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Order parameters as a measure of SSB

Spontaneous magnetization of the ferromagnet EuO as a function
of temperature:

TC : Curie temperature

Spontaneous magnetization Σ is an order parameter:

Σ 6= 0 : System is in the broken phase (T < TC )

Σ = 0 : System is in the symmetric phase (T > TC )

Σ(T ) /Σ(0) = 1−α0T
3
2 free magnons (Bloch, 1932)
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The problem of the spin-wave interaction in ferromagnets

has a very long history

In 1955 I returned to Berkeley for a second summer to work with
Charles Kittel. Kittel suggested that I clean up the theory of spin
waves. The problem was to resolve a paradox which had arisen in
the theory of ferromagnets. On the one hand, the old linear
spin-wave theory of Felix Bloch agreed well with experiments. On
the other hand, the coupling between the spins in a ferromagnet is
strong and non-linear, and various more recent estimates of the
effect of spin-coupling had predicted strong deviations from the
linear Bloch theory. Three calculations of the spin-coupling effects
not only disagreed with Bloch theory but also with one another.

Selected papers of Freeman Dyson with commentary (1996)
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Manifestation of spin-wave interaction

Suggested interaction terms before Dyson: T 7/4, T 2

Dyson (1956): ”The method of the present paper settled the
disagreement by showing that both calculations were wrong”

Σ(T ) /Σ(0) = 1 − α0T
3
2 − α1T

5
2 − α2T

7
2 − α3T

4+ O(T
9
2 )

Spin-wave interaction starts manifesting itself only at T4

Terms of order T 3/2,T 5/2 and T 7/2 are related to the shape
of the dispersion curve – or the discreteness of the lattice –
and describe noninteracting magnons

Motivation: Calculation within the systematic and universal
effective Lagrangian method even beyond Dyson

Manifestation of spin-wave interaction beyond order T4

unclear: T5, T13/2, T15/2
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Spontaneous symmetry breaking in (anti)ferromagnets

Heisenberg model:

H0 = − J
∑

n.n.

~Sm · ~Sn, J = const.

J : Exchange integral
J > 0 : Ferromagnetic ground state

J < 0 : Antiferromagnetic ground state (Néel state)

Symmetry of Hamiltonian 6= Symmetry of ground state:

Hamiltonian H0 is invariant under the group G = O(3)
describing rotations in the space of the spin variables

Ground state is only invariant under the subgroup H = O(2)
describing rotations around the third axis

Spontaneous symmetry breaking O(3) → O(2)
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Goldstone theorem in the nonrelativistic domain

Goldstone theorem for nonrelativistic systems (Lange, 1965):
Spontaneous symmetry breaking in nonrelativistic systems leads to
low-energy excitations in the spectrum whose energy tends to zero
for large wavelengths: ω → 0 for |~k| → 0

Only the number of Goldstone boson fields is determined by
nG − nH

However, the exact form of the dispersion relation for these
Goldstone bosons as well as the number of these particles

depend on the properties of the nonrelativistic system

These low-energy excitations in magnetic systems are well-known:

Spin waves or magnons as collective fluctuations of the spins

Ferromagnet: E ∝ ~p2 Antiferromagnet: E ∝ |~p|
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Explicit versus spontaneous symmetry breaking

Extension of the Heisenberg model:

H = − J
∑

n.n.

~Sm · ~Sn − µ
∑

n

~Sn · ~H = H0 + Hsb

H0 is invariant under the rotation group G = O(3)

Hsb explicitly breaks the symmetry G

Magnetic field ~H is a symmetry breaking parameter, much like the
quark masses in the QCD Lagrangian

LQCD = − 1
2g2 trcGµνG

µν + q̄iγµDµq − q̄mq

Small mq, weak ~H : Hsb can be treated as a perturbation
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Construction of effective Lagrangians

Construction of effective theories via symmetry analysis, in
particular of the spontaneously broken symmetry

Weinberg (1979): If one writes down the most general
possible Lagrangian, including all terms consistent with the
assumed symmetries, and then calculates matrix elements
with this Lagrangian to any given order of perturbation
theory, the result will simply be the most general S-matrix
consistent with analyticity, perturbative unitarity, cluster
decomposition and the assumed symmetries

The degrees of freedom in the effective Lagrangian are the
Goldstone bosons
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Chiral perturbation theory (CHPT)

Expansion of scattering amplitudes in powers of momentum ⇔
derivative expansion of the effective Lagrangian:

Leff = Leff(π, ∂π, ∂2π, . . . ,m) = L2
eff + L4

eff + L6
eff + . . .

Power counting: ∂µ ∝ p, m ∝ p2 (M2[π] ∝ m)

Effective Lagrangian at leading order (order p2):

L2
eff = 1

4F 2
π tr {∂µU∂µU+ + χ(U + U+)}, χ = 2Bm

U = exp(2iπ(x)/Fπ)

π(x) contains the Goldstone boson octet

O(p2): Two effective constants: Fπ (Pion decay constant), B
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Chiral perturbation theory (CHPT)

Effective Lagrangian at next-to-leading order (order p4):

L4
eff = L1〈DµUDµU†〉2 + · · · + L5〈DµUDµU†(χU† + Uχ†)〉 + . . .

O(p4): 10 low-energy constants L1,L2, . . .

Effective constants parametrize the physics of the underlying
theory (QCD)

Effective constants have to be determined by experiment (e.g.
pion-pion scattering) or in numerical simulations
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Momentum expansion and power counting in CHPT

Derivative expansion of the effective Lagrangian corresponds
to an expansion in the momenta or temperature

Example: Pion-Pion scattering

1 b1a 1c

4

Tree graph of order p2 is finite

Loops in d=3+1 are suppressed by two powers of momentum

Divergences in one-loop graph 1c of order p4 are absorbed
into coupling constants of order p4 graph 1b

At a given order in the derivative expansion only a finite
number of diagrams and coupling constants contribute
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Loop suppression: Dispersion relation and space dimension

Consider the Goldstone boson loop
∫

dE dds p

E 2 − ~p2
∝ Pds−1

∫

dE dds p

E − ~p2
∝ Pds

Lorentz-invariant framework
d=3+1: Loops are suppressed by two powers of momentum
d=2+1: Loops are suppressed by one power of momentum

Nonrelativistic framework: Ferromagnet with E ∝ ~p2

d=3+1: Loops are suppressed by three powers of momentum
d=2+1: Loops are suppressed by two powers of momentum
d=1+1: Loops are suppressed by one power of momentum

Analogy: Two-dimensional ferromagnets correspond to QCD
Difference: Derivative expansion fails in d=1+1 in the case
of Lorentz-invariant theories, but ferromagnetic spin-chains
are accessible by effective field theory
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The nonrelativistic domain

Extension of the effective Lagrangian method to condensed matter
is nontrivial since nonrelativistic systems single out a preferred
frame of reference: the rest frame → Lorentz non-invariance

Closer look at the relation: Symmetries of the underlying theory
⇐⇒ Symmetries of the effective theory:

Underlying theory: Global symmetries (SU(3)L × SU(3)R ,
O(3)) → conserved currents (Noether theorem)

Effective theory: Invariance under the same global symmetries
→ same conserved Noether currents

This assumption, however, is too strong: Leff may not be
invariant under the symmetry G, but pick up a total derivative; the
action Seff =

∫

d4x Leff would still be invariant and lead to the
required currents
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Invariance theorem

Invariance theorem (Leutwyler, 1994):
For Lorentz-invariant systems, the effective Lagrangian shares the
symmetries of the Lagrangian of the underlying theory

This statement is no longer true in the nonrelativistic domain:
Nonrelativistic effective Lagrangians may violate gauge invariance

Rigorous analysis must rely on an analysis of the Ward identities
obeyed by the Green functions of the currents, which represent the
symmetry properties of the underlying theory on a local level

Generating functional Γ{f } collects all the information of the
Green functions of the currents Jµ

i (x) in compact form:

e i Γ{f } =

∞
∑

n=0

in

n!

∫

d4x1 . . . d4xn f i1
µ1

(x1) . . . f in
µn

(xn)

× <0 | T{Jµ1

i1
(x1) . . . Jµn

in
(xn)} |0>

f i
µ(x) : External fields coupled to the currents Jµ

i (x)
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Systematic construction of effective Lagrangians

L(0,1)
eff = ca(π)π̇a + ei (π)f i

0

L(2,0)
eff = −1

2gab(π) ∂rπ
a∂rπ

b + hai(π)f i
r ∂rπ

a − 1
2kik(π)f i

s f k
s

L(0,2)
eff = 1

2 ḡab(π) π̇aπ̇b − h̄ai(π)f i
0 π̇a + 1

2 k̄ik(π)f i
0 f k

0

ca(π), ei (π), gab(π), hai (π), . . . : Low-energy couplings

a, b, c = 1, . . . , nG − nH : Components of the effective field

i , j , k = 1, . . . , nG : Generators of the group G

r , s, t = 1, 2, 3: Spatial coordinates

Main novelty in the nonrelativistic domain: Couplings ca(π), ei (π)

Value of ei (π) at π = 0 corresponds to a term linear in f i
0 :

<0 |J0
i (x) |0> = ei (0)
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Magnetic systems: Third component of total spin operator is
related to third component of the charge density operator by

∑

n

S3
n = Q3 =

∫

d3xJ0
3 (x) ⇐⇒ NS = 〈0| J0

3 |0〉V

N : Total number of lattice sites
S : Highest eigenvalue of the spin operator S3

n

V : Volume of the entire crystal

→ 〈0| J0
i |0〉 = δ3

i (NS/V ) = δ3
i Σ

Σ : Spontaneous magnetization

Ward identities and equation of motion have to be compatible with
the derivative expansion of the effective Lagrangian:

Ferromagnet (Σ 6= 0) : ei (0) → ei (π) → ca(π)

Antiferromagnet (Σ = 0) : ei (0) = 0 → ei (π), ca(π) = 0
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Leading order effective Lagrangians

Spin-waves are fluctuations of the magnetization vector ~U:
~U = (U1,U2,U3) = (π1, π2,

√
1 − πaπa), |~U | = 1

LF
eff = Σ

∂0U
1U2 − ∂0U

2U1

1 + U3
+ ΣH iU i − 1

2F 2DrU
iDrU

i

LAF
eff = 1

2F 2
1 D0U

iD0U
i− 1

2F 2
2 DrU

iDrU
i , DµU i = ∂µU i+εijk f j

µUk

Ferromagnet: Spontaneous magnetization Σ shows up as a
leading-order effective constant of a term involving one time
derivative only which dominates the dynamics

Dispersion relation for spin waves:
Quadratic for a ferromagnet: ω = γ~k2, γ = F 2/Σ
Linear for an antiferromagnet: ω = v |~k|, v = F2/F1
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Spontaneous magnetization

Spontaneous magnetization of the three-dimensional ferromagnet
EuO as a function of temperature:

Σ(T ) /Σ(0) = 1−α0T
3
2 free magnons (Bloch, 1932)

At what order does the spin-wave interaction manifest itself in
the low-temperature expansion of the spontaneous magnetization
Σ(T )?
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Finite temperature effective field theory

Partition function is represented as Euclidean functional integral

Tr [exp(−H/T )] =

∫

[dU] exp
(

−
∫

T
d4x Leff

)

,

where the integration is performed over all field configurations
which are periodic in the Euclidean time direction:
U(~x , x4 + β) = U(~x , x4), with β ≡ 1/T

The periodicity condition manifests itself in the thermal propagator

G (x) =

∞
∑

n =−∞

∆(~x , x4 + nβ)

We work in the infinite volume limit

z = −T lim
L→∞

L−3 ln [Tr exp(−H/T )]
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3D ferromagnets: Partition function diagrams

Loops are suppressed by three powers of momentum:

5 87

4

9a

4 6

2

11a10a9b 10b

4 4 4 4

11c 11d11b 11e

8 6 4

Communication of graphs (UV divergences), LEC’s, T -powers
(Ferromagnet: p2 ∝ E ∝ T )
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Effective Lagrangian for ferromagnets

Pieces of the effective Lagrangian for the ferromagnet required up
to three-loop order:

L2
eff = Σ

εab ∂0U
aUb

1 + U3
+ ΣµHU3 − 1

2F 2∂rU
i∂rU

i

L4
eff = l1 (∂rU

i∂rU
i )2 + l2 (∂rU

i∂sU
i)2 + l3 ∆U i∆U i

L6
eff = c1 U i∆3U i

L8
eff = d1 U i∆4U i

Idealization: Space rotation invariance also at subleading
orders of the effective Lagrangian
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3D Ferromagnet: Spontaneous magnetization

Σ(T )

Σ
= 1 − α0T

3
2 − α1T

5
2 − α2T

7
2 − α3T

4 − α4T
9
2 + O(T5)

α4 =
945

64π
3
2 Σ2γ

11
2

(

d1 − 11l3c1F
−2

)

ζ(9
2) − Σ

5
2

2F 9
j2

j2 = −0.000167

Half-integer T -powers in odd space dimensions

No logarithmic terms in this series

This series has a very long history: Impact of spin-wave
interaction: Bloch (1932), Dyson (1956), CPH (2011)

Earlier attempts:
T4 : T 7/4,T 2,T 9/4,T 3 T9/2 : T 5,T 13/2,T 15/2
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Spurious cubic term in the spontaneous magnetization

There is no interaction term of order T 3 in the low-temperature
expansion for the spontaneous magnetization of the
three-dimensional ferromagnet:

O(T 4) in the free energy density: Two-loop graph 8:

z8 ∝
[

∂rG (x)
]

x=0

[

∂rG (x)
]

x=0
= 0

Space rotation invariance of the thermal propagator (and the
effective Lagrangian) excludes a T 4-term in the free energy
density or a T 3-term in the spontaneous magnetization
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Scales in QCD and 3D ferromagnets

Low-temperature series of the order parameters:

〈q̄q〉(T ,mq)/〈0|q̄q|0〉 = 1 − β0T
2 − β1T

4 − β2T
6 lnT + O(T8)

Σ(T )/Σ = 1 − α0T
3
2 − α1T

5
2 − α2T

7
2 − α3T

4 − α4T
9
2 + O(T5)

In the chiral limit (mq → 0) and in zero magnetic field, the leading

coefficients read β0 = 1/8F2 and α0 = ζ(3
2)/8π

3
2 Σγ

3
2

The corresponding temperature scales differ in more than ten
orders of magnitude:

ΛT
QCD =

√
8F ≈ 250MeV ΛT

F = α
−2/3
0 ≈ 10meV

For temperatures small compared to ΛT
QCD and ΛT

F , the
low-temperature series are perfectly valid

The situation in 2D and 1D is more subtle (Mermin-Wagner)
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2D ferromagnet and QCD: Partition function

Loops are suppressed by two powers of momentum:

2 4a 4b 6a

4

6b 6c

64

8a 8b 8c 8h

8

8d 8e

4 4

8f 8g

4 4 6

Communication of graphs (UV divergences), LEC’s, T -powers
(QCD: p ∝ E ∝ T , Ferromagnet: p2 ∝ E ∝ T )
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2D ferromagnet and QCD: Pressure and order parameter

Pressure: (All interaction contributions are boldfaced)

PQCD = b0T
4 + b1T

6 + b2 T8 lnT + O(p10)

PFerro2D = â0T
2 + â1T

3 + âA
2 T4 + âB

2 T4 lnT + O(p10)

Order parameters: Quark condensate and magnetization:

〈q̄q〉(T ,mq) = ∂z/∂mq Σ(T ,H) = −∂z/∂(µH)

〈q̄q〉(T ,mq)/〈0|q̄q|0〉 = 1 − β0T
2 − β1T

4 − β2T
6 lnT + O(T8)

Σ(T ,H)/ΣFerro2D = 1− α̂0T − α̂1T
2− α̂A

2 T3+ α̂B
2 T3 lnT+O(T4)

Analogy: Structure of T -powers, chiral logarithms,
logarithms in the low-temperature series

Difference: Magnitude of the corresponding low-energy scales
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Occurrence of logarithmic terms

As in QCD, the cateye-graph for 2D ferromagnets is logarithmically
divergent:

T ds+2 (µH)
ds−2

2

{

∞
∑

n=1

e−µHn/T

n
ds+2

2

}2

Γ(1 − ds

2
)

Dimensionally regularized in the spatial dimension ds

UV-singularity of cateye-graph 8c is absorbed by the LEC’s l1
and l2 from L4

eff contained in the two-loop graphs 8d and 8e

Logarithmic renormalization of effective constants implies
chiral logarithms: log(H/µ) and log(M/µ)

In the limit ~H → 0 (much like in the chiral limit mq → 0), the
cateye graph diverges logarithmically. As a consequence terms
∝ T n lnT emerge in the low-temperature series
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Ferromagnetic spin chains: Partition function

Loops are still suppressed by one power of momentum:

2 3 4

4

5d

5a 5b 5c

Only very few effective constants are required

Effective loop expansion in one space dimension does not
work in a Lorentz-invariant framework
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Ferromagnetic spin chains: Pressure and Magnetization

P = ã0T
3
2 + ã1T

5
2 + O(T3)

Σ(T )

Σ
= 1 − α̃0T

1
2 − α̃1T

3
2 + O(T2)

No logarithmic terms in odd space dimensions

Half-integer T -powers in odd space dimensions

Spin-wave interaction already at next-to-leading order

Spin-wave interaction in the pressure is repulsive (ã1 > 0)

The impact of the spin-wave interaction in ferromagnetic spin
chains was conclusively solved only very recently [CPH (2013)]
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Summary

The low-energy dynamics of ferromagnets is governed by a
term which involves one time derivative only

The structure of the low-temperature series is an immediate
consequence of the symmetries inherent in the underlying
theory (Heisenberg Hamiltonian, QCD Lagrangian)

Although ferromagnets follow nonrelativistic kinematics, 2D
ferromagnets also exhibit logarithmic terms in T like QCD

The scales in QCD and ferromagnets differ in about ten orders
of magnitude. Still the effective field theory captures the
low-T behavior of both systems in a systematic way

In the nonrelativistic domain the effective Lagrangian method
even works in one space dimension
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Virtues of the effective Lagrangian method

The effective Lagrangian method addresses the problem from
a model-independent point of view based on symmetry. Any
microscopic information is contained in the numerical values
of a few LEC’s which parametrize the microscopic details

The effective calculation has been systematically worked out
up to three-loop order for ferromagnets, i.e., beyond the reach
of any other approach involving conventional condensed
matter methods (spin-wave theory, Schwinger boson mean
field theory, Green’s function approach, etc.)
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