device. This enables the core of the process to change its © Bull, 2012

Predefined profiles: fast deployment and not have to manage the 400+ MPI options from the beginning. Kernel-based data mover: Processes on the same compute node will

optimize the memory bandwidth for intranode MPI transfers.

Interconnect sub-optimal use detection: detects situations where the interconnect parameters

http://www.bull.com/extreme-computing-services/cepp.html

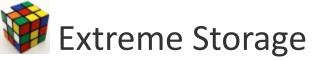
The Center is sponsored by

and supports

The first European center of industrial and technical excellence for parallel programming.

Highest level of expertise and skills : 2000 scientists surveyed:

- 45% spend more time coding than 5 years ago
- 38% spend at least 1/5 of their time coding
- 47% have good understanding of software testing



High-end HPC

HPC Clouds

Need to manage and control deluge in data volume Concurrent data access from all nodes

Parallel file systems

1 EByte today is simple:

■With 300M€ you would have 1 EByte with 15 TB/s

- If you have 1.000.000 cores: 15 MB/sc per core

Performanace seems OK ... but price doesn't ;)

Disk controllers with Terabytes of cache

¿Will tape survive? ¿Backup to disk directly?

Disk size will surpass 14 TB in 2020:

Dozens of PetaBytes per rack

1 Terabyte in a USB pen drive

SSD evolution: bigger and faster

bullx PFS, Management & Performance

Improved NUMA-IO

Predefined Lustre profiles

Speed up deployment

HA:

- On each Lustre server node
 - IO backend monitoring through local scripts
 - Errors reported through syslog
- On each Lustre client node
 - Lustre objects connection checking
 - Reading exchange counters in /proc/fs/lustre...
- On a regular basis
 - Write/read/compare test
- © Bull, 2012 launched on 2 random nodes

Shine

- Central management
- Ease Lustre installation
- Bandwidth aggregation
 - Multi-rail on IB for IO nodes
 - Multi-rail on IB for clients
- Topology Aware:
 - Optimize memory allocation
 - Optimize process placement and utilization
 - Avoid intra-machine data traffic
 - bullx MPI (MPI-IO) integration:
 - Applications have an optimized mapping between the MPI parallel I/O functions and Lustre

Tool to implement power policies

Predefined rules

If a rack has a very high temperature, PowerManager can tell bullx BM not to send jobs to nodes on that rack ExaFLOP will solve one of Humanities biggest issues (in CS):

How things are

ExaFLOP will create one of Humanities biggest issues (in CS):

Change

Architect of an Open World™