Type II Goldstone Bosons

Federico Piazza

1112.5174, A. Nicolis, F.P.
1204.1570, A. Nicolis, F.P.
1306.1240, A. Nicolis, R. Penco, F.P., R. Rosen

Cosmology (or: how I got into this)

- Strong indication for a primordial inflation phase of quasi-de Sitter expansion

Cosmology (or: how I got into this)

- Strong indication for a primordial inflation phase of quasi-de Sitter expansion

Flat to good approximation

$$
\frac{V^{\prime}}{V} \ll 1, \frac{V^{\prime \prime}}{V} \ll 1
$$

Generalization:
moving in a symmetry direction

Spontaneous Symmetry Probing

- Time dependent field states in the presence of a continuous symmetry
- In particular:
time evolution $\longrightarrow \dot{\phi}_{j} \propto \delta \phi_{j}<$ symmetry action

Spontaneous Symmetry Probing

- Time dependent field states in the presence of a continuous symmetry
- In particular:
time evolution $\longrightarrow \dot{\phi}_{j} \propto \delta \phi_{j}{ }_{\text {symmetry action }}$
- Equivalently,

$$
\begin{aligned}
& H^{\prime}|\mu\rangle \equiv(H-\mu Q)|\mu\rangle=0 \\
&+\quad|\mu\rangle \text { breaks } Q
\end{aligned}
$$

Systems at finite charge density

$$
H^{\prime}=H-\mu Q
$$

Systems at finite charge density

$$
\begin{aligned}
& \text { Non-relativistic Hamiltonian } \\
& \qquad H^{\prime}=H-\mu Q
\end{aligned}
$$

Systems at finite charge density

Systems at finite charge density

Systems at finite charge density

Systems at finite charge density

At first sight: explicit breaking of Lorentz and all non-commuting charges

$$
H^{\prime}=H-\mu Q
$$

Systems at finite charge density

At first sight: explicit breaking of Lorentz and all non-commuting charges

$$
H^{\prime}=H-\mu Q
$$

However

Lorentz is always broken spontaneously in the real world!

Systems at finite charge density

At first sight: explicit breaking of Lorentz and all non-commuting charges

$$
H^{\prime}=H-\mu Q
$$

However

Lorentz is always broken spontaneously in the real world!
I) Classification of "'condensed matter systems" (Alberto's talk and in preparation with Nicolis, Penco, Rattazzi, Rosen)
2) Exact results in this case (gapped Goldstones)

Spontaneous Symmetry Breaking: Generalities

$\langle 0|[Q(t), A(0)]|0\rangle$

Spontaneous Symmetry Breaking: Generalities

$$
\langle 0|[Q(t), A(0)]|0\rangle \quad=\text { const. } \quad \text { always } \quad\left(\frac{d Q}{d t}=0\right)
$$

Spontaneous Symmetry Breaking: Generalities

$\langle 0|[Q(t), A(0)]|0\rangle \quad=$ const. \quad always $\quad\left(\frac{d Q}{d t}=0\right)$

More precisely,

$$
\begin{aligned}
0 & =\int d^{3} x\langle 0|\left[\partial_{\mu} J^{\mu}(\vec{x}, t), A\right]|0\rangle \\
& =\int d^{3} x\langle 0|\left[\dot{J}^{0}(\vec{x}, t), A\right]|0\rangle+\int d^{3} x\langle 0|\left[\partial_{i} J^{i}(\vec{x}, t), A\right]|0\rangle
\end{aligned}
$$

Spontaneous Symmetry Breaking: Generalities

$$
\langle 0|[Q(t), A(0)]|0\rangle \quad=\text { const. } \quad \text { always } \quad\left(\frac{d Q}{d t}=0\right)
$$

More precisely,

$$
\begin{aligned}
0 & =\int d^{3} x\langle 0|\left[\partial_{\mu} J^{\mu}(\vec{x}, t), A\right]|0\rangle \\
& =\int d^{3} x\langle 0|\left[\dot{J}^{0}(\vec{x}, t), A\right]|0\rangle+\underset{\begin{array}{c}
\text { Because commutator } \\
\text { of local operators }
\end{array}}{\left.\int d^{3} x\langle 0| \delta J^{i}\langle\vec{x}, t), A\right]|0\rangle}
\end{aligned}
$$

Spontaneous Symmetry Breaking: Generalities

$$
\begin{aligned}
\langle 0|[Q(t), A(0)]|0\rangle & =\text { const. } & & \text { always } \quad\left(\frac{d Q}{d t}=0\right) \\
& \neq 0 & & \text { for some } A
\end{aligned}
$$

$$
\text { by definition of SSB } \quad\langle 0| \delta A|0\rangle \neq 0
$$

Spontaneous Symmetry Breaking: Generalities

$$
\begin{aligned}
\langle 0|[Q(t), A(0)]|0\rangle & =\text { const. } & & \text { always } \quad\left(\frac{d Q}{d t}=0\right) \\
& \neq 0 & & \text { for some } A
\end{aligned}
$$

Goldstone Theorem: both $J^{\mu}(x)$ and $A(x)$ interpolate a massless state

$$
\langle 0| J^{\mu}(x)|\pi(p)\rangle=i v e^{i p_{\mu} x^{\mu}} p^{\mu}
$$

Spontaneous Symmetry Probing

$$
\langle c|[H, A(x)]|c\rangle=c\langle c|[Q, A(x)]|c\rangle
$$

$$
Q=Q_{1}, Q_{2}, \ldots Q_{N}
$$

Conserved charges of a symmetry group
I) Conserved currents evolve with the relativistic Hamiltonian H

$$
J_{a}^{\mu}(\vec{x}, t)=e^{i(H t-P \cdot \vec{x}) t} J_{a}^{\mu}(0) e^{-i(H t-P \cdot \vec{x})}
$$

2) We study the spectrum of the unbroken combination

$$
H^{\prime}=H-c Q ; \quad H^{\prime}|c\rangle=0
$$

Good old-fashion demonstration, revisited...

$$
\begin{aligned}
\kappa_{a I} & =\langle c|\left[Q_{a}(t), A_{I}\right]|c\rangle \\
& =\int d^{3} x\langle c| J_{a}^{0}(\vec{x}, t) A_{I}|c\rangle-\text { c.c. } \\
& =\int d^{3} x\langle c| e^{i(H t-P \cdot \vec{x}) t} J_{a}^{0}(0) e^{-i(H t-P \cdot \vec{x})} A_{I}|c\rangle-\text { c.c. } \\
& =\int d^{3} x\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i(H t-P \cdot \vec{x})} A_{I}|c\rangle-\text { c.c. } \\
& =\int d^{3} x \sum_{n, p} e^{i \vec{p} \cdot \vec{x}}\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t} e^{-i \tilde{H} t}|n, \vec{p}\rangle\langle n, \vec{p}| A_{I}|c\rangle-\text { c.c. } \\
& =\sum_{n} \delta^{3}(\vec{p})\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t} e^{-i \tilde{H} t}|n, 0\rangle\langle n, 0| A_{I}|c\rangle-\text { c.c. } \\
& =\sum_{n} e^{-i E_{n}(0) t}\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t}|n, 0\rangle\langle n, 0| A_{I}|c\rangle-\text { c.c. }
\end{aligned}
$$

Good old-fashion demonstration, revisited...

$$
\begin{aligned}
\kappa_{a I} & =\langle c|\left[Q_{a}(t), A_{I}\right]|c\rangle \\
& =\int d^{3} x\langle c| J_{a}^{0}(\vec{x}, t) A_{I}|c\rangle-\text { c.c. } \\
& =\int d^{3} x\langle c| e^{i(H t-P \cdot \vec{x}) t} J_{a}^{0}(0) e^{-i(H t-P \cdot \vec{x})} A_{I}|c\rangle-\text { c.c. } \\
& =\int d^{3} x\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i(H t-P \cdot \vec{x})} A_{I}|c\rangle-\text { c.c. } \\
& =\int d^{3} x \sum_{n, p} e^{i \vec{p} \cdot \vec{x}}\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t} e^{-i \tilde{H} t}|n, \vec{p}\rangle\langle n, \vec{p}| A_{I}|c\rangle-\text { c.c. } \\
& =\sum_{n} \delta^{3}(\vec{p})\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t} e^{-i \tilde{H} t}|n, 0\rangle\langle n, 0| A_{I}|c\rangle-\text { c.c. } \\
& =\sum_{n} e^{-i E_{n}(0) t}\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t}|n, 0\rangle\langle n, 0| A_{I}|c\rangle-\text { c.c. }
\end{aligned}
$$

Good old-fashion demonstration, revisited...

$$
\begin{aligned}
\kappa_{a I} & =\langle c|\left[Q_{a}(t), A_{I}\right]|c\rangle \\
& =\int d^{3} x\langle c| J_{a}^{0}(\vec{x}, t) A_{I}|c\rangle-\text { c.c. } \quad \text { Explicit the space-time dependence (। } \\
& =\int d^{3} x\langle c| e^{i(H t-P \cdot \vec{x}) t} J_{a}^{0}(0) e^{-i(H t-P \cdot \vec{x})} A_{I}|c\rangle-\text { c.c. } \\
& =\int d^{3} x\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i(H t-P \cdot \vec{x})} A_{I}|c\rangle-\text { c.c. } \\
& =\int d^{3} x \sum_{n, p} e^{i \vec{p} \cdot \vec{x}}\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t} e^{-i \tilde{H} t}|n, \vec{p}\rangle\langle n, \vec{p}| A_{I}|c\rangle-\text { c.c. } \\
& =\sum_{n} \delta^{3}(\vec{p})\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t} e^{-i \tilde{H} t}|n, 0\rangle\langle n, 0| A_{I}|c\rangle-\text { c.c. } \\
& =\sum_{n} e^{-i E_{n}(0) t}\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t}|n, 0\rangle\langle n, 0| A_{I}|c\rangle-\text { c.c. }
\end{aligned}
$$

Good old-fashion demonstration, revisited...

$$
\begin{aligned}
\kappa_{a I} & =\langle c|\left[Q_{a}(t), A_{I}\right]|c\rangle \\
& =\int d^{3} x\langle c| J_{a}^{0}(\vec{x}, t) A_{I}|c\rangle-\text { c.c. } \quad \text { Explicit the space-time dependence (। } \\
& =\int d^{3} x\langle c| e^{i(H t-P \cdot \vec{x}) t} J_{a}^{0}(0) e^{-i(H t-P \cdot \vec{x})} A_{I}|c\rangle-\text { c.c. } \\
& =\int d^{3} x\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i(H t-P \cdot \vec{x})} A_{I}|c\rangle-\text { c.c. } \\
& =\int d^{3} x \sum_{n, p} e^{i \vec{p} \cdot \vec{x}}\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t} e^{-i \tilde{H} t}|n, \vec{p}\rangle\langle n, \vec{p}| A_{I}|c\rangle-\text { c.c. } \\
& =\sum_{n} \delta^{3}(\vec{p})\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t} e^{-i \tilde{H} t}|n, 0\rangle\langle n, 0| A_{I}|c\rangle-\text { c.c. } \\
& =\sum_{n} e^{-i E_{n}(0) t}\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t}|n, 0\rangle\langle n, 0| A_{I}|c\rangle-\text { c.c. }
\end{aligned}
$$

Good old-fashion demonstration, revisited...

$$
\begin{aligned}
\kappa_{a I} & =\langle c|\left[Q_{a}(t), A_{I}\right]|c\rangle \\
& =\int d^{3} x\langle c| J_{a}^{0}(\vec{x}, t) A_{I}|c\rangle-\text { c.c. } \quad \text { Explicit the space-time dependence (I) } \\
& =\int d^{3} x\langle c| e^{i(H t-P \cdot \vec{x}) t} J_{a}^{0}(0) e^{-i(H t-P \cdot \vec{x})} A_{I}|c\rangle-\text { c.c. } \\
& =\int d^{3} x\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i(H t-P \cdot \vec{x})} A_{I}|c\rangle-\text { c.c. } \\
& =\int d^{3} x \sum_{n, p} e^{i \vec{p} \cdot \vec{x}}\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t} e^{-i \tilde{H} t}|n, \vec{p}\rangle\langle n, \vec{p}| A_{I}|c\rangle-\text { c.c. } \\
& =\sum_{n} \delta^{3}(\vec{p})\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t} e^{-i \tilde{H} t}|n, 0\rangle\langle n, 0| A_{I}|c\rangle-\text { c.c. } \\
& =\sum_{n} e^{-i E_{n}(0) t}\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t}|n, 0\rangle\langle n, 0| A_{I}|c\rangle-\text { c.c. }
\end{aligned}
$$

Good old-fashion demonstration, revisited...

$$
\begin{aligned}
\kappa_{a I} & =\langle c|\left[Q_{a}(t), A_{I}\right]|c\rangle \\
& =\int d^{3} x\langle c| J_{a}^{0}(\vec{x}, t) A_{I}|c\rangle-\text { c.c. } \quad \text { Explicit the space-time dependence (I) } \\
& =\int d^{3} x\langle c| e^{i(H t-P \cdot \vec{x}) t} J_{a}^{0}(0) e^{-i(H t-P \cdot \vec{x})} A_{I}|c\rangle-\text { c.c. } \\
& =\int d^{3} x\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i(H t-P \cdot \vec{x})} A_{I}|c\rangle-\text { c.c. } \quad \text { Insert momentum eigenstates } \\
& =\int d^{3} x \sum_{n, p} e^{i \vec{p} \cdot \vec{x}}\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t} e^{-i \tilde{H} t}|n, \vec{p}\rangle\langle n, \vec{p}| A_{I}|c\rangle-\text { c.c. } \\
& =\sum_{n} \delta^{3}(\vec{p})\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t} e^{-i \tilde{H} t}|n, 0\rangle\langle n, 0| A_{I}|c\rangle-\text { c.c. } \\
& =\sum_{n} e^{-i E_{n}(0) t}\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t}|n, 0\rangle\langle n, 0| A_{I}|c\rangle-\text { c.c. }
\end{aligned}
$$

Two cases: either J_{a} and Q commute or they do not.

Non-Commuting case: massive Goldstones

$$
\kappa_{I a}=e^{-i E_{n} t}\langle c| e^{i c Q t} J_{a}^{0}(0) e^{-i c Q t}|n, 0\rangle\langle n, 0| A_{I}|c\rangle-\text { c.c. }
$$

Say,

$$
\begin{gathered}
{\left[Q_{a}, J_{b}^{0}(x)\right]=i f_{a b}^{c} J_{c}^{0}(x)} \\
e^{i c Q t} J_{a} e^{-i c Q t}=\left(e^{-f_{1} c t}\right)_{a}^{b} J_{b}
\end{gathered}
$$

The interpolator is a time-dependent combination of conserved currents
Take $f_{1 a}^{b}$ in 'normal form': block diagonal with pieces $\left(\begin{array}{cc}0 & +q_{\alpha} \\ -q_{\alpha} & 0\end{array}\right)$
Each block: one massive Goldstone state

$$
m=c q_{\alpha}
$$

Example: SO(3) - one triplet

radial and angular coordinates for I-2

SSP solution:

Perturbations:

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2} \partial_{\mu} \vec{\phi} \partial^{\mu} \vec{\phi}-\frac{1}{2} m^{2} \vec{\phi}^{2}-\frac{1}{4} \lambda\left(\vec{\phi}^{2}\right)^{2} \\
\mathcal{L}= & -\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma-\frac{1}{2} \sigma^{2} \partial_{\mu} \theta \partial^{\mu} \theta-\frac{1}{2} \partial_{\mu} \phi_{3} \partial^{\mu} \phi_{3} \\
& -\frac{1}{2} m^{2}\left(\sigma^{2}+\phi_{3}^{2}\right)-\frac{1}{4} \lambda\left(\sigma^{2}+\phi_{3}^{2}\right)^{2}
\end{aligned}
$$

$$
\dot{\theta}=c ; \sigma^{2}=\frac{c^{2}-m^{2}}{\lambda} ; \phi_{3}=0
$$

$$
\mathcal{L}^{(2)}=-\frac{1}{2} \partial_{\mu} \delta \sigma \partial^{\mu} \delta \sigma-\frac{1}{2} \sigma^{2} \partial_{\mu} \pi \partial^{\mu} \pi-\frac{1}{2} \partial_{\mu} \phi_{3} \partial^{\mu} \phi_{3}
$$

$$
+2 c \sigma \dot{\pi} \delta \sigma-\left(c^{2}-m^{2}\right) \delta \sigma^{2}-\frac{1}{2} c^{2} \phi_{3}^{2}
$$

However: SO(3) - symmetric traceless rep.

$$
\mathcal{L}=-\frac{1}{2} \partial_{\mu} \Phi^{i}{ }_{j} \partial^{\mu} \Phi^{j}{ }_{i}-\lambda\left(\Phi^{i}{ }_{j} \Phi^{j}{ }_{i}-v^{2}\right)^{2}
$$

SSP solution:

$$
\langle\Phi\rangle=e^{i \mu t L_{3}}\left(\begin{array}{ccc}
\Phi_{0} & 0 & 0 \\
0 & -\Phi_{0} & 0 \\
0 & 0 & 0
\end{array}\right) e^{-i \mu t L_{3}}
$$

I) Fixed gap Goldstone

$$
m=\mu
$$

2) ` Un-fixed gap Goldstone

$$
m=3 \mu
$$

Other ex: SO(3) - two triplets. Etc.

1306.1240, A. Nicolis, R. Penco, F.P., R. Rosen

Finite charge density: coset construction

- Full symmetry group:
- Unbroken generators
- Broken generators
- Charge at finite density

Unbroken

$\left\{\begin{array}{l}\bar{P}^{0} \equiv H-\mu Q \\ \bar{P}^{i} \equiv P^{i} \\ J_{i} \\ T_{A}\end{array}\right.$
Q_{I}
T_{A} (subgroup)
X_{a}
$\mu Q=\mu_{X} X+\mu_{T} T$
I) maximum number of unbroken generators
2) completely antisymmetric in (X_{a}, T_{A})

Broken

Finite charge density: coset construction

$$
\Omega=e^{i x^{\mu} \bar{P}_{\mu}} e^{i \pi(x) X} e^{i \pi^{\mathrm{a}}(x) X_{\mathrm{a}}} e^{i \eta^{i}(x) K_{i}}
$$

Finite charge density: coset construction

$$
\Omega=e^{i x^{\mu} \bar{P}_{\mu}} e^{i \pi(x) X} e^{i \pi^{\mathrm{a}}(x) X_{\mathrm{a}}} e^{i \nsim}(x) K_{i}
$$

- Boost-Goldstones always eliminated by inv. Higgs (see Riccardo's talk)

Finite charge density: coset construction

$$
\Omega=e^{i x^{\mu} \bar{P}_{\mu}} e^{i \pi(x) X} e^{i \pi^{2}(x) X_{\mathrm{a}}} e^{i \not \mathcal{R}^{\ell}(x) K_{i}}
$$

- Boost-Goldstones always eliminated by inv. Higgs (see Riccardo's talk)
- Internal Goldstones further classified: commuting vs. non-commuting
$\left[Q, X_{\mathrm{a}}\right]=i M_{\mathrm{ab}} X^{\mathrm{b}} \quad M_{\mathrm{ab}}=\operatorname{diag}\left\{0, \cdots, 0,\left(\begin{array}{cc}0 & q_{1} \\ -q_{1} & 0\end{array}\right), \cdots,\left(\begin{array}{cc}0 & q_{k} \\ -q_{k} & 0\end{array}\right)\right\}$.

Finite charge density: coset construction

$$
\Omega=e^{i x^{\mu} \bar{P}_{\mu}} e^{i \pi(x) X} e^{i \pi^{2}(x) X_{\mathrm{a}}} e^{i \nsim}(x) K_{i}
$$

- Boost-Goldstones always eliminated by inv. Higgs (see Riccardo's talk)
- Internal Goldstones further classified: commuting vs. non-commuting

- This defines a new inverse Higgs constraint!

$$
\left[\bar{P}_{0}, X_{a}^{ \pm}\right]= \pm i \mu q_{a} X_{a}^{\mp}
$$

Finite charge density: coset construction

$$
\Omega=e^{i x^{\mu} \bar{P}_{\mu}} e^{i \pi(x) X} e^{i \pi^{2}(x) X_{\mathrm{a}}} e^{i \not \mathcal{R}^{\ell}(x) K_{i}}
$$

- Boost-Goldstones always eliminated by inv. Higgs (see Riccardo's talk)
- Internal Goldstones further classified: commuting vs. non-commuting

- This defines a new inverse Higgs constraint! $\quad\left[\bar{P}_{0}, X_{a}^{ \pm}\right]= \pm i \mu q_{a} X_{a}^{\mp}$
- For each fixed-mass Goldstone an "optional" non-fixed-mass one

Finite charge density: coset construction

$$
\Omega=e^{i x^{\mu} \bar{P}_{\mu}} e^{i \pi(x) X} e^{i \pi^{2}(x) X_{\mathrm{a}}} e^{i \nsim}(x) K_{i}
$$

- Commuting Goldstones $\pi-\pi^{\alpha}$ only appear with derivatives
- One derivative mixing is important: $\quad M_{\alpha \beta} \pi^{\alpha} \dot{\pi}^{\beta}$

$$
M=\operatorname{diag}\left\{\frac{0, \cdots, 0}{\nearrow}, \frac{\left.\left(\begin{array}{cc}
0 & M_{1} \\
-M_{1} & 0
\end{array}\right), \cdots,\left(\begin{array}{cc}
0 & M_{k} \\
-M_{k} & 0
\end{array}\right)\right\}}{\uparrow}\right.
$$

- Linear dispersion relations + massless quadratic <-> gapped $m \sim \mu$

Summary

- n_{1} massless linear (from commuting sector)
- n_{2} massless quadratic (from commuting sector)
- n_{3} fixed gap (from non-commuting sector)
- n_{4} unfixed gap (from both sectors)

$$
n_{2} \leq n_{4} \leq n_{2}+n_{3}
$$

