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Antiferromagnetic precursors of high-Tc superconductors

LaCuO YBaCuO
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Phase diagrams of QCD and of doped antiferromagnets
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Correspondences between QCD and Antiferromagnetism
QCD Antiferromagnetism

broken phase hadronic vacuum antiferromagnetic phase
global symmetry chiral symmetry spin rotations

symmetry group G SU(2)L ⊗ SU(2)R SU(2)s
unbroken subgroup H SU(2)L=R U(1)s

Goldstone boson pion magnon
Goldstone field in G/H U(x) ∈ SU(2) ~e(x) ∈ S2

order parameter chiral condensate staggered magnetization
coupling strength pion decay constant Fπ spin stiffness ρs
propagation speed velocity of light spin-wave velocity c
conserved charge baryon number U(1)B electric charge U(1)Q
charged particle nucleon or antinucleon electron or hole
long-range force pion exchange magnon exchange

dense phase nuclear or quark matter high-Tc superconductor
microscopic description lattice QCD Hubbard or t-J model

effective description chiral perturbation magnon effective
of Goldstone bosons theory theory
effective description baryon chiral magnon-hole

of charged fields perturbation theory effective theory
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Quantum spins ~Sx on a lattice with sites x

[Sa
x ,S

b
y ] = iδxyεabcS

c
x ,

~S =
∑

x

~Sx

SU(2) invariant Hamiltonian of the quantum Heisenberg model

H = J
∑

〈xy〉

~Sx · ~Sy , [H, ~S ] = 0

Partition function at inverse temperature β = 1/T

Z = Tr exp(−βH)



Staggered magnetization order parameter

~Ms =
∑

x

(−1)(x1+x2)/a ~Sx

signals spontaneous symmetry breaking SU(2)→ U(1)

a2

L2
|〈 ~Ms〉| =Ms 6= 0 at T = 0

Magnon (Goldstone boson) field in SU(2)/U(1) = S2

~e(x) = (e1(x), e2(x), e3(x)), ~e(x)2 = 1

Low-energy effective action for antiferromagnetic magnons

S [~e] =

∫ β

0
dt

∫
d2x

ρs
2

(
∂i~e · ∂i~e +

1

c2
∂t~e · ∂t~e

)

Chakravarty, Halperin, Nelson (1989)
Neuberger, Ziemann (1989)
Hasenfratz, Leutwyler (1990)
Hasenfratz, Niedermayer (1993)
Chubukov, Sentil, Sachdev (1994)



Path integral

Z = Tr[exp(−εH1) exp(−εH2)... exp(−εHM)]N

=
∑

[s]

Sign[s] exp(−S [s])

X

T − +U µ
2

−
2d

2
ε t

tε
2

sinh(

exp(−ε[ ])

exp(− [ε −
2
U −

2d

µ
− ])

)

)cosh(

In this case: M = 2, t = U = J, µ = 0.



Cluster decomposition

All spins in a cluster are flipped simultaneously with probability 1
2 .

Reference configuration

By appropriate cluster flips one can reach the classical Néel state.

Evertz, Lana, Marcu (1993); UJW, Ying (1994); Beard, UJW (1996)



Fit to analytic predictions of effective theory

χs =
M2

sL
2β

3

{
1 + 2

c

ρsLl
β1(l) +

(
c

ρsLl

)2 [
β1(l)2 + 3β2(l)

]
}

χu =
2ρs
3c2

{
1 +

1

3

c

ρsLl
β̃1(l) +

1

3

(
c

ρsLl

)2 [
β̃2(l)− 1

3
β̃1(l)2 − 6ψ(l)

]}
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UJW, Ying (1994); Sandvik, Evertz (2010); Jiang, UJW (2010)



Excellent agreement with effective field theory predictions for
the constraint effective potential: Göckeler, Leutwyler (1991)
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Jiang (2010) M = 0.43561(1)/a2, ρ = 0.26974(5)J, c = 1.1348(5)Ja



Effective rotor Lagrange function in the δ-regime βc � L

L =

∫
d2x

ρs
2

(
∂i~e · ∂i~e +

1

c2
∂t~e · ∂t~e

)
=

Θ

2
∂t~e · ∂t~e

Moment of inertia

Θ =
ρsL

2

c2

[
1 +

3.900265

4π

c

ρsL
+O

(
1

L2

)]

Hasenfratz, Niedermayer (1993)

β

L

L

Honeycomb lattice
Jiang (2011): M̃s = 0.26885(2), ρs = 0.1012(1)J, c = 1.2900(3)Ja



Rotor spectrum
ES =

S(S + 1)

2Θ
Probability distribution of magnetization M3 = S3

p(M3) =
1

Z

∑

S≥|M3|

exp(−βES), Z =
∞∑

S=0

(2S + 1) exp(−βES)
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Honeycomb Lattice, 836 Spins, βJ = 60  

Sz = 0: 0.5444

Sz = 1: 0.1909

Sz = 2: 0.0338

Sz = 3: 0.00283

Sz = 0: 0.5445(9)

Sz = 1: 0.1912(5)

Sz = 2: 0.0336(3)
Sz = 3: 0.00279(6)

Perfect agreement without any adjustable parameters.

Jiang, Kämpfer, Nyfeler, UJW (2008)
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The Hubbard Model

H = −t
∑

〈xy〉

(c†xcy + c†ycx) + U
∑

x

(c†xcx − 1)2, cx =

(
cx↑
cx↓

)

For large repulsion U it reduces to the t-J model

H = P

{
− t

∑

〈xy〉

(c†xcy + c†ycx) + J
∑

〈xy〉

~Sx · ~Sy
}
P

which further reduces to the Heisenberg model at half-filling

H = J
∑

〈xy〉

~Sx · ~Sy
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Hole dispersion in the t-J model

p1

p2
π
a

π
a

-π -π /2
 0

π /2
π

-π
-π /2

 0

π /2

π

Hole pockets centered at lattice momenta

kα =
( π

2a
,
π

2a

)
, kα′ = −kα, kβ =

( π
2a
,− π

2a

)
, kβ

′
= −kβ

Hole fields

ψf
+(x) =

1√
2

[
ψk f

+ (x)−ψk f ′

+ (x)
]
, ψf

−(x) =
1√
2

[
ψk f

− (x)+ψk f ′

− (x)
]



Nonlinear realization of the SU(2)s symmetry

u(x)~e(x) · ~σu(x)† = σ3, u11(x) ≥ 0

Under SU(2)s the diagonalizing field u(x) transforms as

u(x)′ = h(x)u(x)g †, u11(x)′ ≥ 0,

h(x) = exp(iα(x)σ3) =

(
exp(iα(x)) 0

0 exp(−iα(x))

)
∈ U(1)s

The composite vector field

vµ(x) = u(x)∂µu(x)† = ivaµ(x)σa, v±µ (x) = v1µ(x)∓ iv2µ(x)

transforms as

v3µ(x)′ = v3µ(x)− ∂µα(x), v±µ (x)′ = exp(±2iα(x))v±µ (x)



Transformation rules of fermion fields

SU(2)s : ψf
±(x)′ = exp(±iα(x))ψf

±(x),

U(1)Q : Qψf
±(x) = exp(iω)ψf

±(x),

Di : Diψf
±(x) = ∓ exp(ik fi a) exp(∓iϕ(x))ψf

∓(x),

O : Oψα±(x) = ∓ψβ±(Ox), Oψβ±(x) = ψα±(Ox),

R : Rψα±(x) = ψβ±(Rx), Rψβ±(x) = ψα±(Rx)

Leading terms in the effective Lagrangian for holes

L =
∑

f=α,β
s=+,−

[
Mψf †

s ψ
f
s + ψf †

s Dtψ
f
s + Λ

(
ψf †
s v s1ψ

f
−s + σf ψ

f †
s v s2ψ

f
−s
)

+
1

2M ′
Diψ

f †
s Diψ

f
s + σf

1

2M ′′
(
D1ψ

f †
s D2ψ

f
s + D2ψ

f †
s D1ψ

f
s

)]

Covariant derivative coupling to composite magnon gauge field

Dµψ
f
±(x) =

[
∂µ ± iv3µ(x)

]
ψf
±(x)

Shraiman, Siggia (1988); Wen (1989); Shankar (1989); Sushkov (1994);
Brügger, Kämpfer, Moser, Pepe, UJW (2006)
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Magnon exchange

f+

f̃−

f−

f̃+

~p+

~q

~p
′
−

~p− ~p
′
+

One-magnon exchange potentials

V αα(~r) = γ
sin(2ϕ)

r2
, V ββ(~r) = −γ sin(2ϕ)

r2
,

V αβ(~r) = V βα(~r) = γ
cos(2ϕ)

r2
, γ =

Λ2

2πρs



Two-hole Schrödinger equation for an αβ pair
( − 1

M′∆ V αβ(~r)

V αβ(~r) − 1
M′∆

)(
Ψ1(~r)
Ψ2(~r)

)
= E

(
Ψ1(~r)
Ψ2(~r)

)

Making the ansatz

Ψ1(~r)±Ψ2(~r) = R(r)χ±(ϕ)

for the angular part of the wave function one obtains

−d2χ±(ϕ)

dϕ2
±M ′γ cos(2ϕ)χ±(ϕ) = −λχ±(ϕ)
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looks like s-wave,
but turns out to be p-wave



Two-hole bound states of αβ and αα pairs
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Topologically conserved current

jµ(x) =
1

8π
εµνρ~e(x) · [∂ν~e(x)× ∂ρ~e(x)] , ∂µjµ(x) = 0

Topological winding number

n[~e] =

∫
d2x jt =

1

8π

∫
d2x εij~e · [∂i~e × ∂j~e] ∈ Π2[S2] = Z,

Schwarz inequality for the energy

E [~e] =

∫
d2x

ρs
2
∂i~e · ∂i~e ≥ 4πρs |n[~e]|

Selfduality condition

∂i~e + εij∂j~e × ~e = 0

is satisfied by Skyrmion configurations

~eρ,γ(r , χ) =

(
2rρ

r2 + ρ2
cos(χ+ γ),

2rρ

r2 + ρ2
sin(χ+ γ),

r2 − ρ2
r2 + ρ2

)



Single-Hole-Skyrmion Hamiltonian

H f Ψf (r , χ, γ) =

(
H f
++ H f

+−
H f
−+ H f

−−

)(
Ψf

+(x)
Ψf
−(x)

)
= E f Ψf (x),

H f
++,−− = − 1

2M ′

[
∂2r +

1

r
∂r −

1

r2

(
−i∂χ ±

ρ2

r2 + ρ2

)2
]

+
1

2I(ρ)

(
−i∂γ ∓

ρ2

r2 + ρ2

)2

,

H f
+−
∗

= H f
−+ =

√
2Λσf

ρ

r2 + ρ2
exp

(
i
[
2χ+ γ + σf

π

4

])

Single-hole-Skyrmion wave function

Ψf
m+,m−,m(r , χ, γ) =
(

ψ+(r) exp
(
i
[
m+χ− σf π8

])
exp(i(m − 1

2)γ)
σf ψ−(r) exp

(
i
[
m−χ+ σf

π
8

])
exp(i(m + 1

2)γ)

)



Two hole-Skyrmion wave function

Ψαβ

mα+,,m
α
−,m

β
+,m

β
−,m

(rα, χα, rβ, χβ, γ) =




ψ++(rα, rβ) exp
(
i
[
mα

+χα + mβ
+χβ

])
exp(i(m − 1)γ)

−ψ+−(rα, rβ) exp
(
i
[
mα

+χα + mβ
−χβ − π

4

])
exp(imγ)

ψ−+(rα, rβ) exp
(
i
[
mα
−χα + mβ

+χβ + π
4

])
exp(imγ)

−ψ−−(rα, rβ) exp
(
i
[
mα
−χα + mβ

−χβ

])
exp(i(m + 1)γ)




90 degrees rotation of two-hole-Skyrmion ground state

OΨαβ
−1,1,−1,1,0(rα, χα, rβ, χβ, γ) = −iΨαβ

−1,1,−1,1,0(rα, χα, rβ, χβ, γ)

The bound state of two holes localized on a Skyrmion again has
p-wave symmetry and is thus not a candidate for a preformed
Cooper pair in a high-temperature superconductor.

Vlasii, Jiang, Hofmann, UJW (2012)
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Hubbard model on the honeycomb lattice:
Unbroken SU(2)s symmetric phase (graphene)
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Hole dispersion in the t-J model (NaxCoO2·yH2O)
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Effective Lagrangian for Magnons and Holes

L =
∑

f=α,β
s=+,−

[
Mψf †

s ψ
f
s + ψf †

s Dtψ
f
s +

1

2M ′
Diψ

f †
s Diψ

f
s

+ Λψf †
s (isv s1 − σf v s2 )ψf

−s

]
+
ρs
2

(
∂i~e · ∂i~e +

1

c2
∂t~e · ∂t~e

)

Hofmann, Jiang, Kämpfer, Nyfeler, UJW (2008)



Conclusions

• Doped antiferromagnets are described quantitatively by systematic
low-energy effective field theories for magnons and doped holes.

• Quantum Monte Carlo calculations using the loop-cluster algorithm
yield the low-energy parameters with fraction of a per mille accuracy.

• After fixing the low-energy parameters, the Monte Carlo data provide a
very high-accuracy quantitative test of the magnon effective theory.

• Through the Shraiman-Siggia coupling, magnon exchange binds hole
pairs in the p-wave channel.

• Two holes localized on a Skyrmion again have p-wave symmetry. Only
if binding also exists in the d-wave channel, such states may be a
candidate for a preformed Cooper pair in a high-Tc superconductor.

• Systems on the honeycomb lattice as well as electron-doped systems
have been investigated with the same techniques.

• On the honeycomb lattice, two holes bound by magnon exchange have

f-wave symmetry.
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