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Cosmology (or: how I got into this)

• Strong indication for a primordial inflation phase of quasi-de Sitter expansion 
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• Time dependent field states in the presence of a continuous symmetry

• In particular: 

Spontaneous Symmetry Probing

φ̇j ∝ δφj
time evolution symmetry action
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• Time dependent field states in the presence of a continuous symmetry

• In particular: 

• Equivalently, 

φ̇j ∝ δφj
time evolution symmetry action

Spontaneous Symmetry Probing

H
�|µ� ≡ (H − µQ)|µ� = 0

+         breaks       |µ� Q
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H
� = H − µQ

Systems at finite charge density
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Non-relativistic Hamiltonian 
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Relativistic ∼
�

d3xT 00

Lagrange Multiplier,
chemical potential 

∼
�

d3xJ0Conserved charge,
e.g. particles number

Non-relativistic Hamiltonian 

H
� = H − µQ

Systems at finite charge density
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H
� = H − µQ

Systems at finite charge density

At first sight:  explicit breaking of Lorentz and all non-commuting charges
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H
� = H − µQ

Systems at finite charge density

At first sight:  explicit breaking of Lorentz and all non-commuting charges

However

Lorentz is always broken spontaneously in the real world!

1) Classification of ``condensed matter systems”

2) Exact results in this case (gapped Goldstones)

(Alberto’s talk and in preparation with Nicolis, Penco, Rattazzi, Rosen)
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Spontaneous Symmetry Breaking: Generalities

�0|[Q(t), A(0)]|0�
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Spontaneous Symmetry Breaking: Generalities

�0|[Q(t), A(0)]|0� = const. always
�
dQ

dt
= 0

�

More precisely,

0 =

�
d3x�0|[∂µJµ(�x, t), A]|0�

=

�
d3x�0|[J̇0(�x, t), A]|0�+

�
d3x�0|[∂iJ i(�x, t), A]|0�
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Spontaneous Symmetry Breaking: Generalities

�0|[Q(t), A(0)]|0� = const. always
�
dQ

dt
= 0

�

More precisely,

0 =

�
d3x�0|[∂µJµ(�x, t), A]|0�

=

�
d3x�0|[J̇0(�x, t), A]|0�+

�
d3x�0|[∂iJ i(�x, t), A]|0�

Because commutator
of local operators
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Spontaneous Symmetry Breaking: Generalities

�0|[Q(t), A(0)]|0� = const. always
�
dQ

dt
= 0

�

�= 0 for some A

by definition of SSB �0|δA|0� �= 0
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Spontaneous Symmetry Breaking: Generalities

�0|[Q(t), A(0)]|0� = const. always
�
dQ

dt
= 0

�

�= 0 for some A

Goldstone Theorem:   both          and         interpolate a  massless stateJµ(x) A(x)

�0|Jµ(x)|π(p)� = i v eipµx
µ

pµ
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�c|[H,A(x)]|c� = c �c|[Q,A(x)]|c�

Spontaneous Symmetry Probing

Q = Q1, Q2, . . . QN Conserved charges of a symmetry group

1) Conserved currents evolve with the relativistic Hamiltonian 

2) We study the spectrum of the unbroken combination

H

Jµ

a
(�x, t) = ei(Ht−P ·�x)t Jµ

a
(0) e−i(Ht−P ·�x)

H
� = H − cQ; H

�|c� = 0

Alert!                in the next 3 slices µ → c
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Good old-fashion demonstration, revisited...

κaI = �c|[Qa(t), AI ]|c�

=

�
d3x�c|J0

a
(�x, t)AI |c� − c.c.

=

�
d3x�c|ei(Ht−P ·�x)t J0

a
(0) e−i(Ht−P ·�x)AI |c� − c.c.

=

�
d3x�c|eicQt J0

a
(0) e−i(Ht−P ·�x)AI |c� − c.c.

=

�
d3x

�

n,p

ei�p·�x�c|eicQtJ0
a
(0)e−icQte−iH̃t|n, �p ��n, �p |AI |c� − c.c.

=
�

n

δ3(�p)�c|eicQt J0
a
(0) e−icQte−iH̃t|n, 0��n, 0|AI |c� − c.c.

=
�

n

e−iEn(0)t�c|eicQtJ0
a
(0)e−icQt|n, 0��n, 0|AI |c� − c.c.
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Good old-fashion demonstration, revisited...

Explicit the space-time dependence (1)
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Good old-fashion demonstration, revisited...
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Good old-fashion demonstration, revisited...

Explicit the space-time dependence (1)

SSP state ground state of              (2)H − cQ

Insert momentum eigenstates
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Good old-fashion demonstration, revisited...

Explicit the space-time dependence (1)

SSP state ground state of              (2)H − cQ

Insert momentum eigenstates

Do the integral 

κaI = �c|[Qa(t), AI ]|c�
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Good old-fashion demonstration, revisited...

Explicit the space-time dependence (1)

SSP state ground state of              (2)H − cQ

Insert momentum eigenstates

Do the integral 

Two cases: either      and     commute  or they do not. Ja Q

κaI = �c|[Qa(t), AI ]|c�

=

�
d3x�c|J0

a
(�x, t)AI |c� − c.c.
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Non-Commuting case: massive Goldstones

[Qa, J
0
b (x)] = if c

ab J
0
c (x)Say,

The interpolator is a time-dependent combination of conserved currents 

eicQtJae
−icQt = (e−f1 ct)baJbThen,

A. Nicolis, F.P.  1204.1570

Take         in `normal form’: block diagonal with piecesf b
1a

�
0 +qα

−qα 0

�

Each block: one massive Goldstone state 

m = c qα

κIa = e−iEnt�c|eicQtJ0
a(0)e

−icQt|n, 0��n, 0|AI |c� − c.c.
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Example: SO(3) - one triplet

L = −1

2
∂µ�φ ∂µ�φ− 1

2
m2�φ 2 − 1

4
λ(�φ 2)2

L =− 1

2
∂µσ∂

µσ − 1

2
σ2∂µθ∂

µθ − 1

2
∂µφ3∂

µφ3

− 1

2
m2 (σ2 + φ2

3)−
1

4
λ (σ2 + φ2

3)
2

radial and angular 
coordinates for 1-2

SSP solution:

L(2) =− 1

2
∂µδσ∂

µδσ − 1

2
σ2∂µπ∂

µπ − 1

2
∂µφ3∂

µφ3

+ 2cσπ̇δσ − (c2 −m2)δσ2 − 1

2
c2φ2

3

Perturbations:

θ̇ = c; σ2 =
c2 −m2

λ
; φ3 = 0
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However: SO(3) - symmetric traceless rep.

L = −1

2
∂µΦ

i
j∂

µΦj
i − λ

�
Φi

jΦ
j
i − v2

�2

SSP solution: �Φ� = eiµtL3




Φ0 0 0
0 −Φ0 0
0 0 0



 e−iµtL3

1) Fixed gap Goldstone  

2) ``Un-fixed gap Goldstone

m = µ

m = 3µ

Other ex: SO(3) - two triplets.   Etc.
1306.1240, A. Nicolis, R. Penco, F.P., R. Rosen
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• Full symmetry group: 

• Unbroken generators                                        (subgroup)

• Broken generators

• Charge at finite density                                                   

Finite charge density: coset construction

QI

TA

1) maximum number of unbroken generators
2) completely antisymmetric in 

Xa

(Xa, TA)

µQ = µXX + µTT






P̄
0 ≡ H − µQ

P̄
i ≡ P

i

Ji

TA

Unbroken Broken






Q
X,Xa

Ki

1306.1240, A. Nicolis, R. Penco, F.P., R. Rosen
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Finite charge density: coset construction

Ω = eix
µP̄µeiπ(x)Xeiπ

a(x)Xaeiη
i(x)Ki
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Finite charge density: coset construction
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• Boost-Goldstones always eliminated by inv. Higgs (see Riccardo’s talk) 
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Finite charge density: coset construction

• Boost-Goldstones always eliminated by inv. Higgs (see Riccardo’s talk)

• Internal Goldstones further classified: commuting vs. non-commuting 

Ω = eix
µP̄µeiπ(x)Xeiπ

a(x)Xaeiη
i(x)Ki

[Q,Xa] = iMabX
b Mab = diag

�
0, · · · , 0,

�
0 q1

−q1 0

�
, · · · ,

�
0 qk

−qk 0

��
.
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Finite charge density: coset construction

• Boost-Goldstones always eliminated by inv. Higgs (see Riccardo’s talk)

• Internal Goldstones further classified: commuting vs. non-commuting 

• This defines a new inverse Higgs constraint!

Ω = eix
µP̄µeiπ(x)Xeiπ

a(x)Xaeiη
i(x)Ki

[Q,Xa] = iMabX
b Mab = diag

�
0, · · · , 0,

�
0 q1

−q1 0

�
, · · · ,

�
0 qk

−qk 0

��
.

πα π±
a

[P̄0, X
±
a ] = ±iµqaX

∓
a
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Finite charge density: coset construction

• Boost-Goldstones always eliminated by inv. Higgs (see Riccardo’s talk)

• Internal Goldstones further classified: commuting vs. non-commuting 

• This defines a new inverse Higgs constraint!

• For each fixed-mass Goldstone an ``optional” non-fixed-mass one 

Ω = eix
µP̄µeiπ(x)Xeiπ

a(x)Xaeiη
i(x)Ki

[Q,Xa] = iMabX
b Mab = diag

�
0, · · · , 0,

�
0 q1

−q1 0

�
, · · · ,

�
0 qk

−qk 0

��
.

πα π±
a

[P̄0, X
±
a ] = ±iµqaX

∓
a
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Finite charge density: coset construction

• Commuting Goldstones                only appear with derivatives

• One derivative mixing is important:

• Linear dispersion relations  +   massless quadratic  <->  gapped 

Ω = eix
µP̄µeiπ(x)Xeiπ

a(x)Xaeiη
i(x)Ki

π − πα

Mαβπ
απ̇β

M = diag

�
0, · · · , 0,

�
0 M1

−M1 0

�
, · · · ,

�
0 Mk

−Mk 0

��

m ∼ µ

Nielsen and Chada  `76, Watanabe and Brauner  `11
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Summary

•        massless linear (from commuting sector)

•        massless quadratic (from commuting sector)

•        fixed gap (from non-commuting sector)

•        unfixed gap (from both sectors)

n1

n2

n3

n4

n2 ≤ n4 ≤ n2 + n3
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