

Andreas Schmitt

Institut für Theoretische Physik Technische Universität Wien 1040 Vienna, Austria



# Sound modes and the two-stream instability in relativistic superfluids

M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, PRD 87, 065001 (2013) M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, arXiv:1310.5953 [hep-ph] A. Schmitt, arXiv:1312.5993 [hep-ph]

- two-fluid picture of a superfluid
- $\bullet$  role reversal in first and second sound
- two-stream instability



- Superfluid hydrodynamics: relevance for compact stars
  - r-mode instability
  - pulsar glitches
  - precession
  - asteroseismology
  - superfluid turbulence (?)



Cas A, Chandra X-Ray Observatory

• Superfluidity in dense matter

| Nuclear matter                            | Quark matter                                           |  |
|-------------------------------------------|--------------------------------------------------------|--|
| neutrons $(T_c \lesssim 10 \mathrm{keV})$ | color-flavor locked phase $(T_c \sim 10 \mathrm{MeV})$ |  |
| hyperons                                  | color-spin locked phase $(T_c \sim 10 \mathrm{keV})$   |  |

## • Two-fluid picture of a superfluid (liquid helium)

London, Tisza (1938); Landau (1941) relativistic: Khalatnikov, Lebedev (1982); Carter (1989)

- "superfluid component": condensate, carries no entropy
- "normal component": excitations (Goldstone mode), carries entropy



Hydrodynamic eqs.  $\Rightarrow$  two sound modes

| 1st sound                | 2nd sound                |  |
|--------------------------|--------------------------|--|
| in-phase oscillation     | out-of-phase oscillation |  |
| (primarily) density wave | (primarily) entropy wave |  |

#### First and second sound in non-relativistic systems



1.0

#### • Goals

### How does the two-fluid picture arise from a microscopic field theory?

M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, PRD 87, 065001 (2013)

Compute sound modes in a relativistic superfluid (and in the presence of a superflow)

M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, arXiv:1310.5953 [hep-ph] A. Schmitt, arXiv:1312.5993 [hep-ph]

- Lagrangian and superfluid velocity
  - starting point: complex scalar field

$$\mathcal{L} = (\partial \varphi)^2 - m^2 |\varphi|^2 - \lambda |\varphi|^4$$

• Bose condensate  $\langle \varphi \rangle = \rho e^{i\psi}$  spontaneously breaks U(1)

• zero temperature: single-fluid system

|                                   | Field theory                                                                           | Hydrodynamics                                |
|-----------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------|
| current $j^{\mu}$                 | $rac{(\partial\psi)^2}{\lambda}\partial^\mu\psi$                                      | $nv^{\mu}$                                   |
| stress-energy tensor $T^{\mu\nu}$ | $-g^{\mu u}\mathcal{L}+rac{(\partial\psi)^2}{\lambda}\partial^\mu\psi\partial^ u\psi$ | $(\epsilon + P)v^{\mu}v^{\nu} - g^{\mu\nu}P$ |

• superfluid velocity

$$v^{\mu} = \frac{\partial^{\mu}\psi}{\mu}$$

$$\mu = |\partial \psi|$$

## • Relativistic two-fluid formalism (page 1/2)

• write stress-energy tensor as

$$T^{\mu\nu} = -g^{\mu\nu}\Psi + j^{\mu}\partial^{\nu}\psi + s^{\mu}\Theta^{\nu}$$

• "generalized pressure"  $\Psi$ :

 $-\Psi = P_{\perp}$  in superfluid and normal-fluid rest frames,  $-\Psi$  depends on momenta  $\partial^{\mu}\psi$ ,  $\Theta^{\mu}$  $\Psi = \Psi[(\partial\psi)^2, \Theta^2, \partial\psi \cdot \Theta]$ 

• "generalized energy density"  $\Lambda \equiv -\Psi + \mathbf{j} \cdot \partial \psi + \mathbf{s} \cdot \Theta$ 

 $-\Lambda$  is Legendre transform of  $\Psi,$ 

 $-\Lambda$  depends on currents  $j^{\mu}$ ,  $s^{\mu}$ 

$$\Lambda = \Lambda[j^2, s^2, j \cdot s]$$

#### • Relativistic two-fluid formalism (page 2/2)

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

$$\mathcal{B} = 2 \frac{\partial \Psi}{\partial (\partial \psi)^2}, \quad \mathcal{C} = 2 \frac{\partial \Psi}{\partial \Theta^2}$$
$$\mathcal{A} = \frac{\partial \Psi}{\partial (\partial \psi \cdot \Theta)}$$
"entrainment coefficient"

• compute  $\mathcal{A}, \mathcal{B}, \mathcal{C}$  from microscopic physics





- Microscopic calculation for arbitrary T (page 1/2)
- effective action density in the 2PI formalism (CJT)

$$\Gamma[\rho, S] = -U(\rho) - \frac{1}{2} \operatorname{Tr} \ln S^{-1} - \frac{1}{2} \operatorname{Tr}[S_0^{-1}(\rho)S - 1] - V_2[\rho, S]$$

- $V_2[\rho, S]$ : two-loop two-particle irreducible (2PI) diagrams
- use Hartree approximation
- impose Goldstone theorem by hand
- solve self-consistency equations for condensate  $\rho$  and M,  $\delta M$

- Microscopic calculation for arbitrary T (page 2/2)
- microscopic calculation done in normal-fluid rest frame
- identify effective action density with generalized pressure

$$\Gamma[\mu, T, \nabla \psi] = \Psi$$

- $\bullet$  restrict to weak coupling  $\rightarrow$  no dependence on renormalization scale
- $\bullet$  consider uniform superflow  ${\bf v}$
- neglect dissipation  $\rightarrow$  thermodynamics with  $(\mu, T, \mathbf{v})$
- compute entrainment coefficient, sound velocities etc.

- Results I: critical velocity
- instability at  $v = v_c$
- negative energies in Goldstone dispersion  $\epsilon_{\mathbf{k}}(\mathbf{v}) < 0$



• generalization to Landau's original argument  $\epsilon_{\mathbf{k}} - \mathbf{k} \cdot \mathbf{v} < 0$ 



- dashed line: without backreaction of condensate
- shaded region: dissipation, turbulence?

• similar phase diagram for holographic superfluid I. Amado, D. Arean, A. Jimenez-Alba, K. Landsteiner, L. Melgar and I. S. Landea, arXiv:1307.8100 [hep-th]

## • Results II: sound speeds and mixing angle











1.0

0.6

0.4

0.2

0.0

0.988

Re(u)

 $0.8 \vdash \theta = \pi$ 

- **Results III: two-stream instability** 
  - compute sound speed close to Landau's critical velocity

 $v/v_c(T)$ 



 $v/v_c(T)$ 

1.0

• complex sound speeds  $\rightarrow$  one mode damped, one mode explodes plasma physics: O. Buneman, Phys.Rev. 115, 503 (1959); D.T. Farley, PRL 10, 279 (1963) general two-fluid system: L. Samuelsson, C. S. Lopez-Monsalvo, N. Andersson, G. L. Comer, Gen. Rel. Grav. 42, 413 (2010)

relevance for superfluids: N. Andersson, G. L. Comer, R. Prix, MNRAS 354, 101 (2004)

## • All directions



(superflow pointing to the right)

#### • Instability window in phase diagram



- tiny window for weak coupling  $\lambda = 0.05$ (varying  $\lambda$  shows that the window grows with  $\lambda$ )
- region with u > 1: problem in the formalism? (Hartree? enforced Goldstone theorem?)
- very small T: qualitatively different angular structure of instability



- a superfluid is a two-fluid system, and this can be derived from microscopic physics
- the two sound modes in a (weakly coupled, relativistic) superfluid can reverse their roles (in terms of density and entropy waves)
- at large relative velocities of the two fluids, there is a dynamical instability ("two-stream instability")

# • Outlook

- start from fermionic theory D. Müller, A. Schmitt, work in progress
- behavior beyond critical velocity
- sound modes (role reversal):
  - predictions for <sup>4</sup>He or ultracold gases?
  - apply to compact stars neutron superfluid & ion lattice: N. Chamel, D. Page and S. Reddy, PRC 87, 035803 (2013)
- two-stream instability:
  - instability more prominent at strong coupling?
     holographic approach: C.P.Herzog and A.Yarom, PRD 80, 106002 (2009); I.Amado,
     D.Arean, A.Jimenez-Alba, K.Landsteiner, L.Melgar, I.S.Landea, arXiv:1307.8100 [hep-th]
  - time evolution of instability
    - I. Hawke, G. L. Comer and N. Andersson, Class. Quant. Grav. 30, 145007 (2013)
  - relevance for compact stars, e.g., pulsar glitches
     N. Andersson, G. L. Comer, R. Prix, MNRAS 354, 101 (2004)