Noncommutativity of the momentum operator and the dynamics of translational moduli

Haruki Watanabe

University of California, Berkeley

HW&Hitoshi Murayama, to be submitted as soon as possible...

1-page summary

• Momentum operator of QFT usually commute: $[P^i, P^j] = 0$

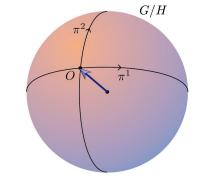
(in the presence of external magnetic field, $[P^i, P^j] = i B^{ij}Q$)

- I will discuss
 - Even if the magnetic field is zero, $[P^i, P^j] != 0$ in the presence of the topological excitation
 - The noncommutativity (central extensions)
 - reduces the number of independent translational zero mode of the topological excitation
 - induces a Magnus force

1. REVIEW OF THE LOW-ENERGY EFFECTIVE LAGRANGIAN

Effective Lagrangian

- Describes Nambu-Goldstone modes originated from the symmetry breaking G→H
- G,H are compact Lie groups.
- π^a $(a=1,2,\ldots,\dim(G/H))$ is a local coordinate of G/H.



- $\pi^a(\vec{x},t)$ is a map from the base manifold M to the target space G/H.
- The low-energy effective Lagrangian has the original symmetry G.

The general form of the nonrelativistic effective Lagrangian

- Non-linear sigma model
 - relativistic case

metric of
$$G/H$$

$$\mathcal{L} = \frac{1}{2} g_{ab}(\pi) \partial_{\mu} \pi^a \partial^{\mu} \pi^b$$

nonrelativistic case

$$\mathcal{L}^{(\text{metric})} = \frac{1}{2} \bar{g}_{ab}(\pi) \dot{\pi}^a \dot{\pi}^b - \frac{1}{2} g_{ab}(\pi) \nabla \pi^a \cdot \nabla \pi^b$$

$$\mathcal{L}^{(\text{Berry})} = c_a(\pi) \dot{\pi}^a \qquad \text{(dominant in the low-energy limit)} \qquad \begin{array}{c} \text{Leutwyler} \\ \text{PRD (1994)} \end{array}$$

• Maurer-Cartan form $\omega_a^i(\pi)T_i\mathrm{d}\pi^a=-ie^{-iT_a\pi^a}\mathrm{d}e^{iT_a\pi^a}$

$$g_{ab}(\pi) = g_{cd}(0)\omega_a^c(\pi)\omega_a^d(\pi)$$

$$c_a(\pi) = -\omega_a^i(\pi)e_i(0)$$
 , $f_{\rho i}^{\ j}e_j(0) = 0$

Consequence of the Berry phase term

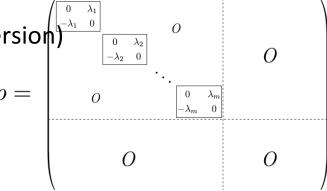
$$c_a(\pi)\dot{\pi}^a = -\frac{1}{2}\rho_{ab}\pi^a\dot{\pi}^b + O(\pi^3)$$
$$i\rho_{ab} = \langle [Q_a, j_b^0(\vec{x}, t)] \rangle = \lim_{\Omega \to \infty} \frac{1}{\Omega} \langle [Q_a, Q_b] \rangle$$

Partially symplectic structure c.f. $L=p_i\dot{q}^i-H(q,p)$

• m(=rank ρ)-canonically conjugate pairs

 $(\pi^1, \pi^2), (\pi^3, \pi^4), ..., (\pi^{2m-1}, \pi^{2m}) \rightarrow$ reduces the number of independent modes

- Counting rule
 - type-A (unpaired) NGBs (usually linear dispersion) $n_A = dim(G/H) - rank \rho$
 - type-B (paired) NGBs (usually quadratic dispersion) $n_B = (1/2) \operatorname{rank} \rho$
 - The total number of gapless NGBs $n_A + n_B = dim(G/H) - (1/2) rank \rho$



Geometry of G/H

- G/H may be seen as a fiber bundle with
 - the base space B = G/K (symplectic)
 - the fiber F = K/H

```
e.g. G/H = U(2)/U(1) = S^3. Miranski, Shovkovy PRL 2002
Schafer et al, Phys.Lett.B 2002
```

- $B = U(2) / U(1) \times U(1) = S^2$ (symplectic manifold; type-B)
- $F = U(1) \times U(1) / U(1) = S^1$ (type-A NGBs)
- When H²(G/H) is nonzero, the Berry phase term may be seen as the Wess-Zumino term

The ϑ -term for the time direction (1D) + an extended direction (1D) = 2D

Stability condition

situation	T = 0	$T \neq 0$
only type-A	z	2z
only type-B	0	z

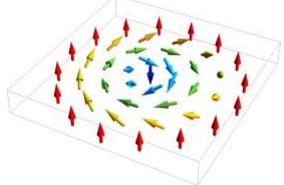
← SSB at 1+1 D is possible!

The lower bound of the space dimension d for $\omega = k^z$. If d equals to or smaller than this value, the symmetry is restored. (can be an algebraic (power law) long-range order)

mixed case is nontrival and have to be discussed case by case.

2. REVIEW OF TOPOLOGICAL EXCITATIONS

Skyrmions



- A *static* topologically nontrivial field configurations classified of the map $M \rightarrow G/H$
- When $M = S^n$, this is classified by $\pi_n(G/H)$.
- e.g., $G/H = S^2$ in 2 dimensions: skyrmions in magnet $G/H = S^3 = SU(2)$ in 3 dimensions: usual skyrmions
- When M is other manifold, we have to deal with it one by one.
- e.g., $M = G/H = T^n$ (torus)

 $\pi_2(G/H) = 0$ but the map $M \rightarrow G/H$ is characterized by two winding numbers N_1 , N_2 .

Topological defects

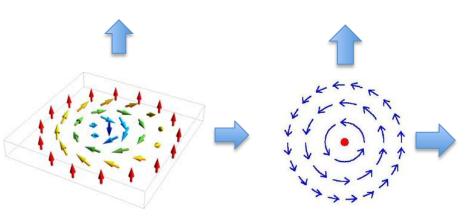
• Take a sphere S^n surrounding the defect and calculate the winding number $\pi_n(G/H)$ of the map $S^n \rightarrow G/H$.

e.g.,

magnetic monopoles in magnets ($G/H=S^2$) vortices in superfluids ($G/H=S^1$)

Translational moduli

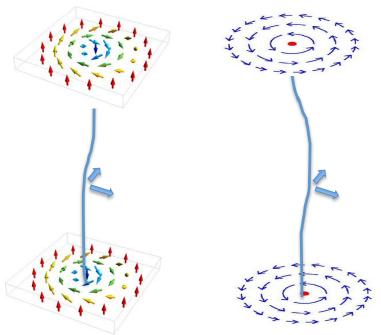
for 2D skyrmions (dim(M)=2) and vortices ($\pi_1(G/H)$!=0)



translational zero modes

To describe the quantum mechanics of the translational zero modes, we introduce the position variables $u^{x}(t)$, $u^{y}(t)$

In 3+1 dimensions



Nambu-Goldstone excitation localized on the string. The wave vector is along the string direction.

$$u^{x}(t,z), u^{y}(t,z)$$

Effective Lagrangian of the zero modes

Start from a static field configuration $\pi^a(x)$. Replace by $\pi^a(x - u(t))$, put this into the Lagrangian, and expand it to the quadratic order in u.

$$L = \frac{M}{2}(\dot{u}_x^2 + \dot{u}_y^2) + \frac{B}{2}(u_y\dot{u}_x - u_x\dot{u}_y)$$

- One can show that B is proportional to the winding number of the texture $\pi^{\alpha}(x)$; e.g., $B = 2\pi n_0 N$ for a superfluid vortex, and $B = 4\pi s N$ for a skyrmion in magnets.
- The Lagrangian is identical to the single-particle quantum mechanics under the magnetic field B. The effective Lorentz force is the famous Magnus force.
- → The same commutation relation must be seen at a

more microscopic level

3. NONCOMMUTATIVITY OF THE MOMENTUM OPERATOR

Momentum operator and its commutation relation

Noether theorem

$$T^{0i} = \frac{\partial \mathcal{L}}{\partial \dot{\pi}^a} \delta \pi^a = p_a \partial_i \pi^a$$

Canonical commutation relation

$$[\pi^a(\vec{x},t),p_b(\vec{x}',t)] = i\delta^a_b \delta^d(\vec{x}-\vec{x}')$$

Generator of the transformation

$$[P^{i}, T^{0j}(x)] = -i\partial_{i}T^{0j}(x)$$
$$[P^{i}, P^{j}] = 0 \quad \text{if} \quad T^{0j}(x) \to 0 \quad \text{as} \quad |\vec{x}| \to \infty$$

For skyrmions

From more careful calculation

$$[P^{i}, T^{0j}(x)] = -i\partial_{i}T^{0j}(x) + ip_{a}(x)(\partial_{i}\partial_{j} - \partial_{j}\partial_{i})\pi^{a}(x)$$

Therefore,

$$[P^{i}, P^{j}] = -i \int d^{d}x \left[\partial_{i} p_{a}(x) \partial_{j} \pi^{a}(x) - \partial_{j} p_{a}(x) \partial_{i} \pi^{a}(x) \right]$$

For the Lagrangian
$$\mathcal{L}^{(\mathrm{Berry})} + \mathcal{L}^{(\mathrm{metric})}$$
,
$$\mathcal{L}^{(\mathrm{metric})} = \frac{1}{2} \bar{g}_{ab}(\pi) \dot{\pi}^a \dot{\pi}^b - \frac{1}{2} g_{ab}(\pi) \nabla \pi^a \cdot \nabla \pi^b$$

$$\mathcal{L}^{(\text{Berry})} = c_a(\pi)\dot{\pi}^a$$

and for a static field configurations,

(= 0 when $H^2(G/H)$ is trivial)

$$[P^{i}, P^{j}] = -i \int d^{d}x \frac{1}{2} \left| \frac{\partial c_{b}(\pi)}{\partial \pi^{a}} - \frac{\partial c_{a}(\pi)}{\partial \pi^{b}} \right| (\partial_{i}\pi^{a}\partial_{j}\pi^{b} - \partial_{i}\pi^{b}\partial_{j}\pi^{a})$$

(when
$$H^2$$
(G/H) $=-i\epsilon_{ij}\int\pi^*\omega=-iN\epsilon_{ij}\int_{C_2}\omega$ (for $d=2;\,\omega\equiv\mathrm{d}[c_b(\pi)\mathrm{d}\pi^b]$) is nontrivial)

two-cycle C_2 : 2D manifold (in G/H) without boundary

Simple example: skyrmions in ferromagnet

 $G/H = SO(3) / SO(2) = S^{2}$; S^{2} itself the nontrivial two-cycle C_{2}

$$\mathcal{L} = s \frac{n_y \dot{n}_x - n_x \dot{n}_y}{1 + n_z} + \frac{\bar{g}_0}{2} \dot{\vec{n}}^2 - \frac{g_0}{2} (\nabla \vec{n})^2$$

spin density $s = S/a^d$

$$[P^x, P^y] = 4\pi i s \int d^2 x \frac{1}{4\pi} \vec{n} \cdot \partial_x \vec{n} \times \partial_y \vec{n}$$

$$= 4\pi i s \int n^* \omega = 4\pi i s N \int_{\mathbb{S}^2} \omega$$

$$\omega = \frac{1}{4\pi} \sin \theta d\theta \wedge d\phi$$

Other examples with nontrivial $H^2(G/H)$:

- $G/H = CP^n$ (i.e., the CP^n model) (n = 1 case is identical to the above magnet example)
- $G/H = T^2$ $[\pi_2(G/H) = H^2(G/H) \text{ when } \pi_1(G/H) = \pi_0(G/H) = 0]$
- G/T where G is semisimple and T is the maximal torus (U(1)s) of G

Vortices in superfluid

$$[P^i, T^{0j}(x)] = -i\partial_i T^{0j}(x) + \underline{ip_a(x)(\partial_i \partial_j - \partial_j \partial_i)\pi^a(x)}$$

$$\pi(x) = \theta(x) \quad , \qquad p(x) = n(x) - n_0$$

$$(\partial_x \partial_y - \partial_y \partial_x)\theta(\vec{x}) = 2\pi N \delta^2(\vec{x})$$

$$\lim_{|\vec{x}| \to \infty} n(x) = n_0$$

$$n(\vec{x} = 0) = 0$$

$$[P^x, P^y] = -2\pi i n_0 N$$
Thousless et at, PRL (1996)

For a relativistic superfluid $n_0 = 0$ and thus they commute.

This calculation can be easily generalized for a general $\pi_1(G/H) = Z^m$. The condition for a nonzero commutator is $p_a(\vec{x} = 0) \neq \lim_{|\vec{x}| \to \infty} p_a(\vec{x})$

Quantization of the central extension

$$L = \frac{M}{2}(\dot{u}_x^2 + \dot{u}_y^2) + \frac{B}{2}(u_y\dot{u}_x - u_x\dot{u}_y)$$

B x (Area) is quantized to an integer multiple of 2π . Indeed, total # of particles

 $B \times (Area) = 2\pi N n_0 \times (Area)$ for a superfluid vortex.

 $B \times (Area) = 2\pi N 2s \times (Area)$ for a skyrmion in magnets.

For skyrmions in general, the quantization follows from the requirement on the Wess-Zumino term.

Summary

- We have shown that the momentum operator may not commute in the presence of skyrmions $(H^2(G/H)!=0)$ and vortices $(\pi_1(G/H)=Z^m)$
- The quantum mechanics of the zero modes is

$$L = \frac{M}{2}(\dot{u}_x^2 + \dot{u}_y^2) + \frac{B}{2}(u_y\dot{u}_x - u_x\dot{u}_y)$$

where $[P^{x}, P^{y}]=i B$.

B x (Area) is quantized to an integer multiple of 2π .